
Large Margin Meta-Learning for Few-Shot
Classification

Yong Wang1, Xiao-Ming Wu2∗, Qimai Li2, Jiatao Gu1, Wangmeng Xiang2, Lei Zhang2, Victor O.K. Li1∗
1The University of Hong Kong, 2The Hong Kong Polytechnic University

{wangyong, jiataogu, vli}@eee.hku.hk, {xiao-ming.wu}@polyu.edu.hk,
{csqmli, cswxiang, cslzhang}@comp.polyu.edu.hk

Abstract

This paper proposes a large margin principle to overcome the problem of data
scarcity in training meta-learning models for few-shot classification. To realize
it, we develop an efficient framework that can be easily incorporated in existing
metric-based meta-learning models. We demonstrate that the large margin principle
can improve the generalization capacity of state-of-the-art meta-learning methods
and lead to consistent and considerable improvements on few-shot classification.

1 Introduction

Few-shot classification [3] is a very challenging problem as it aims to recognize new objects given
only a few examples. One promising approach for tackling this problem is meta-learning. Unlike
traditional supervised learning that requires a large labeled set for training, meta-learning trains a
classifier that can generalize to new tasks by distilling knowledge from a large number of similar tasks
and then transferring knowledge to quickly adapt to new tasks. Several directions have been explored
for meta-learning, including learn to fine-tune [14, 4, 13, 9], sequence-based methods [16, 11], and
metric-based methods [8, 1, 21, 18, 5, 20, 6, 10, 15].

The success of metric-based methods relies on learning a discriminative metric space in which similar
samples are mapped close to each other and dissimilar ones distant such that a query can be easily
classified. However, learning a good metric space is difficult due to data scarcity in training tasks.
To overcome this problem, we propose a large margin principle for learning a more discriminative
metric space. The key insight is that samples from different classes should be mapped as far apart as
possible in the metric space to improve generalization and prevent overfitting. To this end, we develop
a unified framework to impose the large margin constraint by augmenting the linear classification loss
function of metric-based methods with a distance loss function – the triplet loss [17] to train a more
discriminative model. Our framework is simple, robust, very easy to implement, and can be potentially
applied to many metric-based meta-learning methods that adopts a linear classifier. Applications on
two state-of-the-art metric-based methods – graph neural networks [6] and prototypical networks
[18] show that the large margin constraint can substantially improve the generalization capacity of
the original models with little computational overhead.

2 Large Margin Meta-Learning

2.1 Meta-Learning for Few-Shot Classification

Meta-learning consists of two phases: meta-training and meta-testing. In meta-training, a large
amount of training data Dmeta-train = {(xi, yi)}Ni=1 from a set of classes Ctrain are used for training a
∗corresponding authors

2nd Workshop on Meta-Learning at NeurIPS 2018, Montréal, Canada.

−4 −2 0 2 4

−4

−2

0

2

4 w1w2

w3

(a)

−4 −2 0 2 4

−4

−2

0

2

4

w1w2

w3

(b)

−4 −2 0 2 4
−4

−2

0

2

4

cs

cd
fφ(xi)

update
direction

pull
to

push
away

(c)

Figure 1: Large margin meta-learning. (a) Classifier trained without the large margin constraint. (b) Classifier
trained with the large margin constraint. (c) Gradient of the triplet loss.

classifier, where xi is the feature vector of an example, yi ∈ Ctrain is the label, and N is the number
of training examples. In meta-testing, a support set of S labeled examples Ds = {(xj , yj)}Sj=1

from a set of new classes Ctest is given, i.e., yj ∈ Ctest and Ctrain ∩ Ctest = ∅. The goal is to predict
the labels of a query set Dq = {(xj)}S+Qj=S+1, where Q is the number of queries. If the support set
Ds contains K examples from each of C classes, i.e., S = K × C, the problem is called C-way
K-shot classification. Typically, K is a small number such as 1 or 5. To improve generalization, an
episode-based training strategy [21] is commonly adopted to better exploit the training set Dmeta-train.
In particular, in meta-training, a model is trained by support/query sets, where a support set is formed
by sampling K examples from each of C classes from Ctrain, and a query set is formed by sampling
from the rest of the C classes’ samples. The purpose is to mimic the test scenario during training.

