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Abstract

A central goal of unsupervised learning is to acquire representations from unlabeled
data or experience that can be used for more effective learning of downstream tasks
from modest amounts of labeled data. Many prior unsupervised learning works aim
to do so by developing proxy objectives based on reconstruction, disentanglement,
prediction, and other metrics. Instead, we develop an unsupervised meta-learning
method that explicitly optimizes for the ability to learn a variety of tasks from
small amounts of data. To do so, we construct tasks from unlabeled data in an
automatic way and run meta-learning over the constructed tasks. Surprisingly,
we find that, when integrated with meta-learning, relatively simple task construc-
tion mechanisms, such as clustering embeddings, lead to good performance on
a variety of downstream, human-specified tasks. Our experiments across four
image datasets indicate that our unsupervised meta-learning approach acquires a
learning algorithm without any labeled data that is applicable to a wide range of
downstream classification tasks, improving upon the embedding learned by four
prior unsupervised learning methods.

1 Introduction

Unsupervised learning is a fundamental, unsolved problem (Hastie et al., 2009) and has seen promis-
ing results in domains such as image recognition (Le et al., 2013) and natural language understand-
ing (Ramachandran et al., 2017). A central use case of unsupervised learning methods is enabling
better or more efficient learning of downstream tasks by training on top of unsupervised representa-
tions (Reed et al., 2014; Cheung et al., 2015; Chen et al., 2016) or fine-tuning a learned model (Erhan
et al., 2010). However, since the downstream objective requires access to supervision, the objectives
used for unsupervised learning are only a rough proxy for downstream performance. If a central goal
of unsupervised learning is to learn useful representations, can we derive an unsupervised learning
objective that explicitly takes into account how the representation will be used?

The use of unsupervised representations for downstream tasks is closely related to the objective
of meta-learning techniques: finding a learning procedure that is more efficient and effective than
learning from scratch. However, unlike unsupervised learning methods, meta-learning methods
require large, labeled datasets and hand-specified task distributions. These dependencies are major
obstacles to widespread use of these methods for few-shot classification.

To begin addressing these problems, we propose an unsupervised meta-learning method: one which
aims to learn a learning procedure, without supervision, that is useful for solving a wide range of
new, human-specified tasks. With only raw, unlabeled observations, our model’s goal is to learn
a useful prior such that, after meta-training, when presented with a modestly-sized dataset for a
human-specified task, the model can transfer its prior experience to efficiently learn to perform the
new task. If we can build such an algorithm, we can enable few-shot learning of new tasks without
needing any labeled data nor any pre-defined tasks.

†Work done as a visiting student researcher at the University of California, Berkeley.
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Figure 1: Illustration of the proposed unsupervised meta-learning procedure. An out-of-the-box unsupervised
representation is clustered with k-means to construct partitions (k = 4 here), which give rise to classification
tasks. Each task involves distinguishing between examples from N = 2 clusters, with Km-tr = 1 example from
each cluster being a training input. The aim is to produce a learning procedure that can solve these tasks.

The core idea in this paper is that we can leverage unsupervised embeddings to propose tasks for
a meta-learning algorithm, leading to an unsupervised meta-learning algorithm that is particularly
effective as pre-training for human-specified downstream tasks. We instantiate our method with
two meta-learning algorithms and compare to prior state-of-the-art unsupervised learning methods.
Across four image datasets, we find that our method consistently leads to effective downstream
learning of a variety of human-specified tasks without requiring any labels or hand-designed tasks
during meta-learning. We show that, even though our unsupervised meta-learning algorithm trains
for one-shot generalization, one instantiation of our approach performs well not only on few-shot
learning, but also when learning downstream tasks with up to 50 training examples per class. In fact,
some of our results begin to approach the performance of fully-supervised meta-learning techniques
trained with fully-specified task distributions.

2 Unsupervised Meta-Learning

We assume access to an unlabeled dataset D = {xi} during meta-training. After learning from the
unlabeled data, which we will refer to as unsupervised meta-training, we want to apply what was
learned towards learning a variety of downstream, human-specified tasks from a modest amount
of labeled data, potentially as few as a single example per class. These downstream tasks may, in
general, have different underlying classes or attributes (in contrast to typical semi-supervised problem
assumptions), but are assumed to have inputs from the same distribution as the one from which
datapoints in D are drawn. Concretely, we assume that downstream tasks are M -way classification
tasks, and that the goal is to learn an accurate classifier using K labeled datapoints (xk,yk) from
each of the M classes, where K is relatively small (i.e. between 1 and 50).

