Model-Agnostic Meta-Learning Universality, Inductive Bias, and Weak Supervision

Chelsea Finn

Why Learn to Learn?

- effectively reuse data on other tasks
- replace manual engineering of architecture, hyperparameters, etc.
 learn to quickly adapt to unexpected scenarios (inevitable failures,
- learn to quickly adapt to unex long tail)
- learn how to learn with weak supervision

Problem Domains:

- few-shot classification & generation
- hyperparameter optimization
- architecture search
- faster reinforcement learning
- domain generalization
- learning structure

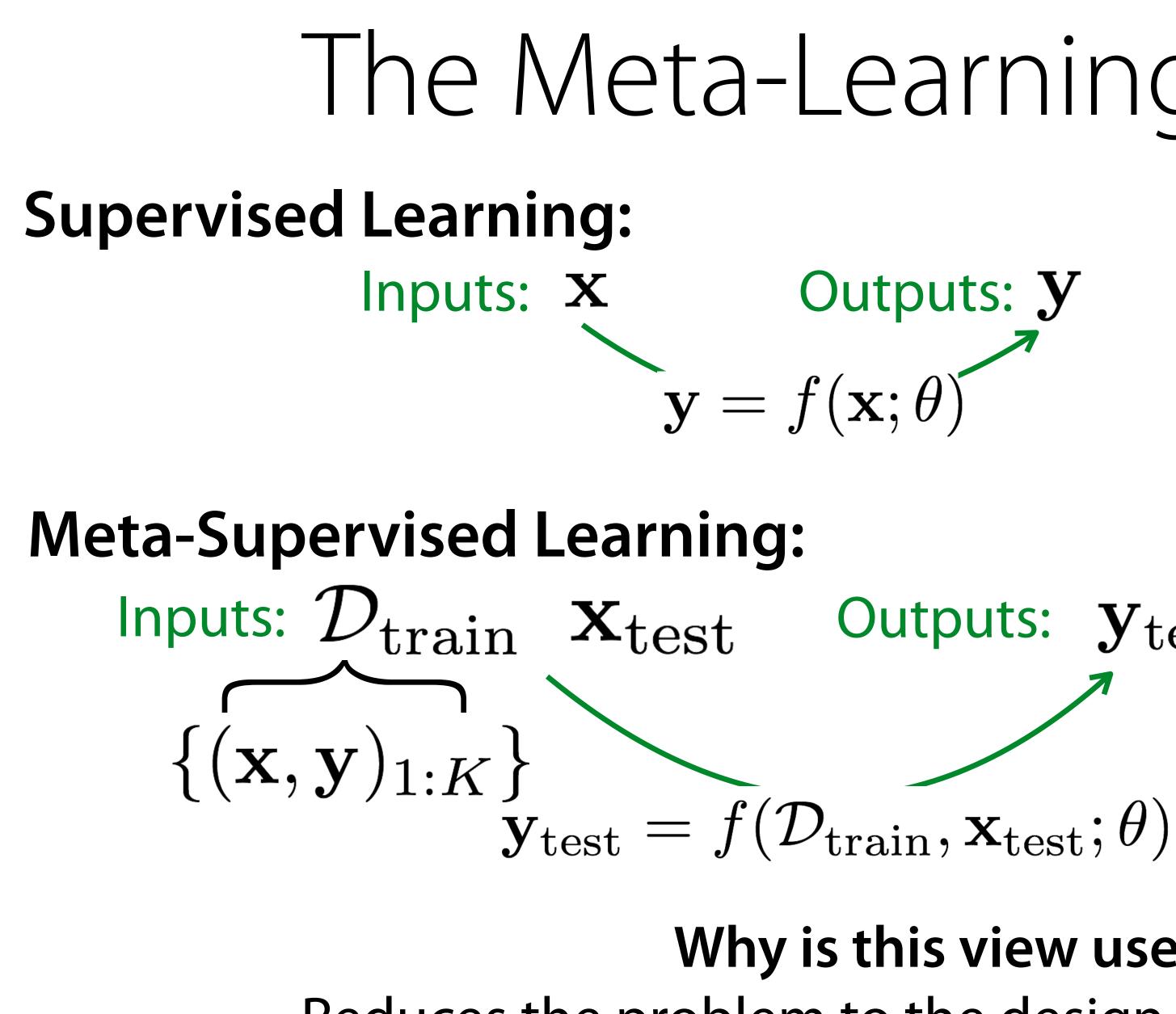
Chelsea Finn, UC Berkeley

Approaches:

- recurrent networks
- learning optimizers or update rules
- learning initial parameters & architecture
- acquiring metric spaces
- Bayesian models

. . .

What is the meta-learning problem statement?



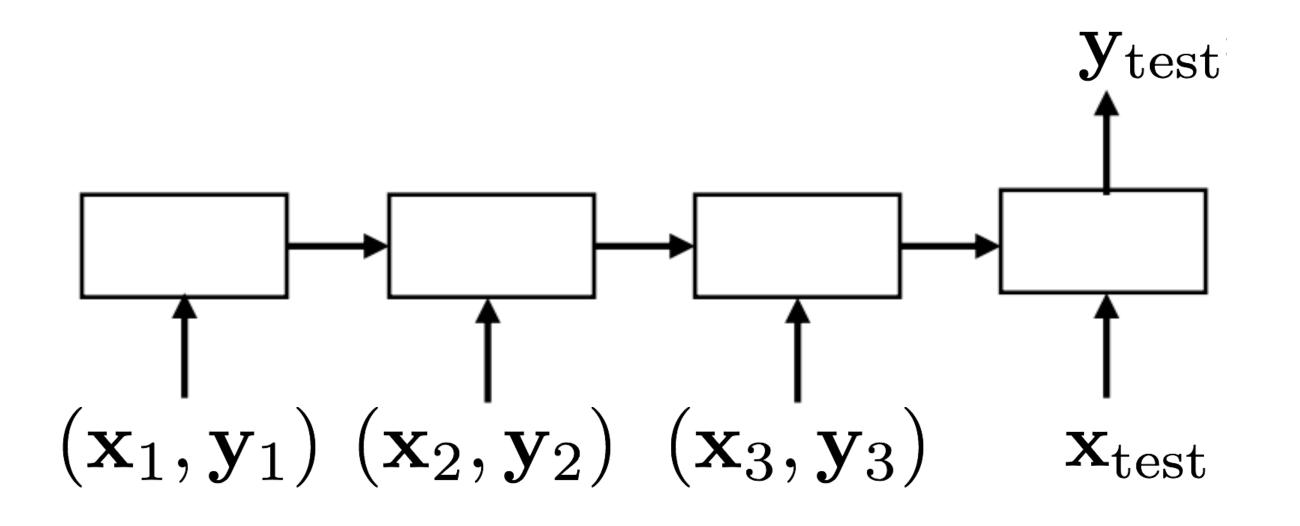
Chelsea Finn, UC Berkeley

The Meta-Learning Problem Data: $\{(\mathbf{x}, \mathbf{y})_i\}$ Data: Outputs: y_{test} $\{\mathcal{D}_i\}$ $\mathcal{D}_i: \{(\mathbf{x}, \mathbf{y})_i\}$

Why is this view useful? Reduces the problem to the design & optimization of f.

