
Hyperactivations for Activation Function Exploration

Conner Joseph Vercellino
College of Creative Studies

University of California
Santa Barbara, CA 93106

cjv@ucsb.edu

William Yang Wang
Department of Computer Science

University of California
Santa Barbara, CA 93106
william@cs.ucsb.edu

Abstract

Typically, when designing neural network architectures, a fixed activation function
is chosen to introduce nonlinearity between layers. Various architecture agnostic
activation functions have been proposed. However a less explored area of research,
is how to learn task specific activation functions while training the network. Ac-
tivation functions (even as fixed nonlinearities) can affect the network’s capacity,
learning dynamics and convergence properties. Allowing for varied activations
for each layer or neuron could have an even more pronounced affect on the stated
properties. Furthermore, it is difficult to form intuition around what properties
are desirable in a static activation function, and even more difficult to design task
specific activation functions that differ on each layer or neuron. Allowing the net-
work to discover activations during training bypasses the need to fully understand
the activation function’s interactions. To explore the search space of activation
functions, we propose hyperactivations, a novel approach to learning task specific
activations while maintaining training stability. Using hyperactivations we beat
commonly used activation functions — both in training speed and test performance
— and learn activations that deviate wildly from the norm.

1 Introduction

A common practice for designing neural network models is to use a human-engineered activation
function (e.g., Tanh, ReLU, sigmoid) between layers. The activation functions selected are generally
non-parameterized and created to generalize well across different network architectures. While gener-
ally seen as a minor detail, activation functions strongly affect the network’s speed of convergence,
capacity, and overall performance.

Many activation functions have been proposed with the intent of obtaining strong performance
cross architecture, especially for convolutional neural networks. Some recent examples of activation
functions include: ELU (Clevert et al., 2015), PELU (Trottier et al., 2016) and Swish1 (Ramachandran
et al., 2017). Use of these activation functions varies, as their performance can highly depend on the
architecture and task, despite the intention that they would easily transfer to new architectures.

There have also been attempts to find activation functions with desirable convergence properties.
Klambauer et al. (2017) proposed SELU, an activation function that acts similarly to batch normal-
ization (Ioffe and Szegedy, 2015), given some assumptions about the weight initiation. Ideally, we
can formulate activation functions that act as new forms of normalization, especially if the activation
function is learned for each layer. However, properties that make an activation function desirable are
difficult to discern. SELU for instance, required laborious analysis to discern a seemingly “magic”
value in order to have its beneficial properties.

1While the activation that was proposed by Ramachandran et al. (2017) was not novel, we include it to
demonstrate a recent attempt to find a generalizable activation function.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



Proposals for nonlinearities are also biased for interpretable activation functions, as it’s difficult to
know how small tweaks to an activation function will affect it’s performance. Without an immense
improvement in our understanding of neural networks, researchers are unable to find activation
functions optimal for their architectures. It is an open question how varying an activation function
between layers affects the network (let alone varying many different activations throughout the
network).

With these problems in mind, we propose hyperactivations, a way to learn activations during the
training of the model, permitting an exploration of the activation search space. Given that an activation
function can affect many properties of a neural network, changing the activation as the network
trains seems potentially optimal for model performance. Hyperactivations are based around using
hypernetworks, utilizing them for their normalization properties. We show that hyperactivation
functions learn novel activation functions not found in human-designed networks, while maintaining
training stability. We summarize our contributions as two fold: we are the first to consider a
hypernetwork-based meta-learning approach for learning activation functions, and empirically, our
approach learned task-specific activation functions that outperformed models using standard activation
functions.

2 Prior Work

Agostinelli et al. (2014) proposed using a sum of hinge functions to learn an activation functions,
whereby each activation function is learned per a neuron. This approach is admirable in its simplicity,
but it has two problems: the method assumes a function family, and it results in rough function
surfaces. Eisenach et al. (2016) approach did not assume a function family. We question the strength
of the activation functions learned by Eisenach et al. (2016) as they seem overnormalized (hence the
indentations near each side of the learned activation).

