
Supervised Learning of Unsupervised Learning Rules

Luke Metz1, Brian Cheung2, and Jascha Sohl-dickstein1

1Google Brain
2Berkeley

{lmetz, jascha}@google.com, bcheung@berkeley.edu

1 Introduction

Supervised learning has proven extremely effective for many problems where large amounts of
labeled training data are available. There is a common hope that unsupervised learning will prove
similarly powerful in situations where labels are expensive or impractical to collect, or where the
prediction target is unknown during training. However, unsupervised learning has yet to fulfill this
promise. One explanation for this failure is that unsupervised training rules are typically mismatched
to the target task. Ideally, learned representations should linearly expose high level attributes of
data (e.g. object identity) and perform well in semi-supervised settings. However, many current
unsupervised objectives optimize for objectives such as log-likelihood of a generative model or
reconstruction error, and produce useful representations only as a side effect.

Unsupervised representation learning seems uniquely suitable for metalearning (Hochreiter et al.,
2001; Schmidhuber, 1995). Unlike most tasks to which metalearning has been applied, in unsuper-
vised representation learning we are unable even to directly express the desired objective function.
However, it is possible to directly express a meta-objective that captures the quality of an unsuper-
vised update rule. In this work, we propose to meta-learn an unsupervised update rule, by meta-
training on a meta-objective that directly rewards the usefulness of the unsupervised representation.
Unlike hand-tuned proxies, this meta-objective directly measures the usefulness of a representation
generated from unlabeled data.

By re-casting unsupervised learning as metalearning, we treat creating the unsupervised update rule
as a transfer learning problem. Unlike previous work which transfers feature extractors between dif-
ferent data domains, we transfer the learning rule between different domains, and between different
network architectures. Instead of learning transferable features, we learn a transferable learning rule
which does not depend on labels or dataset.

Much previous work on meta-learning using gradient descent on the meta-objective has focused on
improving the optimization process. Maclaurin et al. (2015); Andrychowicz et al. (2016); Ravi &
Larochelle (2016); Wichrowska et al. (2017) learn an update rule that ‘ We leverage their insights
here. By treating the entire learning process as a differentiable function of the loss, derivatives with
respect to the update rule can be computed which in turn allow parameters within the update rule to
be updated with backpropagation.

2 Methods

We consider a multilayer perceptron (MLP) f(·;φt), with parameters φt, as the base model which an
update rule targets. In standard supervised learning, that update rule is Stochastic Gradient Descent
(SGD). A supervised loss l (x, y) is associated with this model, where x is a minibatch of inputs, and
y are the corresponding labels. The parameters φt are then updated iteratively until convergence, by
performing SGD using the gradient ∂l(x,y)∂φt

. This supervised update rule can be written as

φt+1 = SupervisedUpdate(φt, xt, yt; θ), (1)



where θ are the parameters of the optimizer (e.g. learning rate), which we will refer to as the meta-
parameters.

In this work, we instead define a parametric update process which does not depend on label infor-
mation,

φt+1 = UnsupervisedUpdate(φt, xt; θ). (2)

We then train the UnsupervisedUpdate function by performing SGD on a meta-loss, in terms of
the meta-parameters θ,

θ∗ = argmin
θ

∑
t

MetaObjective(φt (θ)). (3)

In the following sections, we briefly review the main functional pieces to this model, the base model
(f(·, φ)), the UnsupervisedUpdate, and the MetaObjective.

2.1 Base Model: f(·;φ)

We restrict our attention to training a family of feed forward MLPs. The weight matrix and bias
vector for layer l are W l and bl respectively. The network has pre-activations z1..zL, and post-
activations x0..xL, where L is the number of layers, and x0 ≡ x is the network input. Batch norm
(Ioffe & Szegedy, 2015) is applied at each layer.

To encourage generalization of the update rule across model architectures, during meta-training we
sample the layer width and number of layers from a distribution (except where otherwise noted for
specific experiments).

2.2 Learned update rule: UnsupervisedUpdate(·; θ)

In order to build an unsupervised update rule that generalizes across architectures, we design our
unsupervised update rule to be neuron-local. That is, every neuron i in every layer l in the base
model has an update network hli (·; θ), itself an MLP, associated with it. All update networks share
parameters θ, and hli (·; θ) is evaluated during unsupervised training only. Evaluating the statistics
of unit activation over a batch of data has proven helpful in supervised learning, in the case of batch
norm. It has similarly proven helpful in hand designed unsupervised learning rules, for instance in
sparse coding. We therefore allow hli (·; θ) to accumulate statistics across training minibatches.