2.2 Large Margin Principle

Metric-Based Meta-Learning. To learn quickly from only a couple of examples whose classes are
unseen in meta-training, a model should acquire some transferable knowledge in meta-training. In
metric-based few-shot learning [8, 6, 18], the basic idea is to learn a nonlinear mapping fφ(·) which
can model the class relationship among data samples, i.e., similar samples are mapped to nearby points
in the metric space while dissimilar ones are mapped far apart. Usually, the mapping fφ(·) embeds a
sample xi into a relatively low dimensional space, and the embedded point fφ(xi) is then classified
by a linear classifier, e.g., the softmax classifier. Note that the softmax classifier can be considered
as the last fully connected layer in a neural network. Both the mapping fφ(·) and the classifier

parameters are learned by minimizing the cross entropy loss: Lsoftmax = 1
N

∑
i− log(e

w>
yi
fφ(xi)∑

j e
w>
j
fφ(xi)

),

where wj is a classifier weight vector corresponding to the j-th column of the weight matrix W of
the softmax classifier. Without loss of generality, we omit the bias b to simplify the analysis. Note
that wj can be considered as the class center of samples in class j in the embedding space.

After learning fφ(·) and W , the model can be used for testing. Fig.1(a) shows a 3-way 5-shot test
case, where the support samples are indicated by dots and the query sample is indicated by a cross.
Samples in the same class are indicated by the same color. We can see that samples from each class
are mapped to cluster around the corresponding classifer weight vector wj . However, the query
sample, which belongs to class 1, may be wrongly classified to class 2, due to the small margin
between w1 and w2.

How Can It Work Better? As each training episode consists of very few samples of each class,
the standard error of the sample mean is high [12]. In other words, the class average may be a poor
estimate of the true class center, and some samples may not represent its own class very well. To
overcome this problem and improve the model generalization capacity on new classes, we propose
to enforce a large margin between the classifier weight vectors (or class centers). The idea is that
samples from different classes should be mapped as far apart as possible in the metric space. As
shown in Fig. 1(b), the query sample can be correctly classified by enlarging the margin between w1

and w2. It is worth noting that the large margin principle distributes the classifier weight vectors in a
balanced manner (Fig.1(b)), which leads to balanced decision boundaries.
2.3 Model

To enforce the large margin constraint, we propose to add a large margin loss function to the
classification loss function, and the total loss is given by:

L = Lsoftmax + λ ∗ Llarge-margin, (1)

2

where λ is a balancing parameter. We choose the triplet loss [17] to be the large margin distance
function, which acts on the embeddings of training samples in the metric space:

Llarge-margin =
1

Nt

Nt∑
i=1

[
‖ fφ(xai)− fφ(xpi) ‖

2
2 − ‖ fφ(xai)− fφ(xni) ‖22 +m

]
+
, (2)

where m ∈ R++ is a parameter for the margin. (xai ,x
p
i ,x

n
i) forms a triplet, where xai is called the

anchor sample, xpi is the positive sample w.r.t. the anchor sample, and xni is the negative sample w.r.t.
the anchor sample. xai and xpi have the same labels, and xai and xni have different labels. Nt is the
number of triplets. Any sample in the training set can be chosen as anchor. Intuitively, the additional
triplet loss will help train a more discriminative mapping fφ(·), which embeds samples of the same
class closer to each other and those of different classes farther apart in the metric space.

2.4 Analysis

We analyze the influence of the triplet loss on the embeddings by studying the gradient of Llarge-margin
with respect to fφ(xi), the embedding of sample xi, during back propagation.