(LSTM, NTM, Conv)

Recurrent network $\mathbf{y}_{\text{test}} = f(\mathcal{D}_{\text{train}}, \mathbf{x}_{\text{test}}; \theta)$ Santoro et al. '16, Duan et al. '17, Wang et al. '17, Munkhdalai & Yu '17, Mishra et al. '17, ...



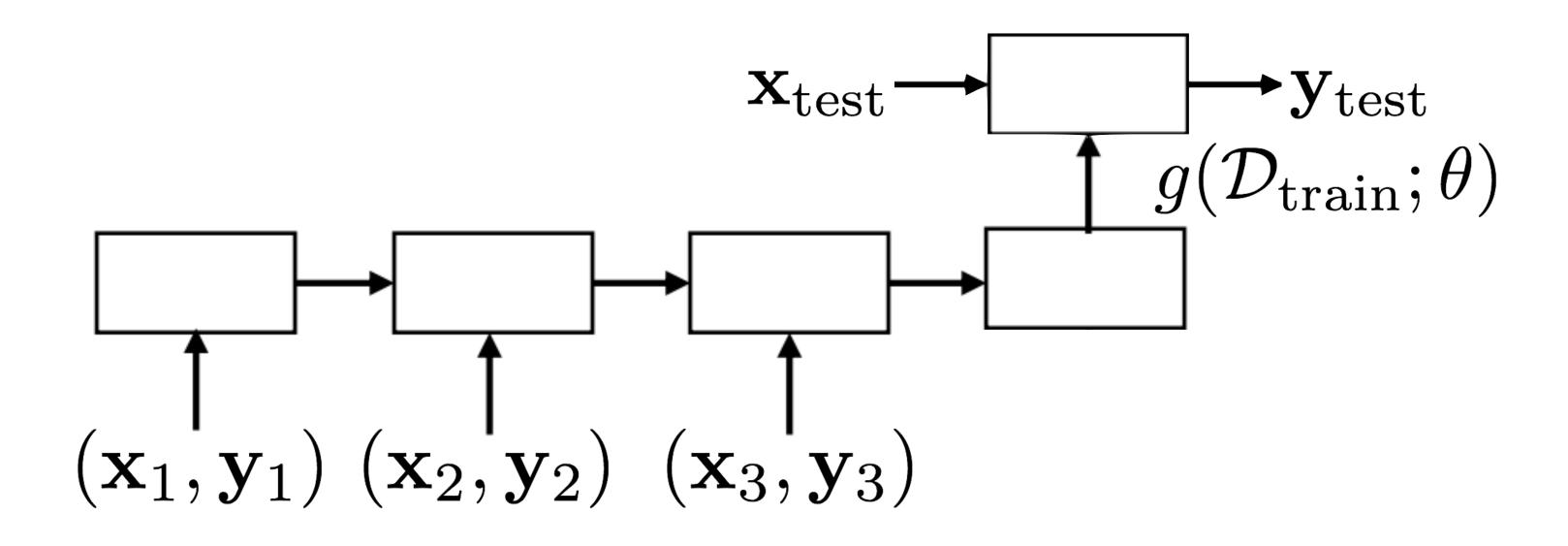
 $\mathcal{D}_{\text{train}} \mathbf{x}_{\text{test}} \longrightarrow \mathbf{y}_{\text{test}}$

(LSTM, NTM, Conv)

Recurrent network $\mathbf{y}_{\text{test}} = f(\mathcal{D}_{\text{train}}, \mathbf{x}_{\text{test}}; \theta)$ Santoro et al. '16, Duan et al. '17, Wang et al. '17, Munkhdalai & Yu '17, Mishra et al. '17, ...

Learned optimizer (often uses recurrence)

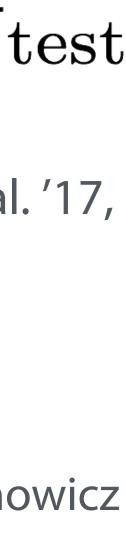
$$\mathbf{y}_{\text{test}} = f(\mathbf{x}_{\text{test}}; g)$$



Chelsea Finn, UC Berkeley

 $\mathcal{D}_{\text{train}} \mathbf{x}_{\text{test}} \longrightarrow \mathbf{y}_{\text{test}}$

 $\mathcal{D}_{ ext{train}}; heta))$ Hochreiter et al. '87, Bengio et al. '90, $\mathcal{D}_{ ext{train}}; heta))$ Hochreiter et al. '01, Li & Malik '16, Andrychowicz et al. '16, Ha et al. '17, Ravi & Larochelle '17, ...



Recurrent network (LSTM, NTM, Conv) $\mathbf{y}_{\text{test}} = f(\mathcal{D}_{\text{train}}, \mathbf{x}_{\text{test}}; \theta)$ Santoro et al. '16, Duan et al. '17, Wang et al. '17, Munkhdalai & Yu '17, Mishra et al. '17, ...

Learned optimizer (often uses recurrence)

$$\mathbf{y}_{\text{test}} = f(\mathbf{x}_{\text{test}}; g(\mathbf{z}))$$

These approaches are general and quite powerful. What happens when the task is very different? Or very little meta-training?

Impose Structure

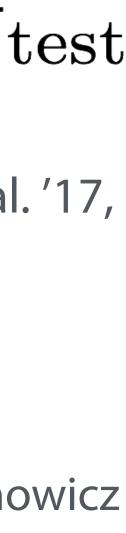
Can we build a general meta-learning algorithm that interpolates between learning from scratch and few-shot learning?

Chelsea Finn, UC Berkeley

$\mathcal{D}_{\text{train}} \mathbf{x}_{\text{test}} \longrightarrow \mathbf{y}_{\text{test}}$

 $\mathcal{D}_{ ext{train}}; heta))$ Schmidhuber et al. '87, Bengio et al. '90, $\mathcal{D}_{ ext{train}}; heta))$ Hochreiter et al. '01, Li & Malik '16, Andrychowicz et al. '16, Ha et al. '17, Ravi & Larochelle '17, ...

