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Abstract

In this work we introduce a meta-leaning model for segmenting objects in a class-
agnostic manner, that allows us to match and track novel objects of interest across
multiple frames of video without specific instance models being known a priori.
The work is motivated by the powerful implications that such a model can have have
on visual SLAM and other computer vision tasks; in essence, a segmentation model
that can efficiently learn new concepts from a very limited amount of data would
be able to bridge the gap between biological and machine perception by allowing a
perception system to perform robust and accurate object-level data association over
changing environments and large time-spans. In this paper, we propose a novel
combination of a metric deep learned embedding and a meta-learned optimizer to
perform instance-level segmentation that is able to generalize to new classes with
only a single training example. The cost function of our meta-learner is designed to
predict the parameter updates for the segmentation network so that it can be trained
on the fly to adapt to new instance classes while requiring only a few optimization
iterations. We train and test our model on the DAVIS video-object segmentation
dataset.

1 Introduction

Semantic segmentation models traditionally require a large number of training samples to learn
to recognize new object classes. Therefore, although there has been much interest in integrating
semantic object-level information into tasks such as visual SLAM, these approaches have not been
able to do so very effectively as they inhibit the system’s ability to generalize to novel environments
with a new set of objects. Recently, however, much progress has been made in terms of meta-learning
models which in principle allows learning systems to increase in efficiency as more data becomes
available. Meta-learning models allow us to learn a training algorithm that is much more data-efficient
than standard training methods by automatically finding an optimal learning strategy tailored for
each task; the knowledge it learns is general to the higher-level problem being solved - not to the
individual task at hand.

In this paper we introduce a meta-learning model for instance-level segmentation of objects in video
frames. Given a single labelled image of a specific object instance, the goal of our model is to segment
the object in the following video frames. The initial segmentation might come from, for example, an



object in a map which has been re-projected into the image and now we want to track the object over
the coming frames through tracking-by-segmentation (also known as video-object-segmentation).

2 Related Work

Fine-tuning Fine-tuning is perhaps the most popular and simplest method for achieving our goal.
With fine-tuning, a pre-trained semantic network network is adapted to a new instance by training
parts of the network on the new instance. As we have mentioned, fine-tuning as a method for instance-
level segmentation is a very naive approach as training on a single example can lead to extreme
over-fitting and, futhermore, standard optimizers are sensitive to a multitude of hyperparameters that
cannot be tuned given given only a single training sample. Online fine-tuning also requires hundreds
of iterations of gradient decent to Even so, fine-tuning or online optimization has shown to perform
competitively for video object segmentation [1, 2]. In our work, we build on this and propose to
meta-learn an optimizer for training the instance-level segmentation network. This approaches, in
essence, should allow us to combat the overfitting problem and also allows us to create an optimizer
for our segmentation task which is less sensitive to hyperparameters.

One-shot learning A number of one-shot learning methods have been proposed for image classifi-
cation [3] as well as for semantic segmentation [4] that are able to generalize to new classes given
only a few examples. These approaches train two networks in tandem - one segmentation network
and one parameter-generating network. The parameter-generating network is used to condition the
segmentation network on the current instance of interest. It works by predicting the weight parameters
of the segmentation network on a per-instance basis. The segmentation network performs the actual
segmentation of the instance. In some sense, these networks perform an extreme case of meta-learning
in which the parameter-generating network is tasked with “optimizing” the segmentaion network’s
parameters in a single step. However, this approach to meta-learning is rather limited as it significantly
restricts the information available for finding the weights of the segmentation network. Our approach
thus has capitalizes on the advantages of both the one-shot learning and fine-tuning paradigms and
can be seen as a hybrid of the two. Our network requires only a few iterations to updates the weights
and thus is faster than the vanilla fine-tuning method, and like the fine-tuning approach is not limited
to the accuracy of a single-shot prediction of the parameters.

3 Problem Definition

We formalize the the instance segmentation problem as follows, using the same notation as in [4].
For each instance that we want to detect and track in a video sequence, we are given a set of image-
mask pairs, S = {(Iis, Y is (l))}ki=1. The segmentation of the first frame, Y is ∈ Ltest, is obtained by
initializing it from a number of seed-point, using a manual annotation or by reprojecting a prior model
of an object in a map created by a SLAM system. We operate in open-world conditions which means
that the type of object instance l ∈ Ltest is an open-set and no predefined number of instance classes
exist in the world. The segmentation function that we learn f(Iq, S; θf ) is tasked with predicting
a segmentation mask M̂q of the current instance l given only the current image Iq and the seeding
image-segmentation pair which usually comprises the first frame in the video.
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Figure 1: A comparison between (a) existing one-shot learning models for instance segmentation
[4] and (b) our proposed meta-learning instance segmentation approach. Our model model learns to
optimize the parameters in small number of iterations, and can use the single-shot prediction of the
weights as an initialization.
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Our model is based on learning an optimizer, g(θo) which finds the best f(Iq, S; θf ) for an instance
class by optimizing the parameters θf in a number of iterations. The algorithm is privy to a large set
of instances Ltest with labelled segmentation images across a sequence of frames during training.
The test Ltest and training Ltrain instance classes are not necessarily overlapping.

4 Proposed

Our meta-learned instance classifier operates on top of a robust deep-learned embedding of RGB
images. Our embedding model is based on a standard fully-convolutional network (FCN) [5] with a
pixel-wise contrastive loss as in [6, 7], while our meta-learning model for optimizing the parameters
of the learner is based on the learning-to-learn by gradient descent method first introduced in [8].