The unsupervised meta-training phase aligns with the unsupervised learning problem in that it
involves no access to information about the downstream tasks, other than the fact that they are M -way
classification tasks, for variable M upper-bounded by N . The upper bound N is assumed to be
known during unsupervised meta-training, but otherwise, the values of M and K are not known a
priori. As a result, the unsupervised meta-training phase needs to acquire a sufficiently general prior
for applicability to a range of classification tasks with variable quantities of data and classes. This
problem definition is our prototype for a practical use-case in which a user would like to train an
application-specific image classifier, but does not have an abundance of labeled data.

We aim to construct classification tasks from the unlabeled data and then learn how to efficiently learn
these tasks. If such unsupervised tasks are adequately structured and diverse, then meta-learning
these tasks should enable fast learning of new, human-provided tasks. In the unsupervised learning
literature, common distance functions operating in learned embedding spaces have been shown to
qualitatively correspond to semantic meaning (e.g., see Cheung et al. (2015); Bojanowski & Joulin
(2017); Donahue et al. (2017)). We consider using such an embedding space to construct tasks
with internal structure. We note that, while a given representation may not be directly suitable for
highly-efficient learning of new tasks (which would require the representation to be precisely aligned
or adaptable to the classes of those tasks), we can still leverage it for the construction of structured
and diverse tasks, a process for which requirements are less strict.

We call our method clustering to automatically construct tasks for unsupervised meta-learning
(CACTUs). We detail the task construction algorithm in Algorithm 1, and provide an illustration of
the complete unsupervised meta-learning approach for classification in Figure 1.
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Algorithm 1 CACTUs for classification
1: procedure CACTUS(E ,D, P, k, T,N,Km-tr, Q)
2: Run embedding learning algorithm E on D and produce embeddings {zi} from observations {xi}.
3: Run k-means on {zi} P times (with random scaling) to generate a set of partitions {Pp = {Cc}p}.
4: for t from 1 to the number of desired tasks T do
5: Sample a partition P uniformly at random from the set of partitions {Pp}.
6: Sample a cluster Cn uniformly without replacement from P for each of the N classes desired for a

task.
7: Sample an embedding zr without replacement from Cn for each of the R = Km-tr +Q training and

query examples desired for each class, and record the corresponding datapoint xn,r .
8: Sample a permutation (`n) of N one-hot labels.
9: Construct Tt = {(xn,r, `n)}.

10: return {Tt}

3 Experiments

In this section, we present an abridged set of experiments. For the full set, including results on two
more datasets and unsupervised learning methods, as well as ablations on the task construction and
the problem setting, see Hsu et al. (2018). We instantiate CACTUs with embedding-learning methods
bidirectional GAN (BiGAN) (Donahue et al., 2017) and DeepCluster (Caron et al., 2018), and
meta-learning methods model-agnostic meta-learning (MAML) (Finn et al., 2017) and prototypical
networks (ProtoNets) (Snell et al., 2017). We train on unlabeled training splits of the miniImageNet
and CelebA datasets, and evaluate on tasks derived from the labeled testing splits. We compare to
i) four non-meta-learning algorithms that leverage the embeddings directly, ii) fitting a model from
scratch using the MAML architecture for each downstream task, and iii) a meta-learning oracle which
trains on tasks derived from labeled versions of the training splits.

As discussed by Oliver et al. (2018), keeping proper experimental protocol is particularly important
when evaluating unsupervised and semi-supervised learning algorithms. Our foremost concern is
to avoid falsely embellishing the capabilities of our approach by overfitting to the specific datasets
and task types that we consider. To this end, we adhere to two key principles. We do not perform
any architecture engineering: we use architectures from prior work as-is, or lightly adapt them to
our needs if necessary. We also keep hyperparameters related to the unsupervised meta-learning
stage as constant as possible across all experiments, including the MAML and ProtoNets model
architectures as well as the number of clusters used for CACTUs. We assume knowledge of an
upper bound on the number of classes N present in each downstream meta-testing task for each
dataset. However, regardless of the number of shots K, we do not assume knowledge of K during
unsupervised meta-learning. We use N -way 1-shot tasks during meta-training, but test on larger
values of K during meta-testing. When we experiment with the embedding-plus-supervised-learning
methods used as fair comparisons to unsupervised meta-learning, we err on the side of providing
more supervision and data than technically allowed. Specifically, we separately tune the supervised
learning hyperparameters for each dataset and each task difficulty on the labeled version of the
meta-validation split.

