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Abstract

Decision trees are usually learned by heuristic methods like greedy search, which
only considers immediate information gain at the current splitting node and often
results in sub-optimal solutions in a constrained search space. In this paper, to over-
come this problem, we propose a reinforcement learning approach to automatically
search for splitting strategies in the global search space based on the evaluation
of long-term payoff. Empirically, decision trees generated by our method outper-
form those generated by commonly used greedy search methods under the same
hyper-parameter setting.

1 Introduction

Decision trees are powerful machine learning models which are widely applied in real-world applica-
tions. They are defined by recursively partitioning the feature space, which are very easy to interpret.
Furthermore, decision trees can be easily integrated into ensemble frameworks like bagging (random
forest [8]) and boosting (GBDT [6]) to further improve their performance.

However, learning an optimal decision tree is known to be NP-complete. As the search space of tree
induction is too large to be explored comprehensively, different heuristic methods have been proposed
to learn a decision tree. Among these methods, greedy search is most commonly used as it is easy to
understand and implement, meanwhile yields acceptable results on various tasks. However, greedy
search only considers immediate information gain in the current step and makes locally optimal
decision at each node, which usually lead it to sub-optimal solutions in a constrained search space.

In this paper, to tackle this problem, we propose a reinforcement learning approach to automatically
search for splitting strategies in the global search space based on the evaluation of long-term payoff.
As the key point of learning a decision tree is to decide on the feature used for each split, which can
be modeled as a sequential decision process in a finite time-invariant action space, we employ a RNN
controller to predict the splitting feature for each non-leaf node orderly. The RNN controller is trained
with reinforcement learning to search for decision trees with better performance. It is expected to
learn the optimal sampling distribution in the action space and provide a set of satisfying splitting
strategies after training.

We name the decision tree learned by our method as RLBDT, which is the abbreviation of "reinforce-
ment learning based decision tree". The effectiveness of RLBDT is tested on a binary classification
task using 6 UCI datasets, which cover different sizes of search space ranging from 1013 to 1045. We
find that RLBDT yields better performance than those generated by commonly used greedy search
methods, such as CART [5], under the same hyper-parameter setting.
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2 Related Work

With the increasing complexity of modern machine learning systems, it has become too complicated
and time-consuming to find the optimal configurations of a learning model with traditional human-
designed heuristic methods. Therefore, a new research paradigm called meta-learning [15], which
aims to automatically search for the optimal configurations of a model, has emerged.

Several meta-learning approaches have been proposed. Bayesian optimization refines its choices
sequentially via Bayesian posterior updating as more data is observed, which has been widely applied
in hyper-parameter optimization [4, 9, 13, 16]. Gradient descent method trains a meta-learner, like
a neural network, to approximate and optimize the algorithms used in learning tasks. For example,
[1, 12] replaced human-designed optimization algorithms with direct numerical updates generated by
an LSTM optimizer, which is jointly trained with the learner network.

The line of work that is closely related to our method is to explore for the optimal design with
reinforcement learning [7], a method that has been proved effective for finding satisfying solutions in
a huge action space [14]. Recent works proposed to predict the choice for a learning task with the
sequential output of a RNN controller. The key insight is to train the controller with reinforcement
learning to maximize the expected reward that it gets from applying the chosen strategy on a given task.
This framework has obtained promising solutions on a variety of problems, like neural architecture
search [18], neural optimizer search [3], combinatorial optimization [2] and device placement [10].

3 Methodology

In this section, we introduce how to learn the splitting strategy of decision trees with a RNN controller
trained by reinforcement learning.

To learn a decision tree, we need to choose the splitting feature at each non-leaf node and the splitting
value of the chosen feature. As the set of possible splitting values varies with the chosen feature and
the sample distribution at the current node, it is hard to predict the splitting value directly. To simplify
the problem, we use the RNN controller only to predict the splitting feature at each node. Once the
feature is selected, the feature value which can maximize the information gain of the current split
will be chosen as the splitting value.

To fix the sequence length of the RNN controller, we assume the decision tree to be a complete binary
tree with depth k. So the total number of non-leaf nodes in the decision tree is (2k − 1), and they are
indexed sequentially from left to right layer by layer. The splitting feature at the ith node is chosen
according to the controller’s prediction in the ith step.

Based on these two assumptions, our controller is implemented as a RNN which runs for (2k − 1)
steps, with the output vector corresponding to the feature set element-wisely. The training process is
shown in Figure 1. The RNN controller samples a feature according to the softmax output distribution
and uses this one-hot encoded prediction as the input vector for the next step. Once the controller has
run for (2k − 1) steps, the sequence of selected features will be used to build the decision tree.

The decision tree is built from the root recursively. If the current node satisfies pre-set early stop
conditions, it turns into a leaf node, and the predictions for its subtree remain unused. Otherwise,
the splitting value of this feature is selected to maximize the information gain respect to Gini index.
Once the tree has been established, its performance score on the validation set will be fed back as
the reward signal to update the controller’s parameters θ (please refer to the supplementary material
for design details of the reward signal). The training objective of the controller is to maximize its
expected reward, represented by

J(θ) = EP (a1:aT ;θ)[R].