To find the gradient of Llarge-margin with respect to fφ(xi), we need to find the terms in which xi is
the anchor sample, the positive sample, or the negative sample. We partition the samples into three
multisets. The first set Ss contains all samples that are paired with xi and have the same label as
xi. The second set Sd contains all samples that are paired with xi but have different labels with
xi. The third set contains samples that are not paired with xi. The multiplicity of an element in
these multisets is the number of triplets in which the element is paired with xi. Note that if a sample
xs ∈ Ss, the distance ‖ fφ(xi)− fφ(xs) ‖22 is added to the loss, while if a sample xd ∈ Sd, the
distance is subtracted from the loss. After some rearrangements, (2) can be written as:

Llarge-margin =
1

Nt

∑
i

 ∑
xs∈Ss

‖ fφ(xi)− fφ(xs) ‖22 −
∑

xd∈Sd

‖ fφ(xi)− fφ(xd) ‖22

+ const, (3)

where const denotes a constant independent of xi. Then the gradient of Llarge-margin with respect to
fφ(xi) can be derived as:

∂Llarge-margin

∂fφ(xi)
= −2|Ss|

Nt

(
1

|Ss|
∑

xs∈Ss

fφ(xs)− fφ(xi)

)
− 2|Sd|

Nt

fφ(xi)− 1

|Sd|
∑

xd∈Sd

fφ(xd)

= − 2|Ss|

Nt
(cs − fφ(xi))︸ ︷︷ ︸

pull towards its own class

− 2|Sd|
Nt

(fφ(xi)− cd)︸ ︷︷ ︸
push away from other classes

, (4)

where cs is the center of embedded points in Ss, and cd is the center of embedded points in Sd. By
(4), the gradient consists of two parts. The first part is a vector pointing from fφ(xi) to the center
of embedded points in Ss, which pulls fφ(xi) towards its own class during training, as indicated by
the brown arrow in Fig. 1(c). The other part is a vector pointing from the center of embedded points
in Sd to fφ(xi), which pushes fφ(xi) away from other classes, as indicated by the red arrow in Fig.
1(c). This shows that the augmented triplet loss can effectively enforce the large margin constraint.

3 Experimental Results

In this section, we apply the proposed large margin framework on graph neural networks (GNN)
[6] and prototypical networks (PN) [18]. We add the triplet loss eq. (2) to their respective objective
functions to train large margin graph neural networks (L-GNN) and large margin prototypical
networks (L-PN). For the strategy of triplet selection, please refer to appendix. The experiments are
conducted on the benchmark Mini-Imagenet dataset, which is composed of 100 classes with 600
samples from each class.

Parameter Setup. To make sure our method can really work in practice, we use fixed hyper-
parameters in all experiments. We set λ = 1 in (1). For the triplet loss, we set the margin as
1

2Nb

∑Nb
i=1 ‖ fφ(xi) ‖2 with randomly initialized model parameters, where Nb is the number of all

samples in one mini-batch. All testing results are averaged over 10 runs. For each run, we perform
2,000 tests for GNN and 600 tests for PN. All the results are averaged with 95% confidence intervals.

Few-Shot Classification Results. Table 1 shows the results of few-shot classification. We can see
that L-GNN and L-PN consistently improve GNN and PN, respectively, on every learning task,

3

5-Way 10-Way
Model Dist 1-shot 5-shot 1-shot 5-shot

GNN - 50.33± 0.36% 66.41± 0.63% 33.16± 0.65% 49.14± 0.68%
L-GNN - 51.08± 0.69% 67.57± 0.66% 34.53± 0.64% 51.48± 0.69%

PN Cosine 43.23± 0.24% 51.29± 0.22% 26.99± 0.13% 32.57± 0.12%
L-PN Cosine 50.10± 0.25% 66.94± 0.21% 33.51± 0.15% 50.86± 0.14%

PN Euclid. 47.98± 0.25% 66.72± 0.21% 31.91± 0.15% 51.50± 0.14%
L-PN Euclid. 49.47± 0.25% 66.83± 0.21% 32.60± 0.15% 51.72± 0.14%

Table 1: Few-shot classification on Mini-Imagenet.