During an unsupervised training step, the base-model is first run in a standard feedforward fash-
ion, populating xlib, z

l
ib, where b is the training minibatch index. As in supervised learning, an

error signal δlib is then propagated backwards through the network. Unlike in supervised back-
prop however, this error signal is generated by the corresponding update network for each unit,
δlib ← hli (·; θ). Again as in supervised learning, the weight updates are a product of pre-and-post-
synaptic signals. Unlike in supervised learning however, those signals are also generated from the
update networks, ∆W l

ij =
∑
b c
l
ibd

l−1
jb , {clib, dlib} ← hli (·; θ). The input to the update network con-

sists of unit pre- and post-activations, and backwards propagated error signal, i.e. it can be written
hli

(
xli·, z

l
i·,
[(
W l+1

)T
δl+1

]
i·

; θ
)

. Additional lateral interaction terms, not described in this short
submission, enable units within a layer to remain decorrelated with each other. The internal archi-
tecture of the update networks hli (·; θ) is similarly beyond the scope of this submission, but involves
repeated convolution along the batch dimension.

2.3 Meta-loss: MetaObjective (φ)

The meta-loss we use in this work is based on few shot classification on the outputs of the base
model, XL. This classification task is performed via linear ridge regression on one-hot feature label
vectors. The benefits of ridge regression over e.g. cross entropy loss are that it is differentiable,
with a closed form expression for the coefficients. In order to encourage the learning of features
which generalize well, we estimate the regression coefficients on one minibatch {xa, ya} of data,
and evaluate the classification performance on a second minibatch {xb, yb},

v̂ = argmin
v

(∥∥ya − xLa v∥∥2 + λ ‖v‖2
)

; MetaObjective =
∥∥yb − xLb v̂∥∥2 , (4)

2



where xL is a function of the base-model parameters φ, and through φ is a function of the learned
update rule’s parameters θ. The meta-loss therefore encourages a learning rule that leads to good
performance on a test set after semi-supervised training.

3 Experiments

3.1 Training setup

To explore transfer of our learned update rule, we use a variety of datasets. We train on 14x14
black and white images containing characters of the English alphabet and evaluate our technique
on datasets such as 14x14 MNIST. We sample 10 way classification problems from the 26 letters
of the alphabet. We train θ, by estimating ∂[MetaObjective]

∂θ via truncated backprop. During training
gradients are accumulated from 512 CPU workers, and θ is updated with mini batch asynchronous
SGD. By batching workers as they complete we eliminate most gradient staleness while retaining
the compute efficiency of asynchronous SGD.

3.2 Application of the Learned Unsupervised Update Rule

2000 4000 6000 8000 10000

phi steps

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
e
ta

O
b
je

ct
iv

e

2000 4000 6000 8000 10000

phi steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

LearnedUpdate Trained

LearnedUpdate Initialization

BetaVAE(B=0.1)

VAE

Supervised

Figure 1: Learning curves of our method for a test task of 14x14 MNIST (both before and af-
ter training), as well as comparisons with existing unsupervised learning techniques (VAE and
β−VAE(Higgins et al., 2016)). In addition, we show supervised learning baseline. In all settings,
only 10 labeled examples per class are used. Despite being meta-trained on a different task, our
learned update rule is capable of minimizing MetaObjective and creating useful features. We do
not, however, perform as well as VAE base methods on accuracy.

We evaluate our learned update rule’s performance by iteratively applying it on a held out task.
Results for 10 shot classification performance on a dataset of 14x14 MNIST digits can be found
in Figure 1. Our learned update rule is able to reach higher performance when measured on the
MetaObjective than several existing unsupervised methods, but does not perform as well as ex-
isting unsupervised techniques when evaluating classification accuracy. It does train faster than
existing techniques in early learning.

Next we evaluate performance on a much larger domain gap. We construct a dataset consisting of
3 28x28 MNIST digits stacked in the channel dimension. Results can be found in Figure 2. Early
in meta-training, the learned update rule is able to learn some independent features for each of the
color channels. This is surprising as there is no hand coded tendency to learn independent features
(or any features). However, late in meta-training, the learned updater collapses to a single color
channel. We hypothesize this an effect of “overfitting” to 10-way classification problems.