Bergstra et al. '11, Snoek et al. '12, Koch '15, Maclaurin et al. '15, Vinyals et al. '16, Zoph & Le '17, Snell et al. '17, ...

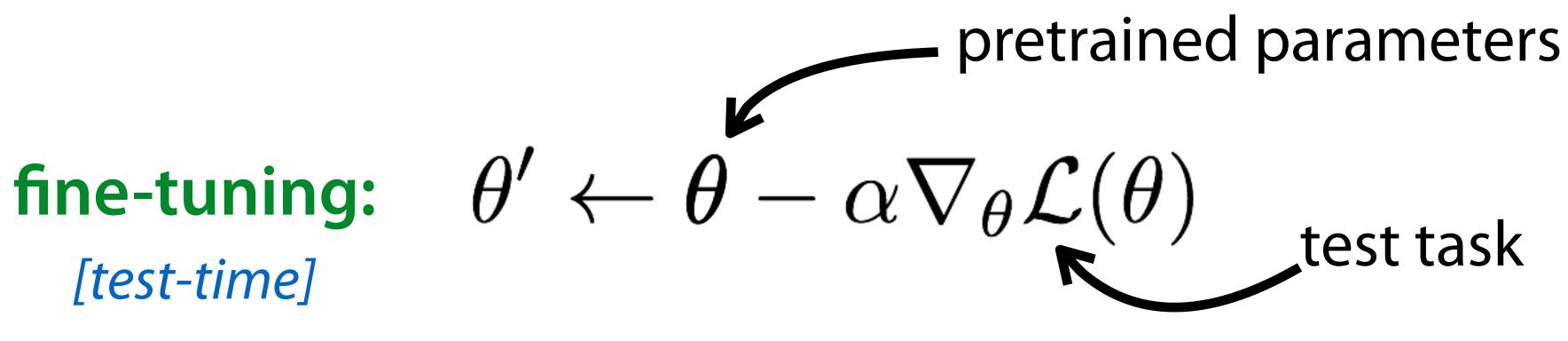


[test-time]

Model-Agnostic min $\sum_{\theta} \mathcal{L}_{v}(\theta - \alpha \nabla_{\theta} \mathcal{L}_{tr}(\theta))$ Meta-Learning: tasks (MAML)

Key idea: Train over many tasks, to learn parameter vector θ that transfers In-distribution task: k-shot learning **Base case**: learning from scratch Related but out-of-distribution task: somewhere in between

Chelsea Finn, UC Berkeley



Finn, Abbeel, Levine ICML'17

Recurrent network (LSTM, NTM, Conv)

Santoro et al. '16, Duan et al. '17, Wang et al. '17, $\mathbf{y}_{\text{test}} = f(\mathcal{D}_{\text{train}}, \mathbf{x}_{\text{test}}; \theta)$ Munkhdalai & Yu '17, Mishra et al. '17, ...

Impose Structure

Bergstra et al. '11, Snoek et al. '12, Koch '15, Maclaurin et al. '15, Vinyals et al. '16, Zoph & Le '17, Snell et al. '17, ...

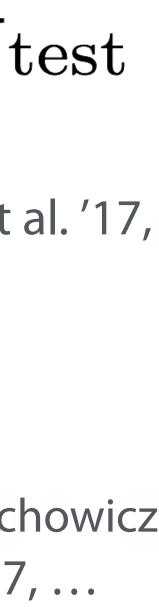
MAML (learned initialization)

Chelsea Finn, UC Berkeley

 $\mathcal{D}_{train} \mathbf{x}_{test} \longrightarrow \mathbf{y}_{test}$

Learned optimizer (often uses recurrence) $\mathbf{y}_{\text{test}} = f(\mathbf{x}_{\text{test}}; g(\mathcal{D}_{\text{train}}; \theta))$ Schmidhuber et al. '87, Bengio et al. '90, Hochreiter et al. '01, Li & Malik '16, Andrychowicz et al. '16, Ha et al. '17, Ravi & Larochelle '17, ...

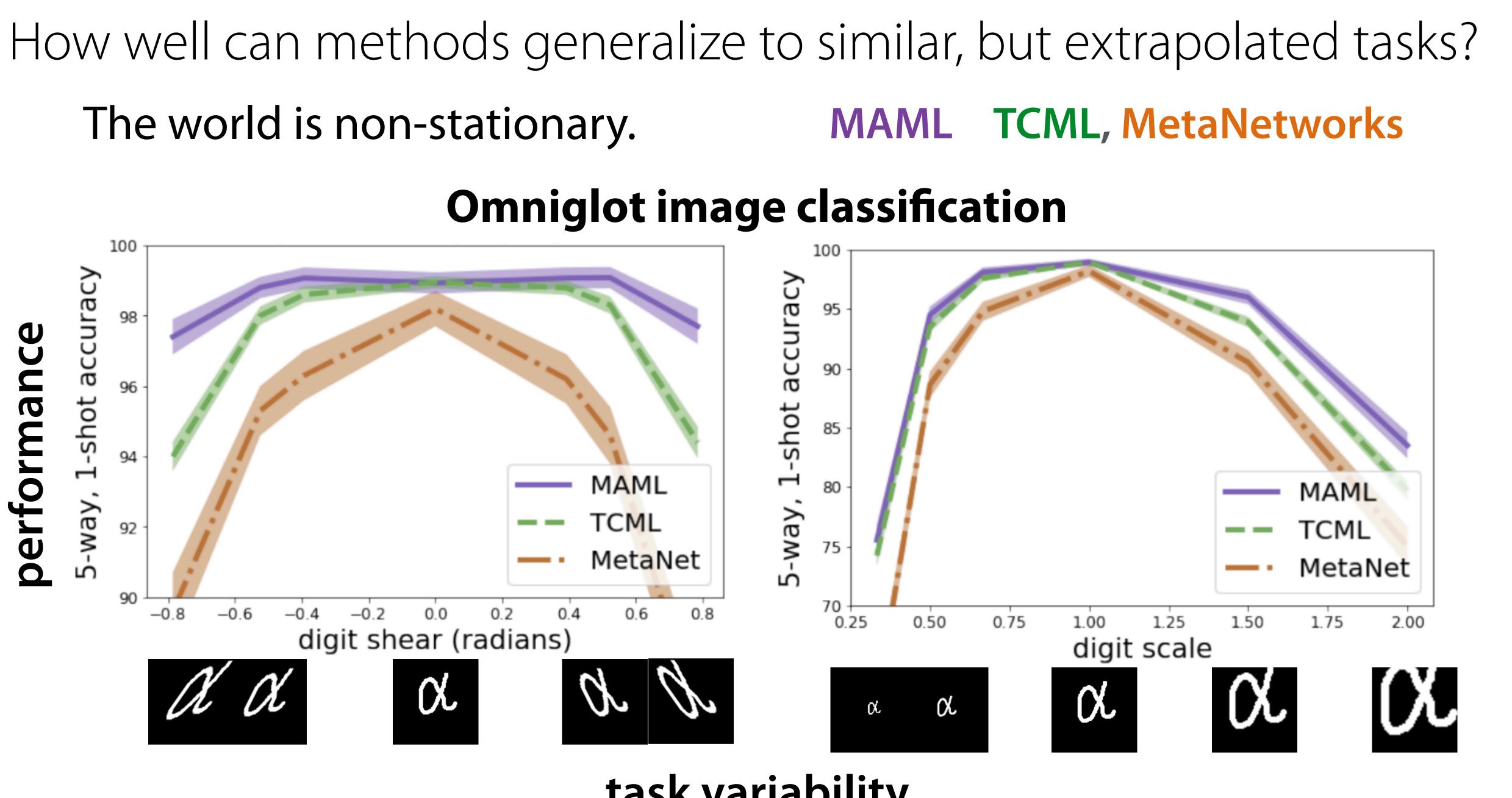
> $\mathbf{y}_{\text{test}} = f(\mathbf{x}_{\text{test}}; \theta - \alpha \nabla_{\theta} \mathcal{L}(\mathcal{D}_{\text{train}})) \quad \text{Finn et al. '17, Grant et$ Reed et al. '17, Li et al. '17, ...