Trained only with labeled samples Semi-supervised
Model 20%-labeled 40%-labeled 20%-labeled 40%-labeled

GNN 50.33± 0.36% 56.91± 0.42% 52.45± 0.88% 58.76± 0.86%
L-GNN 51.08± 0.69% 57.90± 0.68% 54.51± 0.69% 60.47± 0.67%

Table 2: 5-way 5-shot semi-supervised few-shot classification on Mini-Imagenet. “Trained only with labeled
samples” means training and testing without using unlabeled samples; “Semi-supervised” means with unlabeled
samples.

demonstrating the benefit of incorporating the large margin loss in training. For PN with cosine
distance, the improvements are striking. Table 2 shows the results of semi-supervised few-shot
classification. We can see that L-GNN significantly outperforms GNN. This shows that adding the
large margin constraint helps learn a better embedding space for both labeled and unlabeled data.

5 10 20 50
m

50.0

50.5

51.0

51.5

52.0

52.5

Te
st

 A
cc

u.
 (%

)

GNN
L-GNN

5 10 20 50
m

66.0

66.5

67.0

67.5

68.0

68.5
GNN
L-GNN

(a) Test accuracy as m changes.

1 2 5 1050.0

50.5

51.0

51.5

52.0

52.5
Te

st
 A

cc
u.

 (%
)

GNN
L-GNN

1 2 5 1066.0

66.5

67.0

67.5

68.0

68.5
GNN
L-GNN

(b) Test accuracy as λ changes.

Figure 2: 5-way learning using GNN on Mini-Imagenet. (For (a) and (b), Left: 1-shot, right: 5-shot)

5 10 20 50
m

47.0
47.5
48.0
48.5
49.0
49.5
50.0

Te
st

 A
cc

u.
 (%

)

PN
L-PN

5 10 20 50
m

66.0
66.5
67.0
67.5
68.0
68.5
69.0

PN
L-PN

(a) Test accuracy as m changes.

1 2 5 1047.0
47.5
48.0
48.5
49.0
49.5
50.0

Te
st

 A
cc

u.
 (%

)

PN
L-PN

1 2 5 1066.0
66.5
67.0
67.5
68.0
68.5
69.0

PN
L-PN

(b) Test accuracy as λ changes.

Figure 3: 5-way learning using PN on Mini-Imagenet. (For (a) and (b), Left: 1-shot, right: 5-shot)

Parameter Sensitivity. We also study the sensitivity of the balancing parameter λ and the margin m.
The experimental results for 5-way 1-shot and 5-shot learning are shown in Fig. 2 and 3. Our method
consistently improves GNN and PN for a wide range of λ and m, demonstrating its robustness.

Running Time. The computational overhead of our method is very small. We evaluate the running
time on a platform of GeForce GTX 1080 Ti. For 5-way 5-shot learning on Mini-Imagenet, one
update of L-GNN takes 0.237s versus 0.228s of GNN and one update of L-PN takes 0.109s versus
0.105s of PN, incurring only 3.9% and 3.8% computational overhead.

4 Conclusions

This paper demonstrates the effectiveness of the large margin principle for metric-based meta-learning
for the first time and shows that it can be implemented easily with little overhead. Our framework
is simple, efficient, and can be applied to improve existing and new meta-learning methods. Future
works include developing theoretical guarantees for large margin meta-learning and applying our
method to solve real-word problems.

Acknowledgements. This research was supported in part by the Facebook Low Resource Neural
Machine Translation Award. This work also received support from the grant 1-ZVJJ funded by the
Hong Kong Polytechnic University.

4

References
[1] Luca Bertinetto, João F. Henriques, Jack Valmadre, and Philip H. S. Torrand Andrea Vedaldi.

