
Backpropagated plasticity: learning to learn with
gradient descent in large plastic neural networks

Thomas Miconi
Uber AI Labs

tmiconi@uber.com

Jeff Clune
Uber AI Labs

jeffclune@uber.com

Kenneth O. Stanley
Uber AI Labs

kstanley@uber.com

Abstract

How can we build agents that keep learning from experience, quickly and efficiently,
after their initial training? Here we take inspiration from the main mechanism of
learning in biological brains: synaptic plasticity carefully designed by evolution to
produce efficient lifelong learning. We show that plasticity, just like connection
weights, can be optimized by gradient descent in large (millions of parameters)
recurrent networks with Hebbian plastic connections. Applied to the task of arbi-
trary natural image memorization, recurrent plastic networks with more than two
million parameters can be trained to memorize and reconstruct sets of novel, high-
dimensional (1,000+ pixels) natural images not seen during training. Surprisingly,
the trained networks exhibit highly structured plasticity, in contrast with traditional,
homogenous auto-associative networks. Crucially, traditional non-plastic recurrent
networks fail to solve this task, and require orders of magnitude more training to
partially solve a considerably simpler version of it. In conclusion, backpropagated
plasticity may provide a powerful novel approach to the learning-to-learn problem.

1 Introduction: the problem of “learning to learn”

Designing agents that can quickly learn from ongoing experience is the basic problem of meta-
learning, or “learning-to-learn” [14]. Several methods exist to address this problem, including
endowing networks with external content-addressable memory banks, as in Memory Networks and
Neural Turing Machines [3, 13, 10]; augmenting networks with “fast weights” that essentially attend
to recently encountered patterns [1] (which can in principle be exploited by adequately trained fixed
weights to store any desired memory [11]); or even simply training standard recurrent networks
(which, as universal Turing machines, can in principle learn any computable function of their inputs)
to adequately incorporate past experience in their future response properties [6, 15, 2].

In biological brains, however, long-term learning is thought to occur primarily through synaptic
plasticity – the strengthening and weakening of connections between neurons as a result of neural
activity, as carefully tuned by evolution over millions of years to enable efficient learning during the
lifetime of each individual. While multiple forms of synaptic plasticity exist, many of them follow the
general principle known as Hebb’s rule: if a neuron repeatedly takes part in making another neuron
fire, the connection between them is strengthened (often roughly summarized as “neurons that fire
together, wire together”) [4]. This principle underlies several forms of observed plasticity in animal
brains, allowing them to learn from experience and adapt to their environment.

Designing neural networks with plastic connections has long been explored with evolutionary
algorithms (see [12] for a recent review). However, given the spectacular results of gradient descent
in designing traditional non-plastic neural networks for complex tasks, it would be of great interest to
expand backpropagation training to networks with plastic connections. We previously demonstrated
the theoretical feasibility and analytical tractability of this approach [9]. Here we show that the

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



approach is successful in training large (millions of parameters) networks for non-trivial tasks, which
cannot be solved by conventional non-plastic networks.

2 Backpropagated plasticity: training neural networks with plastic
connections using gradient descent

To train plastic networks with backpropagation, a plasticity rule must be specified. Many formulations
are possible. Here we chose the simplest formulation that would keep separate plastic and non-plastic
(baseline) components for each connection, while guaranteeing stability (that is, avoiding weight
explosion caused by the positive feedback inherent to Hebbian learning).

The connection between neurons i and j is structurally determined by two parameters: a baseline
fixed weight wi,j , and a plasticity coefficient αi,j . The plastic component of each synapse is stored in
a Hebbian trace Hebbi,j , which varies during a lifetime according to ongoing inputs and outputs. In
the current implementation, the Hebbian trace is simply a running average of the product of pre- and
post-synaptic activity. The total, effective weight of a connection is the sum of the baseline (fixed)
weight, plus the Hebbian trace multiplied by the plasticity coefficient. The precise network equations
for the output xj(t) of neuron j are:

xj(t) = tanh
{ ∑

i∈inputs

[wi,jxi(t− 1) + αi,jHebbi,j(t)xi(t− 1)]
}
, (1)

Hebbi,j(t+ 1) = ηxi(t− 1)xj(t) + (1− η)Hebbi,j(t). (2)

Thus, depending on the values of wi,j and αi,j , a connection can be fully fixed (if α = 0), or fully
plastic with no fixed component (if w = 0), or have both a fixed and a plastic component. The
Hebbian trace Hebbi,j is initialized to zero at the beginning of each lifetime/episode (we use “lifetime”
and “episode” interchangeably): it is purely a lifetime quantity. The parameters wi,j and αi,j , on
the other hand, are the structural parameters of the network that are conserved across lifetimes and
optimized by gradient descent between lifetimes (descending the gradient of the error computed
over the lifetime), to produce optimal expected performance over a lifetime/episode. While η, the
“learning rate” of plasticity, could also be optimized, for simplicity here it is kept fixed at 0.01. This
formulation of plasticity is easily implemented in automatic differentiation packages. All experiments
reported here use the PyTorch package to compute gradients.