Theoretical & Empirical Questions

- 1. What happens when MAML faces out-of-distribution tasks?
- 2. How **expressive** are deep representations + gradient descent?
- 3. Can we interpret MAML in a probabilistic framework?
- 4. Can we use MAML to learn from weak supervision?

MAML TCML, MetaNetworks The world is non-stationary.



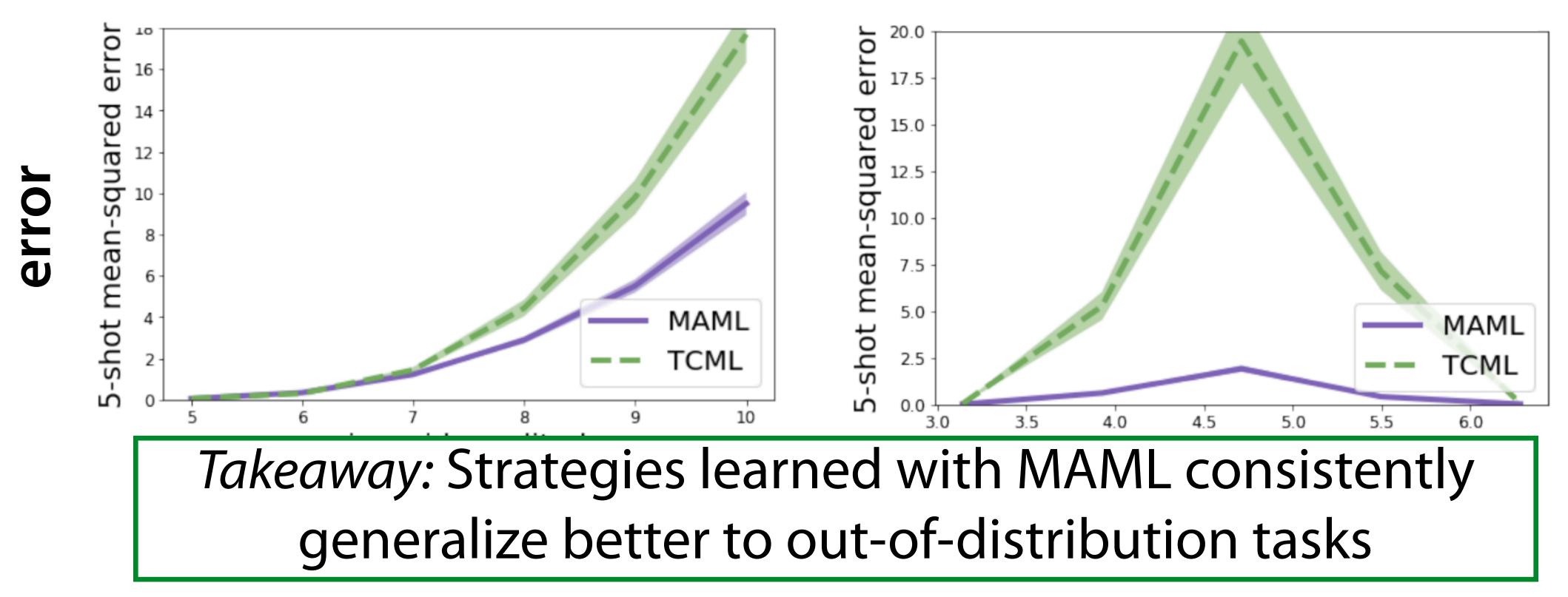
task variability

Chelsea Finn, UC Berkeley

Finn & Levine '17 (under review)

How well can methods generalize to similar, but extrapolated tasks? The world is non-stationary. MAML TCML

Sinusoid curve regression



Finn & Levine '17 (under review)

Theoretical & Empirical Questions

- 1. What happens when MAML faces out-of-distribution tasks? 2. How expressive are deep representations + gradient descent? 3. Can we interpret MAML in a probabilistic framework?
- 4. Can we use MAML to learn from weak supervision?

Universal Function Approximation Theorem Hornik et al. '89, Cybenko '89, Funahashi '89

Recurrent network Learned optimizer $\mathbf{y}_{\text{test}} = f(\mathcal{D}_{\text{train}}, \mathbf{x}_{\text{test}}; \theta) \quad \mathbf{y}_{\text{test}} = f(\mathbf{x}_{\text{test}}; g(\mathcal{D}_{\text{train}}; \theta))$

- A neural network with one hidden layer of finite width can approximate any continuous function. $\mathbf{y} = f(\mathbf{x}; \theta)$
 - "universal function approximator"
 - How can we define a notion of universality / expressive power for meta-learning? $\mathbf{y}_{\text{test}} = f(\mathcal{D}_{\text{train}}, \mathbf{x}_{\text{test}}; \theta)$ "universal learning procedure approximator"

- With sufficient depth, both are universal learning procedure approximators.
 - Are we losing expressive power when using MAML? Finn & Levine '17 (under review)

How expressive is MAML? $\mathbf{y}_{\text{test}} = f(\mathbf{x}_{\text{test}}; \theta - \alpha \nabla_{\theta} \mathcal{L}(\mathcal{D}_{\text{train}}))$

- **Assumptions:**

Chelsea Finn, UC Berkeley

- cross entropy or mean-squared error loss - datapoints **x**_i in training dataset are unique

Result: For a sufficiently deep f_{θ} , $f(\mathbf{x}_{\text{test}}; \theta - \alpha \nabla_{\theta} \mathcal{L}(\mathcal{D}_{\text{train}}))$ is a universal learning procedure approximator.