Learning an activation function per a neuron greatly simplifies the problem of training instability. We
found stability very difficult to maintain when the activation function was parameterized, as a small
change in the activation function will affect every output of a layer leading to training instability.
However, if you learn activations per a neuron, the method must be computationally and parameter
efficient, as you need to scale per a neuron not per a layer. Given that our method has higher
computational and parameter requirements than previous methods, and given that we wanted to learn
comparable functions to commonly used human-designed activation functions, we chose to learn
activations per a layer.

Another method for attempting to discover novel nonlinearities is to use reinforcement learning to
generate nonlinearities from the results of attempting to train many networks. This approach, used to
find Swish, is very similar to the one presented by Zoph and Le (2017), as it uses a fixed vocabulary
to create an activation function, tests the activation on various network structures, and then trains
itself on a reward; a reward based on the activation function’s performance. This approach, while
resulting in more comprehensible, generalizable activation functions, also has a few clear downsides.
The activation functions in the search space are limited to those that can be expressed with a small
vocabulary of mathematical operators, and no guarantees exist that the optimal generalizable function
exists in such a rigid space. Furthermore, this method requires an extreme amount of computational
power, limiting its accessibility to researchers. Finally, the method used in Swish is aimed at finding
a generalizable activation function, not activation functions that are task specific.

3 Hyperactivations

One hyperactivation takes the place of all activations in the network. A hyperactivation is constructed
from two parts: an activation network and a hypernetwork. The activation network is a shallow
forwardfeed neural network that predicts one output for each input ij∀oj . The flattening of the
activation network’s input allows a hyperactivation to be placed anywhere a normal activation
function would. It also allows the activation network to be visualized on a 2D graph. The activation
network needs to have an activation function to bootstrap from (we attempted nested hyperactivations,
but found this did not work as a result of training instability). With the vector and reshape operations,
the activation network is defined as:

AN(x) = reshape(A(vec(x),Wa), x(wj,hj))

2



Figure 1: A diagram of the two parts of a hyperactivation. We use Wn to show how the weight vector
is used for the activation network’s weight matrices.

Where A is the nonlinearity (for our experiments ReLU), Wa is the activation network weight matrix,
and x is the input. However, using this small activation network is not enough to learn activations
per a layer, as normalization was found essential for even toy tasks. Since we are learning activation
per a layer, normalization is required, as a small shift in the learned activation completely shifts the
network’s output. If the inputs fluctuate wildly (for instance, upstream activations changing), it is hard
to learn anything. We initially attempted to use batch normalization and later, layer normalization
(Lei Ba et al., 2016) in the construction of the activation network. Batch normalization resulted in
decent performance for small to medium networks. However, it was unbelievably slow as it needed
to operate on potentially large flattened batches given to the activation network. We attempted layer
normalization, but found it didn’t work at all. We also attempted to combine the regularization
methods, which yielded no benefit to train time or accuracy.

In an attempt to find a better normalization strategy, we turned to hypernetworks. Hypernetworks are
a type of neural network that produce weights for another network. If we incorporate a hypernetwork
into our previously defined activation network:

HA(x) = reshape(A(vec(x), H(e,Wh)), x(wj,hj))

Here, e is the embedding of the current layer that the hypernetwork uses as context of what weight
vector to output for use in the activation network and H is the hypernetwork that produces the weights.
The hypernetwork produces Wa when given the current embedding. The implementation of hyperac-
tivations, while easy to express notationally, can be frustrating to implement for generalizability over
any given activation network. We provide our code for all experiments.2 Our hypernetwork structure
is very similar to the static one proposed by Ha et al. (2016). Hypernetworks have a few different
attractions, but our main interest was using it as a form of normalization for our activation network.
Each activation of the hyperactivation is given an embedding, and the hypernetwork produces weights
for the activation network. Each activation network has a loose form of weight sharing, with each
of the other activations in the network on account of using a hypernetwork to create each of their
weights.