Learning feed-forward one-shot learners. In NIPS, 2016.

[2] Jiankang Deng, Jia Guo, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for
deep face recognition. In arXiv:1801.07698, 2018.

[3] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. In TPAMI,
2006.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In ICML, 2017.

[5] Stanislav Fort. Gaussian prototypical networks for few-shot learning on omniglot. In NIPS
workshop, 2017.

[6] Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. In ICLR, 2018.

[7] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an
invariant mapping. In CVPR, 2006.

[8] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for one-shot
image recognition. In ICML, 2015.

[9] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for
few-shot learning. In arXiv:1707.09835, 2017.

[10] Akshay Mehrotra and Ambedkar Dukkipati. Generative adversarial residual pairwise networks
for one shot learning. In arXiv:1703.08033, 2017.

[11] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. In ICLR, 2018.

[12] Alexander M. Mood and Franklin A. Graybill. Introduction to the theory of statistics. In
McGraw Hill: New York, 1974.

[13] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In ICML, 2017.

[14] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR,
2017.

[15] Mengye Ren, Eleni Triantafillou, Sachin Ravia, Jake Snell, Kevin Swersky, Joshua B. Tenen-
baum, Hugo Larochelle, and Richard S. Zemel. Meta-learning for semi-supervised few-shot
classification. In ICLR, 2018.

[16] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In ICML, 2016.

[17] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In CVPR, 2015.

[18] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. In NIPS,
2017.

[19] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep learning face representation by joint
identification-verification. In NIPS, 2014.

[20] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, and Timothy M. Hospedales.
Learning to compare: Relation network for few-shot learning. In CVPR, 2018.

[21] O. Vinyals, C. Blundell, T. Lillicrap, and D. Wierstra. Matching networks for one shot learning.
In NIPS, 2016.

[22] Feng Wang, Xiang Xiang, Jian Cheng, and Alan L. Yuille. Normface: L2 hypersphere embed-
ding for face verification. In ACM MM, 2017.

[23] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and
Wei Liu. Cosface: Large margin cosine loss for deep face recognition. In CVPR, 2018.

5

A Appendix

A.1 Effectiveness of Large Margin Prior

When Does It Work? The working assumption of the triplet loss is that the similarity/dissimilarity
between the embedded points can be measured by Euclidean distance. If the embedded points lie
on a nonlinear manifold in the metric space, Euclidean distance cannot reflect their similarity. This
indicates that the embedded points should be linearly separable in the metric space, which suggests
that the triplet loss should work with a linear model such as the softmax classifier in the metric space.

Computational Overhead. The computational overhead of the added triplet loss lies in two aspects:
triplet selection and loss computation. It is well known that online selection of triplets could be
very time-consuming when the training set is large. However, in few-shot learning, the number of
samples for each class is fixed in each update iteration, so we can use an offline strategy for triplet
selection. In fact, we only need to form the triplets once, and then store the parings and use them for
indexing the embeddings in each update. In this way, the computational overhead for triplet selection
is negligible. For the loss computation, the time complexity for each update is O(Ntd) where Nt is
the number of triplets and d is the dimensionality of embeddings. Hence, the computation is efficient
if the embeddings are low-dimensional.

A.2 Large Margin Graph Neural Networks

A.2.1 Graph Neural Networks.

In the training of GNN, each mini-batch consists of multiple episodes, and the number of episodes is
the batch size. For each episode, the meta-train samples are given as:

Dmeta-train = {{(x1, y1), ...(xS , yS)}, {xS+1, yS+1}, {x̃1, x̃2, ..., x̃r} : yi, yS+1 ∈ {1, ..., C}},
(5)

where {(x1, y1), ...(xS , yS)} is the support set with labels and {xS+1, yS+1} is the query set with
only one query. In the semi-supervised setting for few-shot learning, {x̃1, x̃2, ..., x̃r} is the set of
samples without labels. For few-shot learning, r is 0; and for semi-supervised few-shot learning,
r ≥ 1. For each sample, the initial feature vector is given by:

x
(0)
i = (θ(xi);h(yi)),

where θ is a trainable convolutional neural network, and h(·) is a one-hot vector encoding the label
information. Denote by X(0) = [x

(0)
1 , ...,x

(0)
S ,x

(0)
S+1, x̃

(0)
1 , ..., x̃

(0)
r]> the initial feature matrix.

