
Transferring Knowledge across
Learning Processes

Sebastian Flennerhag⇤
The Alan Turing Institute

sflennerhag@turing.ac.uk

Pablo G. Moreno
Amazon, Cambridge, UK
morepabl@amazon.com

Neil D. Lawrence
Amazon, Cambridge, UK
lawrennd@amazon.com

Andreas Damianou
Amazon, Cambridge, UK
damianou@amazon.com

1 Introduction

In complex transfer learning scenarios new tasks might not be tightly linked to previous tasks.
Approaches that transfer information contained only in the final parameters of a source model will
therefore struggle [9, 1]. Instead, transfer learning at a higher level of abstraction is needed. We
propose Leap, a framework that achieves this by transferring knowledge across learning processes.
We frame transfer learning as a meta learning problem with respect to the learning process [22, 7,
21, 19, 5, 26, 8], and associate each task with a manifold. We characterize how the training process
travels from initialization to final parameters on this manifold, and construct a meta learning objective
that learns an initialization that minimizes the expected length of this path.

As the training process grows longer in terms of the distance traversed on the loss surface (fig. 1),
the geometry of this surface grows increasingly important. When adapting to a new task through a
single or a handful of gradient steps, the geometry can largely be ignored. In contrast, for hundreds or
thousands of gradient updates, it is the dominant feature of the training process. Our proposed method,
Leap, scales meta learning beyond few-shot learning [11, 19, 8]. It is a light-weight framework that
leverages only information obtained during training and can be computed on the fly at negligible
cost. Leap outperforms competing methods, both in meta learning and transfer learning, on a set of
computer vision tasks. Finally, we show that Leap transfers knowledge across learning processes in
demanding reinforcement learning environments (Atari) involving millions of gradient steps.

2 Transferring Knowledge over Learning Processes

2.1 Gradient Paths on Task Manifolds

Our framework is based on the idea that transfer learning can be achieved by leveraging information
contained across similar learning processes. Exploiting that this information is encoded in the
geometry of the loss surface, we leverage geometrical quantities to facilitate the learning process with
respect to new tasks. Given a learning objective f that consumes input x 2 Rm and target y 2 Rc

and maps a parameterization ✓ 2 Rn to a scalar loss value, we have the gradient descent update as

✓i+1 = ✓i � ↵iSirf(✓i). (1)

We assume this process converges to some stationary point ✓? after K gradient steps. To distinguish
different learning processes originating from the same initialization, we need a notion of their

⇤Work done while at Amazon.

2nd Workshop on Meta-Learning at NeurIPS 2018, Montréal, Canada.

✓0 ⌧

 0
⌧

 ⌧ 0

 0
⌧ 0 4

⌧

 3
⌧

 2
⌧

 1
⌧

 0
⌧

✓3⌧

✓2⌧
✓1⌧

✓0⌧

Figure 1: Left: illustration of Leap (algorithm 1) for two tasks, ⌧ and ⌧ 0. From an initialization ✓0, the
learning process of each task generates gradient paths, ⌧ and ⌧ 0 , which Leap uses to minimize the
expected path length. Iterating the process, Leap converges to a locally Pareto optimal initialization.
Right: the pull-forward objective (eq. 5) used to minimize the expected gradient path length. Any
gradient path ⌧ = { i

⌧}
K⌧
i=1 acts on ✓0 by pulling each ✓i⌧ towards i+1

⌧ .

length. The longer the process, the worse the initialization is (conditional on reaching equivalent
performance, discussed further below). Measuring the Euclidean distance between initialization and
final parameters is misleading as it ignores the actual path taken. This becomes crucial when we
compare paths from different tasks, as gradient paths from different tasks can originate from the same
initialization and converge to similar final parameters, but take very different paths. Therefore, to
capture the length of a learning process we must associate it with the loss surface it traversed.