4 Experiments

4.1 MNIST

We first tested on MNIST (Lecun et al., 1998) with a small convolutional network trained using Adam
(Kingma and Ba, 2014). We find that the smaller the network, the more nonlinear the nonlinearities.
We assume that this result is because the larger network needs less nonlinearity to learn the dataset.
We outperform all other tested activations, both in convergence speed (Figure 2) and test accuracy
(Table 1). We show the learned activations in figure (Figure 3) and find that they are radically different
from popular activation functions. Our hyperactivation had both an embedding and hidden size of 10
and the activation network had a hidden size of 8.

2www.github.com/c0nn3r/learned_activations

3

www.github.com/c0nn3r/learned_activations


Figure 2: Losses of common activation functions com-
pared to a Hyperactivation.

Figure 3: The activation functions learned during the
training of the network.

Table 1: Test Loss and Accuracy for MNIST.
Activation Loss Test Acc.

SELU 0.0906 97.04%
ELU 0.0773 97.42%
ReLU 0.0833 97.45%
Hyperactivation 0.0641 98.36%

Table 2: Test Loss and Accuracy for CIFAR-10.
Activation Loss Test Acc.

SELU 0.590 79.70%
ELU 0.552 81.62%
ReLU 0.426 85.80%
Hyperactivation 0.371 88.66%

4.2 CIFAR-10

We also tested our hyperactivations on CIFAR-10 using the ResNet-16 architecture, replacing the 9
ReLUs with hyperactivations. The hypernetwork having a hidden size of 10, an embedding size of 10
and a activation hidden size of 10. The network was trained for 10 epochs with Adam. We saw faster
convergence speed and accuracy using hyperactivations (Table 2).

We would like to note that no parameter tuning was done from the network optimized for ReLU. We
created a PyTorch script that replaced the activations used in a given network with hyperactivations.
We assume there is improvement to be found by finding optimal hyperparameters for the hyperactiva-
tion, but also for the general model hyperparameters, optimized for having hyperactivations.

5 Conclusion

In this paper we introduce hyperactivations, a novel way of learning nonlinearities for each layer
of a neural network. We show that we learn various activations that differ from current convention,
and that these learned activations converge faster and result in higher test accuracy. We believe
hyperactivations are an important step in the process of parameterizing more of the network’s design.
In the future, we want to look at the activations used for LSTMs, GRUs, and other types of recurrent
cells to see if the activations normally used are optimal. We feel there is a lack of research into how
choice of activations traditionally recurrent cells. We also want to apply our hyperactivations to larger
datasets.

Acknowledgements

The authors would like to thank Mike Wu and Jen Selby.

References
Agostinelli, F., Hoffman, M. D., Sadowski, P. J., and Baldi, P. (2014). Learning activation functions to improve

deep neural networks. CoRR, abs/1412.6830.

4



Clevert, D., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate deep network learning by exponential
linear units (elus). CoRR, abs/1511.07289.

Eisenach, C., Liu, H., and Wang, Z. (2016). Nonparametrically learning activation functions in deep neural net.

Ha, D., Dai, A. M., and Le, Q. V. (2016). Hypernetworks. CoRR, abs/1609.09106.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In Bach, F. and Blei, D., editors, Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 448–456, Lille, France.
PMLR.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR, abs/1412.6980.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S. (2017). Self-Normalizing Neural Networks. ArXiv
e-prints.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, pages 2278–2324.

Lei Ba, J., Kiros, J. R., and Hinton, G. E. (2016). Layer Normalization. ArXiv e-prints.

Ramachandran, P., Zoph, B., and Le, Q. V. (2017). Searching for Activation Functions. ArXiv e-prints.

Trottier, L., Giguère, P., and Chaib-draa, B. (2016). Parametric exponential linear unit for deep convolutional
neural networks. CoRR, abs/1605.09332.

Zoph, B. and Le, Q. V. (2017). Neural architecture search with reinforcement learning.

5


	Introduction
	Prior Work
	Hyperactivations
	Experiments
	MNIST
	CIFAR-10

	Conclusion