[It can approximate any function of $\mathcal{D}_{train} \mathbf{x}_{test}$]

Why is this interesting? MAML has both benefits of inductive bias and expressive power.

Finn & Levine '17 (under review)

Theoretical & Empirical Questions

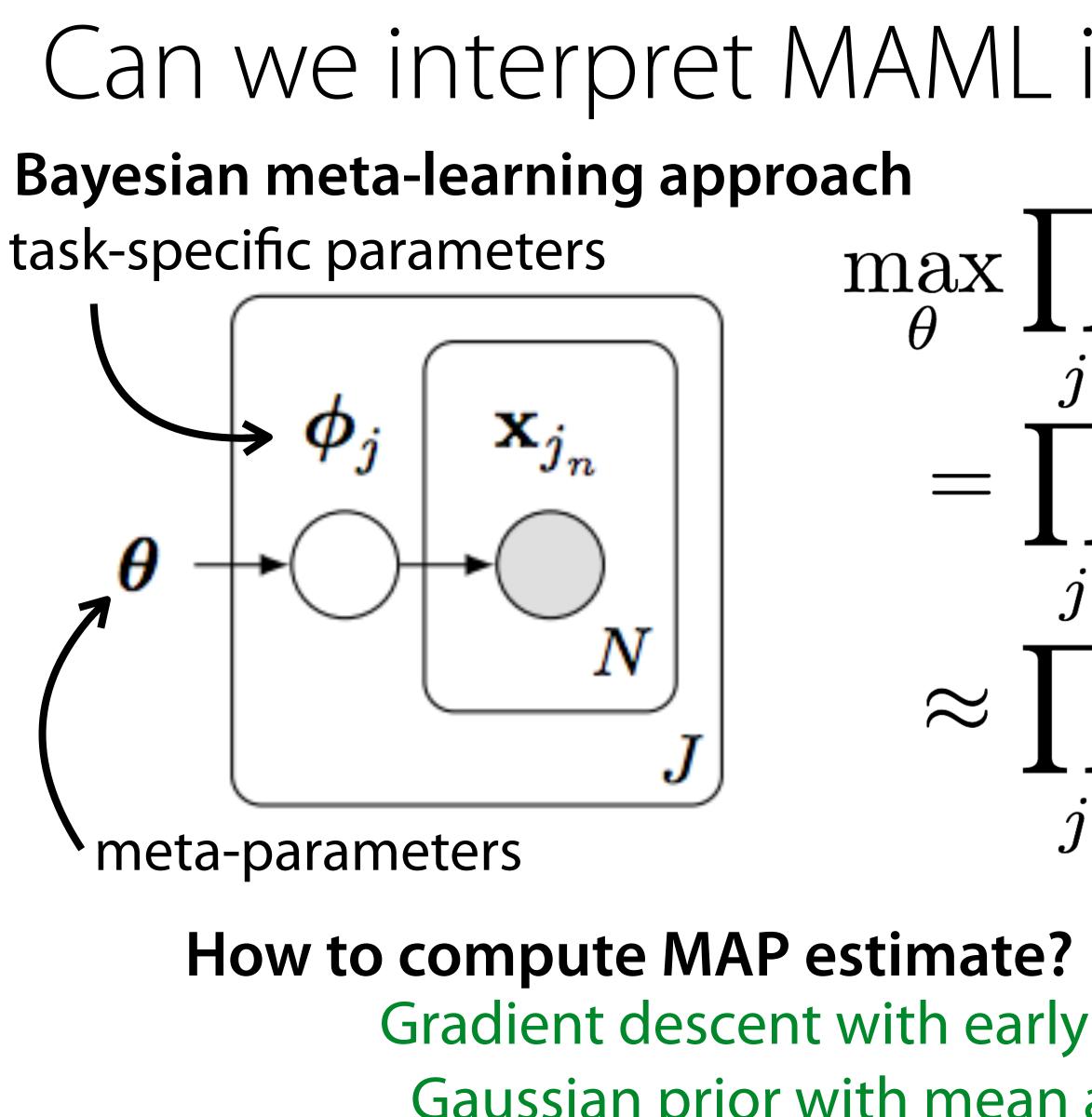
- 3. Can we interpret MAML in a probabilistic framework?
- 4. Can we use MAML to learn from weak supervision?

Chelsea Finn, UC Berkeley

1. What happens when MAML faces out-of-distribution tasks? 2. How expressive is deep representation + gradient descent?

Can we interpret MAML in a probabilistic framework? meta-learning \approx learning a prior

- **Bayesian concept learning**
- [Tenenbaum '99, Fei-Fei et al. '03, Lawrence & Platt '04, ...]
- formulate few-shot learning as probabilistic inference problem
 - + can effectively generalize from limited evidence
 - hard to scale to complex models



(exact in linear case, approximate in nonlinear case)

Gradient descent with early stopping = MAP inference under Gaussian prior with mean at initial parameters [Santos '96] MAML approximates hierarchical Bayesian inference. [Grant et al. '17]