Results are summarized in Table 1. CACTUs-MAML consistently yields a learning procedure
that results in more successful downstream task performance than all other unsupervised methods,
including those that learn on top of the embedding that generated meta-training tasks. However, as
noted by Snell et al. (2017), ProtoNets perform best when meta-training shot and meta-testing shot
are matched; this characteristic prevents ProtoNets from improving upon DeepCluster for 50-shot
miniImageNet. We attribute the success of CACTUs-based meta-learning over the embedding-based
methods to two factors: its practice in distinguishing between many distinct sets of clusters from
modest amounts of signal, and the underlying classes of the testing split data being out-of-distribution.
In principle, the latter factor is solely responsible for the success over embedding cluster matching.
This algorithm uses the downstream task’s training examples to label training split clusters, and can
be viewed as a meta-learner on embeddings that trivially obtains perfect accuracy (via memorization)
on the meta-training tasks. The same factor also helps explain why training from standard network
initialization is, in general, competitive with directly using the task-generating embedding as a
representation.
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Figure 2: Examples of three DeepCluster-embedding cluster-based classes (a) and a 2-way 5-shot evaluation
task (b) for two datasets. (a) Some of the clusters correspond well to unseen labels (top left, bottom left). Others
exhibit semantic meaning despite members not being grouped as such in the labeled version of the dataset (top
middle: pair of objects, bottom middle: white hat). Still others are uninterpretable (top right) or are based on
image artifacts (bottom right). (b) We evaluate unsupervised learning based on the ability to learn downstream
test tasks with held-out images and underlying classes.

miniImageNet CelebA
Algorithm (way, shot) (5, 1) (5, 5) (5, 20) (5, 50) (2, 5)

Training from scratch 27.59% 38.48% 51.53% 59.63% 63.19%

BiGAN knn-nearest neighbors 25.56% 31.10% 37.31% 43.60% 56.15%
BiGAN linear classifier 27.08% 33.91% 44.00% 50.41% 58.44%
BiGAN MLP with dropout 22.91% 29.06% 40.06% 48.36% 56.26%
BiGAN cluster matching 24.63% 29.49% 33.89% 36.13% 56.20%
BiGAN CACTUs-MAML (ours) 36.24% 51.28% 61.33% 66.91% 74.98%
BiGAN CACTUs-ProtoNets (ours) 36.62% 50.16% 59.56% 63.27% 65.58%

DeepCluster knn-nearest neighbors 28.90% 42.25% 56.44% 63.90% 61.47%
DeepCluster linear classifier 29.44% 39.79% 56.19% 65.28% 59.57%
DeepCluster MLP with dropout 29.03% 39.67% 52.71% 60.95% 60.65%
DeepCluster cluster matching 22.20% 23.50% 24.97% 26.87% 51.51%
DeepCluster CACTUs-MAML (ours) 39.90% 53.97% 63.84% 69.64% 73.79%
DeepCluster CACTUs-ProtoNets (ours) 39.18% 53.36% 61.54% 63.55% 74.15%

Oracle-MAML (control) 46.81% 62.13% 71.03% 75.54% 87.10%
Oracle-ProtoNets (control) 46.56% 62.29% 70.05% 72.04% 85.13%

Table 1: Unsupervised learning on miniImageNet and CelebA, averaged over 1000 downstream classification
tasks. CACTUs experiments use k = 500 for each of P = 50 partitions. Cluster matching uses the same k.

4 Discussion

We demonstrate that meta-learning on tasks produced using a simple mechanism based on unsuper-
vised representations improves upon the utility of these representations in learning downstream tasks.
We empirically show that this holds across instances of datasets, task difficulties, and unsupervised
representations, while fixing key hyperparameters across all experiments. Since MAML and Pro-
toNets produce nothing more than a learned representation, our method can be viewed as deriving,
from a previous unsupervised representation, a new representation particularly suited for learning
downstream tasks. While we have demonstrated that k-means is a broadly useful mechanism for
constructing tasks from embeddings, it is unlikely that combinations of k-means clusters in learned
embedding spaces are universal approximations of arbitrary class definitions. An important direction
for future work is to find examples of datasets and human-designed tasks for which CACTUs-based
meta-learning results in ineffective downstream learning. Beyond visual classification tasks, the
notion of using unsupervised pre-training is generally applicable to a wide range of domains, includ-
ing regression, speech (Oord et al., 2018), language (Howard & Ruder, 2018), and reinforcement
learning (Shelhamer et al., 2017). Hence, our unsupervised meta-learning approach has the potential
to improve unsupervised representations for a variety of such domains, an exciting avenue for future
work.
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