Since the reward signal R is non-differentiable respect to θ, we use REINFORCE [17], a policy
gradient method, to calculate the gradient. An empirical approximation with baseline function is

∇θJ(θ) =
1

m

m∑
k=1

T∑
t=1

∇θ logP (at|a(t−1):1; θ)(Rk − b),

where m is the number of different strategies that the controller samples in one batch, T is the number
of splitting features to be predicted, b is the exponential moving average of the reward signal, which
is used as a baseline to reduce the variance of the estimation.
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Figure 1: Model framework. Each color represents a unique feature. The feature used at the ith node
is predicted stochastically according to the softmax output of the RNN in the ith step. We do not
directly select the feature with the maximal probability in order to aid in exploration. The initial input
vector <start> is updated as parameters of the RNN.

4 Experiments

In this section, we experiment on a binary classification task to evaluate the performance of our
proposed method.

4.1 Experimental Setup

We use 6 datasets selected from the UCI1 repository with different sizes of search space, which ranges
from 1013 to 1045. We use AUC(area under the curve) as the evaluation metric, as it is indifferent
to class imbalance and provides decent evaluation of classifier performance. The summary of the
datasets is illustrated in Table 1.

Table 1: Summary of the 6 binary-class datasets.

Datasets Heart Breast Pima German HTRU Credit

# instances 270 569 768 1000 17898 30000
# features 20 30 8 24 8 23

We split each dataset into training, validation and test set in proportion of 50%, 25%, 25%. The
training set is used to build the decision tree, the validation set is used to evaluate the performance of
the selected classifier, and the test set is used to evaluate the performance of the final model.

As the feature number and data distribution of each dataset are different, we train a RNN controller on
each dataset separately. We firstly train a decision tree with CART using the scikit-learn library [11].
We use Gini index as the split criterion, fine-tune the tree depth and min_samples_leaf (the minimum
number of samples required to split an internal node) to maximize the classifier’s AUC score on the
validation set. Once the optimal CART model has been found, we set it as the baseline classifier, and
use its tree depth to determine the sequence length of our RNN controller.

The decision tree sampled by our controller is trained with the same hyper-parameters as the baseline
model, and the reward signal is fed back to update the controller. During the training process, we
record the top-k decision trees with the highest reward. After training, we select the top-1 model as
the final model, and calculate its AUC score on the test set to compare with the CART baseline.

Across all the experiments, our controller RNN is trained with the ADAM optimizer, and the learning
rate is set to 0.0005. The controller is a single-layer RNN, and its weights are initialized uniformly at
random between −0.08 and 0.08. The hidden state size is set to 2m, where m is the minimum integer
that satisfies 2m ≥ #feature. To reduce the influence of random sampling on our experimental
results, we repeat the training process for 5 independent epochs on each dataset. The mean value
and standard deviation of the AUC score of the final model in each epoch are calculated to test the
average performance and stability of the RNN controller.

1http://archive.ics.uci.edu/ml/datasets
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4.2 Experimental Results

Figure 2 shows the AUC score of RLBDT as a function of the number of training iterations (due to
the page limit, we only put the results of 3 datasets here. Please refer to the supplementary material
for the complete results). The results illustrate that the RNN controller starts from random sampling,
gradually discovers decision trees with increasing performance, and finally outperform baseline
models after training for a period of time.

Figure 2: RLBDT’s performance on the test set.

Table 2 shows the final AUC score of RLBDT and CART on the validation set and the test set. RLBDT
Avg is the average AUC score of the 5 independent epoches, and Best is the AUC score of the final
model with the best performance on the validation set in all 5 epoches.

Table 2: Final AUC score of RLBDT and CART.

Datasets Validation Set Test Set Search Iterations

CART RLBDT Avg Best CART RLBDT Avg Best Space

Heart 91.04 94.73± 1.09 96.98 82.41 85.18± 1.71 87.19 1019 2000
Breast 99.18 99.78± 0.27 99.99 95.15 95.22± 2.06 95.93 1045 2000
Pima 80.47 80.93± 0.44 81.54 79.09 79.96± 1.70 78.90 1013 3000

German 68.59 74.84± 0.96 76.19 68.05 73.01± 1.36 74.43 1042 2000
HTRU 96.91 96.92± 0.17 97.09 96.12 96.70± 0.23 97.03 1013 2000
Credit 75.79 75.88± 0.07 75.98 75.22 75.23± 0.29 75.44 1042 3000

The results demonstrate that RLBDT outperforms the CART baseline on all the datasets. We also
notice that RLBDT becomes less advantageous compared to the greedy search method as the data
size and feature number increase. One possible reason is that the search space has become too huge
to be explored effectively by the primitive algorithms, like REINFORCE, used in our work. Thus, we
will try more advanced RNN architectures and reinforcement learning algorithms to further improve
the effectiveness of our method in the future.

5 Conclusion

In this work, we proposed a proof-of-concept framework for learning decision trees with reinforcement
learning. A RNN controller is utilized to predict the splitting feature at each node, and trained with
reinforcement learning to search for decision trees with better performance. Empirical results show
that decision trees learned by our method outperform those generated by commonly used greedy
search methods like CART under the same hyper-parameter setting.
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