3 Results

To demonstrate the backpropagated plasticity approach, we apply it to the task of memorizing sets
of arbitrary patterns (including novel patterns never seen during training), and reconstructing these
patterns when exposed to partial, degraded versions of them. Networks that can perform this task
are known as content-addressable memories, or auto-associative networks. This task is a useful test
because it is known that hand-designed recurrent networks with (usually homogenous) Hebbian
plastic connections can successfully solve it for binary patterns [7]. Thus, if backpropagated plasticity
is to be of any help, it should be able to automatically solve this task – that is, to automatically design
networks that can perform this task just like existing hand-designed networks can.

3.1 Binary patterns

Figure 1 describes an episode in this task. The network is shown a set of 5 binary patterns in
succession. Each binary pattern is composed of 1,000 elements, each of which is either 1 or -1. Each
pattern is shown for 10 time steps, with 3 time steps of zero input between presentations, and the
whole sequence of patterns is presented 3 times in random order (few-shot learning). Then, one of
the presented patterns is chosen at random and degraded, by setting half of its bits to zero (i.e. no
input). This degraded pattern is then fed as an input to the network. The task of the network is to
reproduce the correct full pattern in its outputs, drawing on its memory to complete the missing bits
of the degraded pattern.

The architecture (Figure 1) is a fully recurrent neural network with one neuron per pattern element,
plus one fixed-output (“bias”) neuron, for a total of 1,001 neurons. Input patterns are fed by clamping
the value of each neuron to the value of the corresponding element in the pattern, if this value is

2



1 1(0) (0)
Pattern 
input

Neurons

-1(0)(0)

Figure 1: Left: Conceptual description of the task. Right: depiction of the architecture.

Figure 2: Left: Learning curve for 1,000-bit pattern memorization (10 runs shown: shaded area
indicates minimum and maximum loss, thick curve indicates mean loss). Right: Learning curve
for typical runs for 50-bit patterns, using a non-plastic RNN with 2050 neurons (green curve), an
LSTM with 2050 neurons (red curve), and a backpropagated plastic-weight network with the same
parameters but only 51 neurons (blue curve).

not zero (i.e. 1 or -1); for zero-valued inputs in degraded patterns, the corresponding neurons do
not receive pattern input, and get their inputs solely from lateral connections, from which they must
reconstruct the correct, expected output values. Outputs are read directly from the activation of the
neurons. The network’s performance is evaluated only on the final time step, by computing the loss as
the summed squared error between the final network output and the correct expected pattern (that is,
the non-degraded version of the degraded input pattern). The gradient of this error over the wi,j and
αi,j coefficients is then computed by backpropagation, and these coefficients are optimized through
an Adam solver [8] with learning rate 0.001. Note that the network has two trainable parameters (w
and α) for each connection, summing up to 1,001× 1,001× 2 = 2,004,002 trainable parameters.

Figure 2 (left) shows the result of a typical training run. Error (defined as the proportion of bits that
have the wrong sign) converges to a low, residual value (<1%) within about 200 episodes.

3.2 The importance of being plastic: a comparison with non-plastic recurrent networks

In principle, this task (like any computable tasks) could be solved by a non-plastic recurrent network,
although the non-plastic networks will require additional neurons to store inputs. However, despite
much exploration, we were unable to succeed in solving the original task with a non-plastic RNN or
LSTM [5]. We could only succeed by reducing the pattern size to 50 bits (down from 1,000), showing
only 2 patterns per episode (rather than 5), and presenting them for only 3 time steps. The best results
required adding 2000 extra neurons (for a total of 2050 neurons). Training error over episodes is
shown in Figure 2 (right). For the non-plastic RNN, the error slowly decreases over millions of
episodes (green curve). The LSTM solves the task, imperfectly, after about 500,000 episodes (red
curve). For comparison, the blue curve shows the exact same problem, architecture, and parameters,
but restoring plastic connections (η=.05 to account for faster presentations). The network solved the
task very quickly, reaching mean error below .01 within 2,000 episodes.