Chelsea Finn, UC Berkeley

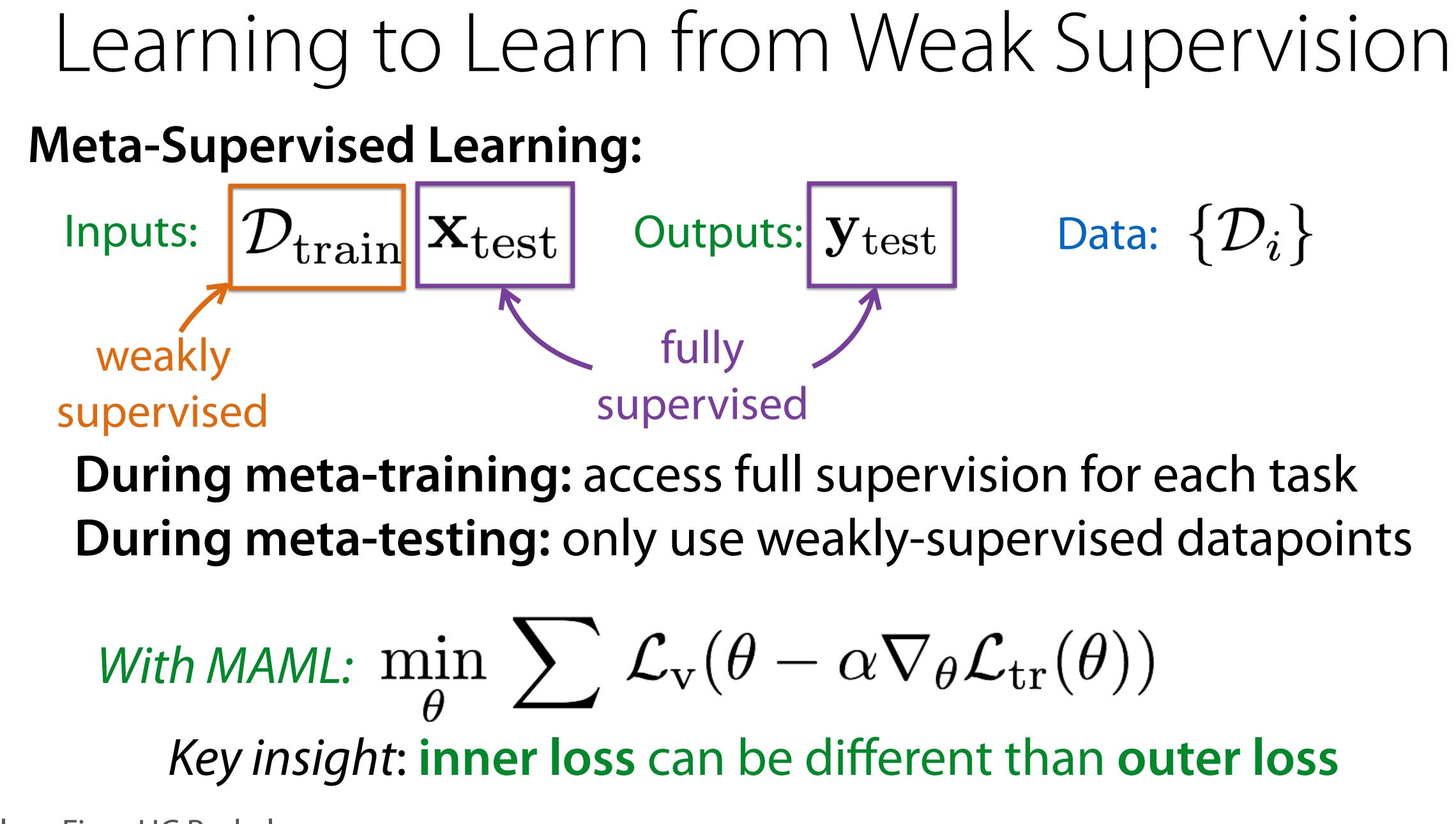
Can we interpret MAML in a probabilistic framework?

 $\max_{\theta} \prod p(\mathcal{D}_{\text{train}}^{(j)} | \theta)$

 $= \prod_{j}^{J} \int p(\mathcal{D}_{\text{train}}^{(j)} | \phi_j) p(\phi_j | \theta) d\phi_j$ (empirical Bayes) $\approx \prod p(\mathcal{D}_{\text{train}}^{(j)} | \hat{\phi}_j) p(\hat{\phi}_j | \theta)$ MAP estimate

Theoretical & Empirical Questions

- 1. What happens when MAML faces out-of-distribution tasks? 2. How expressive is deep representation + gradient descent? 3. Can we interpret MAML in a probabilistic framework? 4. Can we use MAML to learn from weak supervision?



$$(\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathrm{tr}}(\theta))$$

Weak Supervision Results

- Learning from positive examples
- One-shot Imitation from human video (in preparation, with Yu, Abbeel, Levine)

Chelsea Finn, UC Berkeley

Grant, Finn, Peterson, Abbott, Levine, Darrell, Griffiths, NIPS '17 CIAI workshop

Typical Objective of Few-Shot Learning

Image recognition Given 1 example of 5 classes:

Human Concept Learning Given 1 positive example:

Chelsea Finn, UC Berkeley

Classify new examples

Classify new examples:

Beyond how humans learn, this setting is also more interesting.

Grant et al. '17 (NIPS CIAI workshop)

Human Concept Learning Given 1 positive example:

both positive & negatives

Why does this make sense?

MAML approximates hierarchical Bayesian inference **C**oncept **A**cquisition through **M**eta-**L**earning (CAML)