The process of learning a task can be seen as a curve on a specific task manifold M . We exploit that,
by definition, any learning process traverses the loss surface of f and propose a framework for transfer
learning that aims to minimize the expected length of gradient descent paths across task manifolds.
In doing so, the meta objective intrinsically balances local geometries across tasks and encourages
an initialization that makes the learning process as short as possible. The length (or energy) of any
curve � : [0, 1] 7!M is defined by accumulating infinitesimal changes along the trajectory, detailed
in appendix A. To measure the length, we need a Riemann metric on the manifold; for the loss
surface the induced Riemann metric is the standard inner product. Other Riemann metrics give rise to
different manifold structures, possibly with information geometric interpretations [4, 15, 18, 14].

To measure the length of a learning process, we note that gradient descent can be seen as a discrete
approximation to the scaled gradient flow ✓̇(t) = �S(t)rf(✓(t)). This flow describes a curve that
originates in �(0) = (✓0, f(✓0)) and follows the scaled gradient at each point. We refer to this curve
as the gradient path from ✓0 on M with approximate length or energy given by

dp(✓
0,M) =

K�1X

i=0

k�i+1 � �ikp2, p 2 {1, 2}. (2)

We write d when the distinction between the length or energy metric is immaterial. Importantly,
d involves only terms seen during task training. We exploit this later when we construct the meta
gradient, enabling us to perform gradient descent on the meta objective at negligible cost (eq. 8).
We now turn to the transfer learning setting, where we face a set of tasks, each with a distinct task
manifold. Our framework is built on the idea that we can transfer knowledge across learning processes
via the local geometry by aggregating information obtained along observed gradient paths. As such,
Leap finds an initialization from which learning converges as rapidly as possible in expectation.

2.2 Meta Learning across Task Manifolds

Formally, we define a task ⌧ = (f⌧ , p⌧ , u⌧) as the process of learning to approximate the relationship
x 7! y through samples from the data distribution p⌧ (x, y). This process is defined by the gradient
update rule u⌧ (as defined in eq. 1), applied K⌧ times to minimize the task objective f⌧ . Thus, a learn-
ing process starts at ✓0⌧ = ✓0 and progresses via ✓i+1

⌧ = u⌧ (✓i⌧) until ✓K⌧
⌧ is obtained. The sequence

{✓i⌧}
K⌧
i=0 defines an approximate gradient path on the task manifold M⌧ with distance d(✓0;M⌧).

Because the gradient path length does not distinguish between the generalizing performance at limit
points, it is necessary to introduce a feasibility constraint to ensure only initializations with some
minimum level of performance are considered. We leverage that transfer learning never happens in a
vacuum; we always have a second-best option. Starting from this “second-best” initialization, 0,

2

Algorithm 1 Leap: Transferring Knowledge over Learning Processes

Require: p(⌧), ⌧ = (f⌧ , p⌧ , u⌧): distribution over tasks
Require: �: step size

1: randomly initialize ✓0
2: while not done do
3: rF 0: initialize meta gradient
4: sample task batch B from p(⌧)
5: for all ⌧ 2 B do
6: 0

⌧ ✓0 initialize task baseline
7: for all i 2 {0, . . . ,K⌧�1} do
8: i+1

⌧ u⌧ (i
⌧): update baseline

9: ✓i⌧ i
⌧ : follow baseline (since 0

⌧ = ✓0)
10: increment rF using the pull-forward gradient (appendix C)
11: end for
12: end for
13: ✓0 ✓0 � �

| B |rF : update initialization
14: end while

gives us the level of performance we would otherwise obtain on each task. This provides us with
an upper bound: a candidate solution ✓0 has to satisfy f⌧ (✓K⌧

⌧) f⌧ (K⌧
⌧) for every task in p(⌧).

Taking this requirement as our feasibility constraint, we obtain the canonical meta-objective

min
✓0

F (✓0) = E⌧⇠p(⌧)

⇥
d(✓0;M⌧)

⇤

s.t. ✓i+1
⌧ = u⌧ (✓

i
⌧), ✓0⌧ = ✓0,

✓0 2 ⇥ = \⌧
�
✓0

�� f⌧ (✓K⌧
⌧) f⌧ (

K⌧
⌧)

.