Thus, for this specific task, plastic recurrent networks seem considerably more powerful than LSTMs.
Although this task is known to be well-suited for plastic recurrent networks [7], this result raises the

3



Shown images
Test

pattern
Network
output

Figure 3: Left: Typical image reconstruction results from a withheld test set (not seen during training).
Each row is a full episode. Right: matrices of baseline weights wi,j (top) and plasticity coefficients
αi,j (bottom) after training. Each column describes the input to a single cell, and vertically adjacent
entries describe inputs from horizontally adjacent pixels in the image. Notice the significant structure
present in both matrices (best viewed electronically by zooming).

question of which other domains might benefit from the backpropagated plasticity approach over
current LSTM models.

3.3 Natural images

As a more challenging test, we applied our method to the problem of memorizing natural images
with graded pixel values, which contain much more information per element. Images are from the
CIFAR-10 database, which contains 60,000 images of size 32 by 32 pixels (i.e. 1,024 pixels in
total), converted to grayscale pixels between 0 and 1.0. The architecture is largely similar to the one
described above, with 1,025 neurons in total, leading to 2× 1,025× 1025 = 2,101,250 parameters.
Each episode included 3 pictures, shown 3 times (in random order each time) for 20 timesteps each
time, with 3 time steps of zero input between image presentations. To prevent a trivial solution
consisting in simply reconstructing each missing pixel as the average of its neighbors (which the high
autocorrelation of natural images might make viable), images are degraded by zeroing out one full
contiguous half of the image (either top or bottom half).

Figure 3 (left) shows the behavior of the trained network on a withheld test set of images not seen
during training. The last column shows the final output of the network, i.e. the reconstructed image.
The model has successfully learned to perform the non-trivial task of memorizing and reconstructing
previously unseen natural images.

Figure 3 (right) also shows the final matrices of weights and plasticity coefficients produced by
training. The plasticity matrix (bottom) shows considerable structure, in contrast to the homogenous
plasticity of traditional Hopfield networks [7]. Some of the structure (diagonal lines) is related to the
high correlation of neighboring pixels, while other aspects (alternating bands near the midsection)
result from the choice to use half-field zeroing in test images.

In conclusion, these preliminary results demonstrate the feasibility of training structural plasticity in
million-parameter recurrent networks, massively improving performance over non-plastic networks
on some tasks. This largely unexplored paradigm, with strong inspiration from biological learning
mechanisms, offers an intriguing new direction for time-dependent learning in general, and meta-
learning in particular.

4



References

[1] Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 4331–4339.
Curran Associates, Inc., 2016.

[2] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2:
Fast reinforcement learning via slow reinforcement learning. 2016, arXiv:1611.02779.

[3] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. October 2014,
arXiv:1410.5401.

[4] Donald O. Hebb. The organization of behavior: a neuropsychological theory. 1949.
[5] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.
[6] Sepp Hochreiter, A Younger, and Peter Conwell. Learning to learn using gradient descent.

Artificial Neural Networks—ICANN 2001, pages 87–94, 2001.
[7] John J Hopfield. Neural networks and physical systems with emergent collective computational

abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.
[8] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd

International Conference for Learning Representations. 2015.
[9] T. Miconi. Backpropagation of hebbian plasticity for continual learning. In NIPS Workshop on

Continual Learning, 2016.
[10] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.

One-shot learning with Memory-Augmented neural networks. 19 May 2016, arXiv:1605.06065.
[11] J. Schmidhuber. Reducing the ratio between learning complexity and number of time varying

variables in fully recurrent nets. In Stan Gielen and Bert Kappen, editors, ICANN ’93: Proceed-
ings of the International Conference on Artificial Neural Networks Amsterdam, The Netherlands
13–16 September 1993, pages 460–463. Springer London, London, 1993.

[12] Andrea Soltoggio, Kenneth O. Stanley, and Sebastian Risi. Born to learn: the inspiration,
progress, and future of evolved plastic artificial neural networks. 2017, arXiv:1703.10371.

[13] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-To-End memory
networks. In C Cortes, N D Lawrence, D D Lee, M Sugiyama, and R Garnett, editors, Advances
in Neural Information Processing Systems 28, pages 2440–2448. Curran Associates, Inc., 2015.

[14] Sebastian Thrun and Lorien Pratt. Learning to learn. In Sebastian Thrun and Lorien Pratt,
editors, Learning to Learn, chapter Learning to Learn: Introduction and Overview, pages 3–17.
Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[15] Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Rémi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
2016, arXiv:1611.05763.

5


	Introduction: the problem of ``learning to learn''
	Backpropagated plasticity: training neural networks with plastic connections using gradient descent
	Results
	Binary patterns
	The importance of being plastic: a comparison with non-plastic recurrent networks
	Natural images