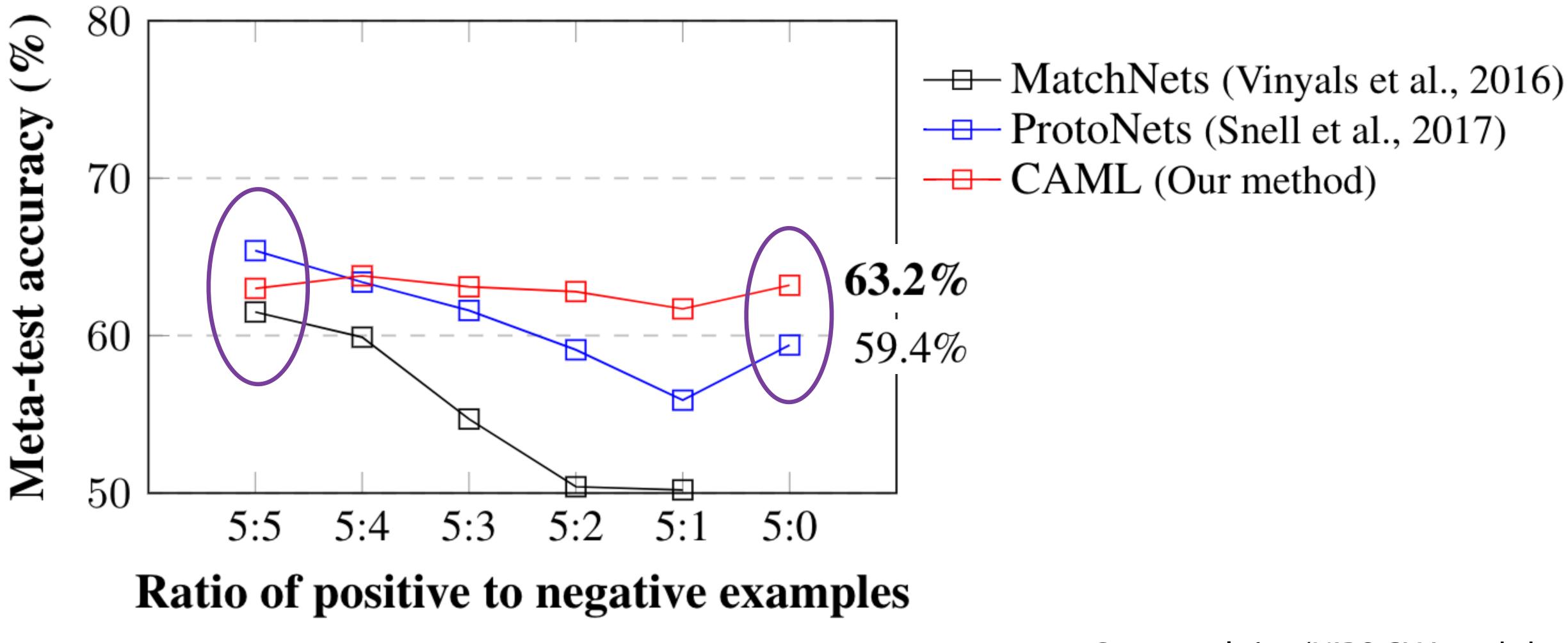
Chelsea Finn, UC Berkeley

Classify new examples:

 $\min_{\theta} \sum_{\mathbf{\Lambda}} \mathcal{L}_{\mathbf{v}}(\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathrm{tr}}(\theta))$ only positive examples

Grant et al. '17 (NIPS CIAI workshop)

Few-Shot Image Classification from Positive Examples Minilmagenet dataset



Grant et al. '17 (NIPS CIAI workshop)

One-Shot **Visual** Imitation Learning **Goal**: Given one visual demonstration of a new task, learn a policy

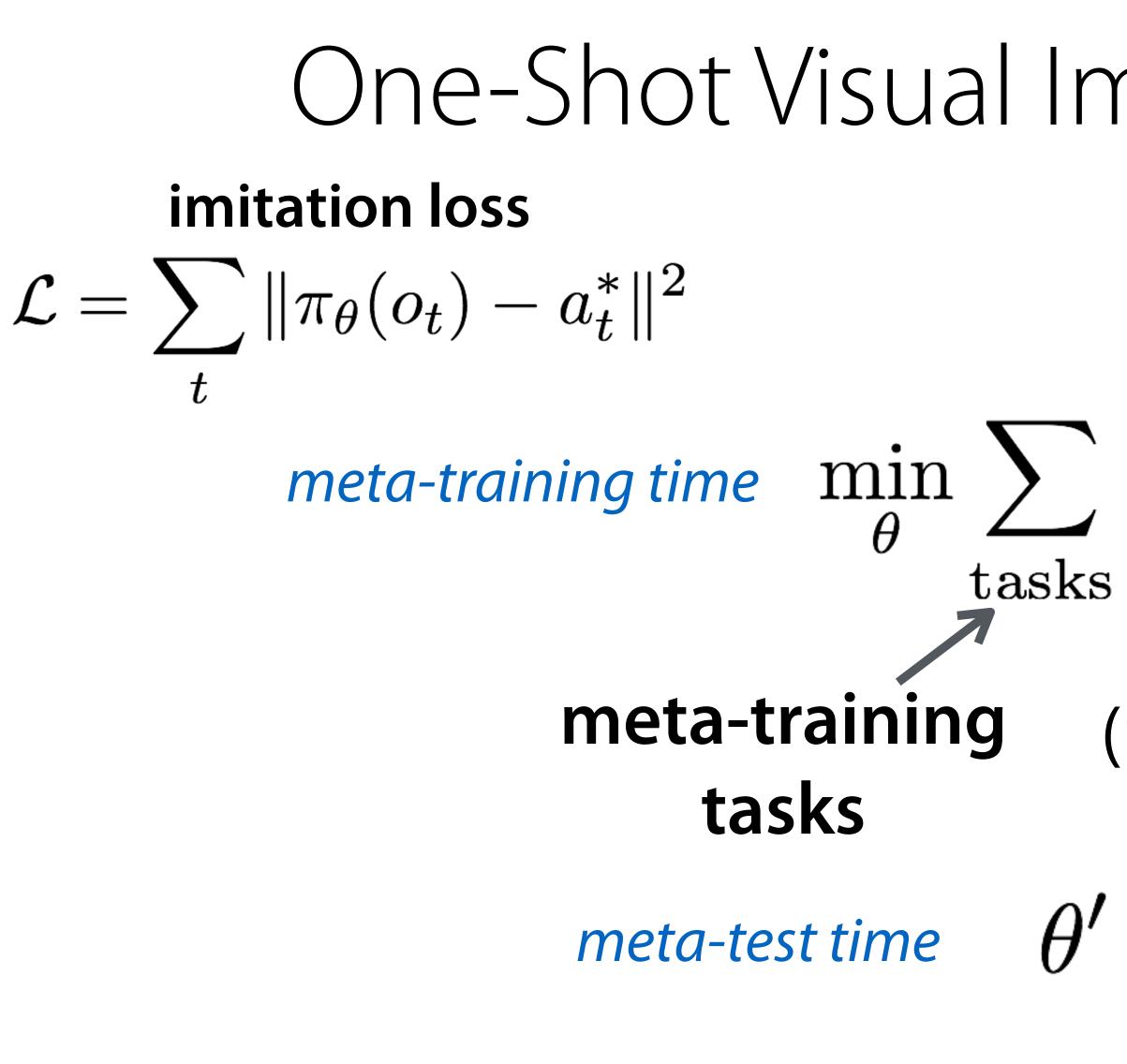
Visual imitation is expensive.

behavior cloning / supervised learning

Rahmanizadeh et al. '17 Zhang et al. '17 learns from raw pixels, but requires many demonstrations Through meta-learning: reuse data from other tasks/objects/envionrments

No direct supervision signal in video of human.

Yu*, Finn*, et al. (in prep.)