(3)

2.3 Leap

Solving eq. 3 naïvely requires training to convergence on each task to evaluate the feasibility
constraint, which can be very costly. Fortunately, because we have access to 0, we can solve eq. 3
more efficiently by obtaining gradient paths ⌧ = { i

⌧}
K⌧

i=0 from 0 for each task ⌧ in a batch
B. These provide a set of baselines = { ⌧}⌧2B that we can use to incrementally improve the
initialization with respect to. This improved initialization converges to the same limit points, but
with shorter expected gradient path distances (theorem 1). As such, it becomes the new second-best
option; Leap (algorithm 1) repeats this process, ultimately finding a solution to the canonical meta
objective. Formally, we use the baselines to modify the gradient path distance metric in eq. 2 by
freezing the forward point �i+1

⌧ in all norms,

d̄p(✓
0;M⌧ , ⌧) =

K⌧�1X

i=0

k�̄i+1
⌧ � �i⌧k

p
2, (4)

where �̄i⌧ = (i
⌧ , f(

i
⌧)) represents the frozen forward point from the baseline and �i⌧ = (✓i⌧ , f(✓

i
⌧))

the point on the gradient path originating from ✓0. This surrogate distance metric directly encodes
the feasibility constraint; optimizing ✓0 with respect to therefore pulls the initialization forward
along each task-specific gradient path in an unconstrained variant of eq. 3 that replaces ⇥ with ,

min
✓0

F̄ (✓0;) = E⌧⇠p(⌧)

⇥
d̄(✓0;M⌧ , ⌧)

⇤
,

s.t. ✓i+1
⌧ = u⌧ (✓

i
⌧), ✓0⌧ = ✓0.

(5)

We refer to eq. 5 as the pull-forward objective. Leap therefore produces a sequence of candidate
solutions to eq. 3, all in ⇥, with incrementally shorter gradient paths. In principle, F̄ can be evaluated
for any ✓0, but a more efficient strategy is to evaluate ✓0 at 0. In this case, d̄ = d, so that F̄ = F .

3

0 100 200 300 400 500
Training steps

0

1

2

3

4

T
ra

in
in

g
lo

ss

1 5 10 15 20 25 30
Number of pretraining tasks

0.1

0.2

0.3

0.4

A
U

C

Leap

Finetuning†

Reptile

MAML�

No pretraining

Figure 2: Transfer learning on Omniglot. Left: Evolution of training curves during meta training of
Leap. Right: AUC across number of pretraining tasks. ⇤Author’s suggested first-order approximation;
†multi-headed finetuning; Shading: standard deviation across 10 seeds.

Theorem 1 (Pull-forward). Let 0
0 2 ⇥ be given and define a sequence of initializations { 0

s}s2N
by 0

s+1 = 0
s � �srF̄ (0

s ; s). For �s > 0 sufficiently small, there exist learning rates schedules
{↵i

⌧}
K⌧
i=1 for all tasks such that 0

k!1 is a limit point in ⇥.

Proof; see appendix B. Crucially, when F is evaluated at 0, an approximate meta gradient rF can
be computed analytically using only terms already computed during the task training. As such, Leap
can be computed on the fly during training at negligible cost. By explicitly taking the task geometry
into account, Leap outperforms competing methods, both in meta learning and transfer learning, and
can scale to learning processes that involves millions of gradient steps.

3 Empirical Results

We conduct three experiments in increasingly complex transfer learning environments. We measure
transfer learning in terms of final test error and area under the error curve on the training set.

Omniglot: We transfer knowledge between alphabets in Omniglot [12], varying the number of
pretraining tasks from 1 to 30, holding out 10 tasks for evaluation. We compare against no pretraining,
finetuning, first-order approximation of MAML [8], and Reptile [17]. See appendix F for details.
The gap between Leap and other meta learning frameworks is large; Leap is in fact the only meta
learner to outperform finetuning. When pretraining on more than 4 tasks, Leap achieves superior
performance and the performance margin grows with the number of pretraining tasks (fig. 2).

Multi-CV: We consider a set of computer vision datasets as tasks and pretrain on all but one, which
is held out for final evaluation. For details and results see appendix G. This is a more challenging
setting both due to greater diversity and complexity among tasks. Leap outperforms baselines on all
but one transfer learning task, where any form of pretraining results in worse performance.