A graph is constructed by taking each sample as a node, and the adjacency matrix Ã(0) is updated by:

Ã
(0)
i,j = MLPθ̃(abs(x(0)

i − x
(0)
j)),

where MLPθ̃(·) is a multilayer perceptron with learnable parameters θ̃ and abs(·) is the absolute
value function. The operator family is formed by A = {Ã(0),1}, where 1 is an all-1’s matrix. The
new features will be obtained by combining the features of its adjacent nodes and then projected by a
projection layer:

X(1) = σ(
∑
B∈A

BX(0)θ
(0)
B),

where θ(0)B ∈ Rd0×d1 is the learnable parameters of the projection layer, d0 is the length of x(0)
i , and

d1 is the length of x(1)
i . This process can be repeated multiple times. After M iterations, we obtain

the final embedding matrix X(M).

To classify the embeddings, GNN uses a parametric softmax classifier. Namely, for C-way learning,
in each training episode, the probability of the query being classified as the k-th class is:

P (k|xS+1) =
exp(w>k fφ(xS+1))∑C
j=1 exp(w

>
j fφ(xS+1))

,

6

where fφ(xS+1) = x
(M)
S+1. For all episodes in a mini-batch, the softmax loss is:

Lsoftmax = −
∑
k

yS+1,k logP (Y∗ = yS+1,k|xS+1,k),

where Y∗ is the predicted label for the query in the k-th episode, xS+1,k is the feature of the query,
and yS+1,k is the ground truth label.

A.2.2 Triplet Selection.

In the training of GNN, each mini-batch consists of multiple episodes. For C-way K-shot learning,
the support set of each episode is formed by sampling K examples from each of the C classes,
resulting in C ×K examples. The label representation of each example is a C-dimensional one-hot
vector. For any two examples, if their label representations are the same, they should be mapped to
the same class, and vice versa. To form the triplets, for each example (anchor) in the support set, we
sample 5 positive examples from the training batch which have the same label representation with the
anchor; and for each positive example, we sample 5 negative examples which have different label
representation with the anchor. Hence, for each anchor example, 25 triplets are formed. For 5-way
5-shot learning, with a batch size of 40, there will be a total of 25, 000 (25× 25× 40) triplets. In our
experiments on Mini-Imagenet, it only takes 0.331s to form the triplets. Since the selection of triplets
only needs to be done once at the beginning of training, it incurs almost no computational overhead.

A.3 Large Margin Prototypical Networks

A.3.1 Prototypical Networks.

PN is constructed based on the following steps. A training set with N labeled examples Dmeta-train =
{(x1, y1), ..., (xN , yN)}, yi ∈ {1, ..., Ctrain} is given. First, randomly sample Nc classes from
{1, ..., Ctrain}, and denote by CNc the set of class indices. Denote by ck the k-th element in CNc
and by Dck the subset of all training samples with yi = ck. For each class in CNc , randomly select
some samples from Dck to form Sk which is a subset of the support set; and randomly select some
other samples from Dck to form Qk which is a subset of the query set, and make sure Sk ∩Qk = ∅.
Then for each class, compute the prototype ck = 1

|Sk|
∑

(xi,yi)∈Sk fφ(xi) where the mapping fφ(·)
is typically a convolutional neural network with learnable parameters φ.