One-Shot Visual Imitation from Humans

$\begin{array}{lll} \textit{meta-training time} & \min_{\theta} \sum_{\text{tasks}} \mathcal{L}_{v}(\theta - \alpha \nabla_{\theta} \mathcal{L}_{tr}(\theta)) \\ & \text{val demo} & \text{training demo} \\ & \text{meta-training} & (\text{robot demo}) & (\text{video of human}) \end{array}$

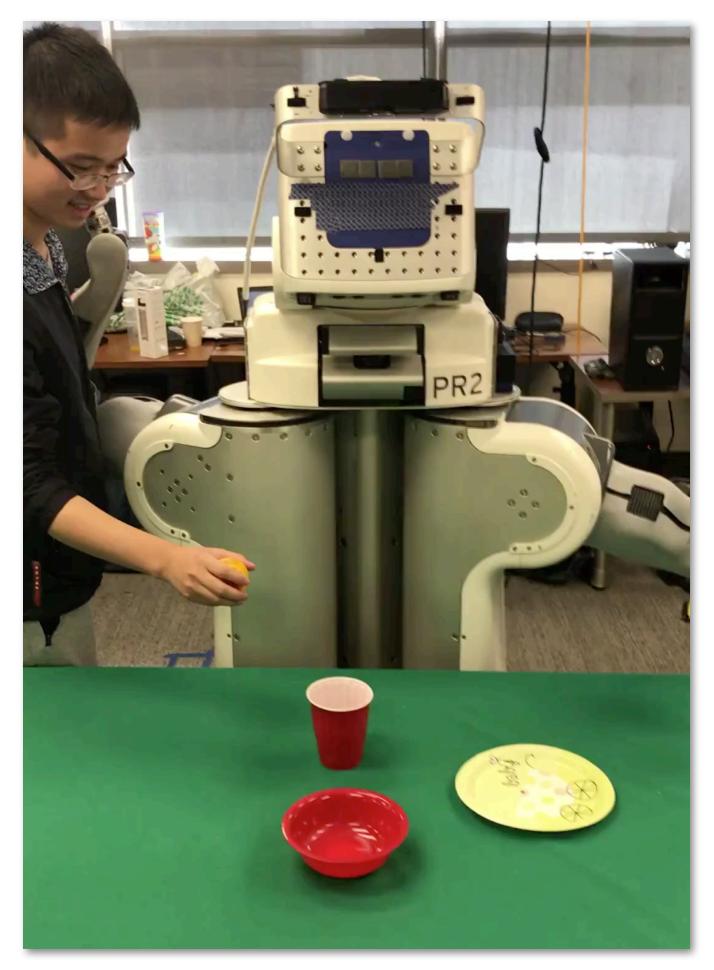
meta-test time $\theta' \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta)$

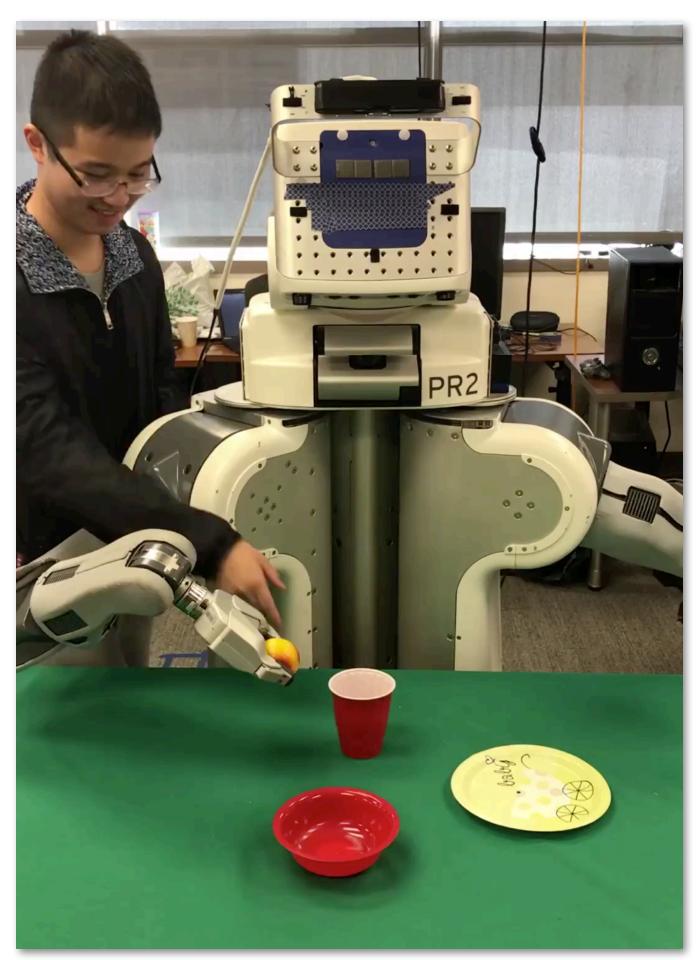
demo of meta-test task (video of human)

Yu*, Finn*, et al. (in prep.)

On-going work: One-shot imitation from human video input human demo

resulting policy



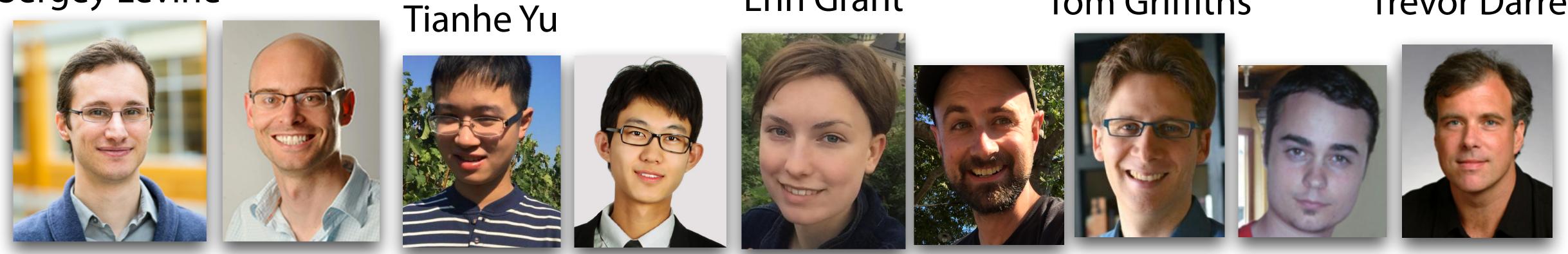


Yu*, Finn*, et al. (in prep.)

Takeaways

- $\begin{array}{ll} \bullet & \text{Meta-learning can be seen as learning a function} \\ \mathcal{D}_{train} \; \mathbf{x}_{test} & \longrightarrow \; \mathbf{y}_{test} \end{array}$
- Embedding gradient descent provides beneficial inductive bias while maintaining universality
- MAML is equivalent to empirical Bayes
- Can learn how to learn from "weak" supervision
 From 1 positive example: From a video of a human:

Collaborators Sergey Levine



Pieter Abbeel

Tianhao Zhang

Blog post, code, and papers: <u>eecs.berkeley.edu/~cbfinn</u>

Chelsea Finn, UC Berkeley

Erin Grant

Tom Griffiths

Trevor Darrell

Josh Abbott

Josh Peterson

Questions?