Atari: To demonstrate that Leap can scale to large problems, we apply it to agents playing Atari 2600
games [6]. We use a variant of the actor-critic architecture for all experiments [25]; see appendix H
for details. We train on each task in the meta-batch for five million training steps, accumulating the
meta gradient as in algorithm 1. We train Leap for 100 meta gradient steps, which is sufficient to
see a difference on a held-out set of games. Leap learns a useful policy significantly faster and more
consistently than a random initialization fig. 3.

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Alien

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

AirRaid

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

SpaceInvaders

Figure 3: Mean normalized episode scores on Atari games across training steps. Scores are reported
as moving average over 500 episodes. Shaded regions depict two standard deviations across ten
seeds. Leap (orange) generally outperforms a random initialization (blue). While AirRaid is in the
pretraining set, neither Alien nor SpaceInvader is.

4

References
[1] A. Achille, T. Eccles, L. Matthey, C. P. Burgess, N. Watters, A. Lerchner, and I. Higgins.

Life-long disentangled representation learning with cross-domain latent homologies. arXiv
preprint arXiv:1808.06508, 2018.

[2] J. H. Ahlberg, E. N. Nilson, and J. L. Walsh. The Theory of Splines and Their Applications.
Academic Press, 1967. p. 51.

[3] S.-I. Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

[4] S.-i. Amari and H. Nagaoka. Methods of information geometry, volume 191. American
Mathematical Society, 2007.

[5] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford,
and N. De Freitas. Learning to learn by gradient descent by gradient descent. In Advances in
Neural Information Processing Systems, 2016.

[6] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

[7] Y. Bengio, S. Bengio, and J. Cloutier. Learning a synaptic learning rule. Université de Montréal,
Département d’informatique et de recherche opérationnelle, 1991.

[8] C. Finn, P. Abbeel, and S. Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks. In International Conference on Machine Learning, 2017.

[9] I. Higgins, A. Pal, A. A. Rusu, L. Matthey, C. P. Burgess, A. Pritzel, M. Botvinick, C. Blundell,
and A. Lerchner. Darla: Improving zero-shot transfer in reinforcement learning. arXiv preprint
arXiv:1707.08475, 2017.

[10] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations, 2015.

[11] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum. One shot learning of simple visual
concepts. In Proceedings of the Annual Meeting of the Cognitive Science Society, 2011.

[12] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[13] I. Loshchilov and F. Hutter. SGDR: stochastic gradient descent with restarts. In International
Conference on Learning Representations, 2017.

[14] K. Luk and R. Grosse. A coordinate-free construction of scalable natural gradient. arXiv
preprint arXiv:1808.10340, 2018.

[15] J. Martens. Deep learning via hessian-free optimization. In International Conference on
Machine Learning, 2010.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[17] A. Nichol, J. Achiam, and J. Schulman. On First-Order Meta-Learning Algorithms. arXiv
preprint ArXiv:1803.02999, 2018.

[18] R. Pascanu and Y. Bengio. Revisiting natural gradient for deep networks. In International
Conference on Learning Representations, 2014.

[19] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In International
Conference on Learning Representations, 2016.

[20] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu,
R. Pascanu, and R. Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671,
2016.

5

[21] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with
memory-augmented neural networks. In International Conference on Machine Learning, 2016.

[22] J. Schmidhuber. Evolutionary principles in self-referential learning. PhD thesis, Technische
Universität München, 1987.

[23] J. Schwarz, J. Luketina, W. M. Czarnecki, A. Grabska-Barwinska, Y. W. Teh, R. Pascanu, and
R. Hadsell. Progress & compress: A scalable framework for continual learning. In International
Conference on Machine Learning, 2018.

[24] J. Serrà, D. Surís, M. Miron, and A. Karatzoglou. Overcoming catastrophic forgetting with hard
attention to the task. In International Conference on Machine Learning, 2018.

[25] R. S. Sutton, A. G. Barto, et al. Reinforcement learning: An introduction. MIT Press, Cambridge,
1998.

[26] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching Networks for
One Shot Learning. In Advances in Neural Information Processing Systems, 2016.

6