PN uses a non-parametric softmax classifier. Namely, for a query sample xi in Qk, the probability of
it being classified to the k-th class is:

P (k|xi ∈ Qk) =
exp(−d(fφ(xi), ck))∑Nc
j=1 exp(−d(fφ(xi), cj))

, (6)

where d(·, ·) is a metric measuring the distance between any two vectors, which can be cosine distance
or Euclidean distance. For all query samples in an episode, the classification loss is:

Lsoftmax = − 1

Nc

Nc∑
k=1

1

|Qk|
∑

(xi,yi)∈Qk

P (yi|xi). (7)

If d(·, ·) is Euclidean distance, PN is actually a linear model in the embedding space [18]. Since

− ‖ fφ(x)− ck ‖2 = −fφ(x)T fφ(x) + 2cTk fφ(x)− cTk ck

= wT
k fφ(x) + bk + const,

where wk = 2ck and bk = −cTk ck, (6) can be considered as a linear classifier.

A.3.2 Triplet Selection.

The implementation of prototypical networks does not use mini-batch in an update iteration. Take
5-shot learning for example, in one update iteration, for each class, the general practice [18] is to
sample 5 support examples and 15 additional query examples, so the number of samples in each class
is 20. For each sample (anchor) in the support set and the query set, we sample 10 positive examples

7

5-Way
Model Dist 1-shot 5-shot

PN Euclid. 47.98± 0.25% 66.72± 0.21%
L-PN (m = 10) Euclid. 49.47± 0.25% 66.83± 0.21%

PN+normalized triplet Euclid. 50.30± 0.25% 67.13± 0.21%

GNN − 50.33± 0.36% 66.41± 0.63%
L-GNN (m = 10) − 51.08± 0.69% 67.57± 0.66%

GNN+normalized triplet − 50.73± 0.70% 67.28± 0.64%
GNN+normalized contrastive − 50.81± 0.69% 67.49± 0.64%

GNN+normface − 51.41± 0.68% 67.81± 0.64%
GNN+cosface (m = 0.2) − 51.49± 0.69% 66.72± 0.65%
GNN+arcface (m = 0.1) − × 67.21± 0.64%

Table 3: 5-way few-shot learning on Mini-Imagenet. ‘×’: fail to converge.

from the class of anchor; and for each positive sample, we sample 10 negative examples from other
classes. Hence, for each sample, 100 triplets are formed. For 5-way 5-shot learning, with Nc = 20
classes, a total of 40, 000 (100× 20× 20) triplets are formed. In our experiments on Mini-Imagenet,
it only takes 0.118s to form the triplets. Since the selection of triplets only needs to be done once at
the beginning of training, it incurs almost no computational overhead.

A.4 Alternative Loss Functions

We implement and compare several of the aforementioned loss functions for large margin few-shot
learning, including the normalized triplet loss, the normalized contrastive loss [7, 19], the normface
loss [22], the cosface loss [23], and the arcface loss [2]. We test these models for 1-shot and 5-shot
learning on Mini-Imagenet, and the results are summarized in Table 3.

To summarize, the experiments show that all large margin losses can substantially improve the
original few-shot learning model, which demonstrates the benefits of the large margin principle.
Compared with other loss functions, the unnormalized triplet loss has two clear advantages. First, it
is more general and can be easily incorporated into metric-based few-shot learning methods. The
normface loss, the cosface loss, and the arcface loss can not be directly applied to few-shot learning
methods using non-parametric classifiers. Second, it is more robust than other loss functions such as
the normalized triplet loss, the normalized contrastive loss, the cosface loss, and the arcface loss. On
the running time, the computational overheads of these loss functions are all small, similar to that of
the unnormalized triplet loss.

8

	Introduction
	Large Margin Meta-Learning
	Meta-Learning for Few-Shot Classification
	Large Margin Principle
	Model
	Analysis

	Experimental Results
	Conclusions
	Appendix
	Effectiveness of Large Margin Prior
	Large Margin Graph Neural Networks
	Graph Neural Networks.
	Triplet Selection.

	Large Margin Prototypical Networks
	Prototypical Networks.
	Triplet Selection.

	Alternative Loss Functions