4.1 Embedding Model

The fundamental task of the embedding model is to learn a feature space for the pixels so that the
metric distances of instances of the same class lie close together while those pixels which correspond
to different objects are far apart. Our embedding network, is initialized with weights that have been
pre-trained on Imagenet and Pascal-VOC for calssification of semantic classes. As in [6, 7], our
network takes as input an RGB image with 3 channels and outputs a d dimensional feature map
representing the embedding, essentially converting each pixel into a high-dimensional feature vector.

We endow the feature space with a metric so that the closeness of two feature vecors can be computed.
The metric needs to ensure that pixels which are of the same object has d(a, b) ≈ 0, and that those
which are of different instances or far apart have d(a, b) ≈ 1. As in [6, 9] we use the following metric

d(a, b) =
1

1 + exp(||fa − fb||22)
(1)

where fa is the d dimensional embedding of a.The network is trained using a contrastive loss which
has shown to perform very well for learning embeddings [9, 7]

Le = −
∑
a,b∈K

[
1{yp=yq} log(d(a, b)) + 1{yp 6=yq} log(1− d(a, b))

]
(2)

Unlike standard losses used for training classification and segmentation networks the contrastive loss
is defined between pairs of elements (in this case pixels). Evaluating this loss across the entire image
is therefore prohibitively costly and infeasible for all but tiny images. Training is therefore carried
out by sampling a small set of pixels K and evaluating the loss only at these points. The indicator
function 1{yp 6=yq} is set to 1 if the pixel is from the same class and 0 if it is from a different class.
Class imbalance is accounted for by evenly sampling foreground and background classes.

4.2 Meta-learning Model

For meta-learning, we adopt the model first proposed in [8] and more recently popularised in [10]. In
this model, the parameters of our segmentation network, θf are optimized using a standard update
procedure described by

θf i+1 = θf i + gi (3)

The per-iteration updates, gi are predicted by a network which in this case is an LSTM-RNN[
gi
hi+1

]
= LSTMcell(∇i, hi, θf ; θo) (4)

where ∇i = ∂Ls

∂θs
and LSTMcell is a standard LSTM cell update function with hidden layer hi.

In order to find the parameters of θo of the LSTM optimizer network, the following expectation loss
is minimized

Lmeta(θo) =
T∑
i=1

K∑
k=1

[
Ls
(
f(Ik, S; θf i)

)]
(5)
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where the meta-loss is computed as the segmentation loss function, Ls, summed over the T iterations
of the learned optimization and the K frames of the video in which the instance is to be segmented.
For each step i in the optimization we update the parameters of the segmentation model according to
Eqn. 3. For the segmentation loss, Ls, we simply use binary cross-entropy.

The meta-loss Lmeta is optimized using standard gradient descent on the weights of the RNN
optimizer. As our loss consists of variables which are updated recurrently over a number of timesteps,
we use backpropogation through time to train the network. Backpropogation through time unrolls
each step and updates the parameters by computing the gradients through the unrolled network. In
our case we use RMSProp and use 50 iterations for our meta-optimization.

5 Training and Results

For convenience, we train our embedding network and segmentation network separately. To train
our embedding, we make use of only synthetically rendered data in the form of the Scenenet RGB-
D [11]. To train our meta-learned instance tracking-by-segmentation model, we make use of the
densely-annotated video instance segmentation dataset (DAVIS 2017) [12, 13] which consists of 150
sequences with 10459 accurately segmented frames 349 different objects. For training we use only
the training set and we perform testing on the publicly available validation set.

Measure MSG [14] NLC [15] CUT [16] FST [17] MP-Net-F [18] Memory [19] Ours
J Mean 53.3 55.1 55.2 55.8 70.0 75.9 69.2

Recall 61.6 55.8 57.5 64.9 85.0 89.1 82.0
F Mean 50.8 52.3 55.2 51.1 65.9 72.1 69.2

Recall 60.0 51.9 61.0 51.6 79.2 83.4 75.3

Table 1: Comparison of existing methods [19] and our approach on DAVIS measured by intersection
over union (J ) and F-measure (F) .

The results of our approach on the DAVIS 2017 dataset are shown in Table 1 where J denotes region
accuracy and F the contour accuracy. Our method performs slightly worse than the state-of-the-art
approach presented in [19]. However, our method does not yet include any temporal information
which can be integrated using pre-trained optical flow predictions and extending our segmentation
model to an RNN. Our method does outperform other methods such as FST and MP-Net-F which
have more complex architectures.

Figure 2: Qualitative evaluation on the DAVIS 2017 drift sequence. The instance segmentation model
is trained using a single annotated frame from the start of the sequence. Annotations for subsequent
frames are not shown to the model.

6 Conclusion

In this paper, we have introduced a meta-learning framework for performing instance-level segmenta-
tion in videos. Our model can generalize to novel instance types by seeing only one labelled training
example for an instance. Our results are competitive with existing approaches which use more
complex hand-crafted designs. For future work we inted to incorporate temporal constraints and will
investigate the exciting possibilty of integrating these instance-level detections in a complete visual
SLAM system. We believe that this dense tracking-by-segmentation model has many unexploited
uses in both the computer vision and machine learning comunities.
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