Finally, we test base model generalization, by varying depth and number of hidden units. In both
settings, we are able to generalize and learn useful representations early in φ iterations. We find
that increasing the number of hidden units beyond the range used in meta-training leads to better
performance. See Figure 3.

3.3 Analyzing Learning Strategy

Our learned algorithm is capable of learning interesting features. We visualize first layer filters of f
over the course of meta-training (updates of θ). Base-models appear to learn to create templates of
input examples as filters, and then refine those input filters into more compositional features.

3



Figure 2: Filters from φ training obtained by applying our learned update rule to a dataset consisting
of 3 concatenated MNIST digits. Left: Early in meta-training the filters show variation and some
compositionallity. Top row corresponds to color filters, bottom three rows break out each color
channel. Right: Later in meta-training the filters ”collapse” to model only one color (in this case
red). We believe this is a form of overfitting to the 10 way classification task.

0 20000 40000 60000 80000 100000

phi update steps

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

J

Different number of hidden units in base model

32 units

64 units

128 units

160 units

192 units

256 units

320 units

384 units

448 units

512 units

0 20000 40000 60000 80000 100000

phi update steps

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
e
ta

O
b
je

ct
iv

e

Different number of layers in base model

1 layers

2 layers

3 layers

4 layers

5 layers

6 layers

Figure 3: Generalization of the unsupervised update rule to new base-model architectures. Left:
different numbers of hidden units with a fixed layer size. Right: diferent numbers of layers with a
fixed hidden size. The unsupervised update rule used here was meta-trained only on base models
with 2 hidden layers, and < 200 units per layer.

Figure 4: From left to right we show filters extracted from φ after every 10k steps of θ training.
Each image represents a different point in θ training. At meta-initialization, the process is unstable
and collapses. After some meta-training, the learned update rule first learns templates of increasing
diversity, before finally transitioning to slightly more compositional, and less interpretable, features.

4 Limitations

Optimization posed an enormous challenge over the course of this work. We used truncated back-
prop during training. Careful balancing was required between short truncation windows, which lead
to a non-stationary meta-training distribution, and biased and non-stationary gradients, and long
truncation windows, which often lead to gradients with diverging variance. This is similar to the
issues encountered in off-policy reinforcement learning. Changes to the learned policy change the
state visitation distribution. Unlike RL, it is not tractable for us to compute these probabilities, and
thus we cannot easily use importance sampling to yield unbiased gradients.

Currently, we encounter a performance gap when transitioning to more complex or noisier data.
Upon inspection, we appear to have discovered a local minimum in algorithm space which consists
of learning input templates. The computation and capacity available in higher layers is largely
unused. Diagnosing this phenomenon is ongoing work.

5 Conclusion

In this work we introduce a method of meta-learning an unsupervised representation learning algo-
rithm. We show that this algorithm behaves reasonably in both performance, on a restricted setting,
and generalization across task and model architecture.

4



Acknowledgments

We would like to thank Hugo Larochelle, Nando de Freitas, Niru Maheswaranathan, Olga
Wichrowska, Samy Bengio, Pavel Sountsov, and Alex Toshev for extremely helpful conversations
and feedback on this work.

References
Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,

and Nando de Freitas. Learning to learn by gradient descent by gradient descent. In Advances in
Neural Information Processing Systems, pp. 3981–3989, 2016.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. 2016.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In International Conference on Artificial Neural Networks, pp. 87–94. Springer, 2001.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 448–456, Lille, France, 07–09 Jul 2015. PMLR. URL http://proceedings.
mlr.press/v37/ioffe15.html.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In International Conference on Machine Learning, pp. 2113–
2122, 2015.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.

Juergen Schmidhuber. On learning how to learn learning strategies. 1995.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo,
Misha Denil, Nando de Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and
generalize. arXiv preprint arXiv:1703.04813, 2017.

5

http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

	Introduction
	Methods
	Base Model: f(; )
	Learned update rule: UnsupervisedUpdate(; )
	Meta-loss: MetaObjective()

	Experiments
	Training setup
	Application of the Learned Unsupervised Update Rule
	Analyzing Learning Strategy

	Limitations
	Conclusion

