
Learned optimizers that outperform SGD on
wall-clock and test loss

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, Jascha Sohl-dickstein
Google Brain

{lmetz,nirum,jeremynixon,cdfreeman,jaschasd}@google.com

Abstract

Deep learning has shown that learned functions can dramatically outperform hand-
designed functions on perceptual tasks. Analogously, this suggests that learned
optimizers may similarly outperform current hand-designed optimizers, especially
for specific problems. However, learned optimizers are notoriously difficult to
train and have yet to demonstrate wall-clock speedups over hand-designed op-
timizers, and thus are rarely used in practice. Typically, learned optimizers are
trained by truncated backpropagation through an unrolled optimization process.
The resulting gradients are either strongly biased (for short truncations) or have
exploding norm (for long truncations). In this work we propose a training scheme
which overcomes both of these difficulties, by dynamically weighting two unbi-
ased gradient estimators for a variational loss on optimizer performance. This
allows us to train neural networks to perform optimization faster than learning
rate tuned first-order methods. Moreover, by training the optimizer against vali-
dation loss (as opposed to training loss), we are able to learn optimizers that train
networks to better generalization than first order methods. We demonstrate these
results on problems where our learned optimizer trains convolutional networks in
a fifth of the wall-clock time compared to learning rate tuned first-order methods,
and with an improvement in validation loss.

1 Introduction

Gradient based optimization is a cornerstone of modern machine learning. Improvements in op-
timization have been critical to recent successes on a wide variety of problems. In practice, this
typically involves analysis and development of hand-designed optimization algorithms [1, 2, 3, 4].
These algorithms generally work well on a wide variety of tasks, and are tuned to specific problems
via hyperparameter search. On the other hand, a complementary approach is to learn the optimiza-
tion algorithm [5, 6, 7, 8, 9, 10, 11]. That is, to learn a function to perform optimization, targeted to
particular problems of interest. In this way, the algorithm may learn task specific structure, enabling
dramatic performance improvements over more general optimizers.

However, training learned optimizers is notoriously difficult. Existing work in this vein can be clas-
sified into two broad categories. On one hand are black-box methods such as evolution [12, 13],
random search [14], reinforcement learning [11, 15, 10], or Bayesian optimization [16]. However,
these methods scale poorly with the number of optimizer parameters. The other approach is to use
first-order methods, by computing the gradient of some measure of optimizer effectiveness with
respect to the optimizer parameters. Computing these gradients is costly as we need to iteratively
apply the learned update rule, and then backpropagate through these applications, a technique com-
monly referred to as “unrolled optimization” [17, 18]. To address the problem of backpropagation
through many optimization steps (analogous to many timesteps in recurrent neural networks), many
works make use of truncated backpropagation though time (TBPTT) to partition the long unrolled
computational graph into separate pieces [19, 20]. This yields computational savings, but at the

2nd Workshop on Meta-Learning at NeurIPS 2018, Montréal, Canada.



cost of increased bias [20] and/or exploding gradients due to many iterated update steps [21, 22].
Existing methods address the bias at the cost of increased variance or computational complexity
[23, 24, 20]. Previous techniques for training RNNs via TBPTT have thus far not been effective for
training optimizers.

In Appendix A we analytically and experimentally explore the debilitating role of bias and exploding
gradients on training optimizers. We then show how these pathologies can be remedied by optimiz-
ing the parameters of a distribution over the optimizer parameters, known as variational optimiza-
tion [25] (§2). We define two unbiased gradient estimators for this objective: a reparameterization
based gradient, and evolutionary strategies [26, 27]. By dynamically reweighting the contribution of
these two gradient estimators, we are able to avoid strongly biased or exploding gradients, and thus
stably and efficiently train learned optimizers.

We demonstrate the utility of this approach by training a learned optimizer to target optimization of
convolutional networks on image classification (§3). On the targeted task distribution, this learned
optimizer achieves better test loss, and is five times faster in wall-clock time, compared to learning
rate tuned hand-designed optimizers such as SGD+Momentum, RMSProp, and ADAM (Figure 1).
While not the explicit focus of this work, we also find that the learned optimizer demonstrates
promising generalization ability on out of distribution tasks (Figure 3).

0 40 80 120

Inner wall-clock (s)

0.0

0.5

1.0

1.5

2.0

T
ra

in
 l
o
ss

(a)

Learned (train outer-objective)

Learned (valid outer-objective)

Momentum

Adam

RMSProp

0 40 80 120

Inner wall-clock (s)

0.8

1.2

1.6

2.0

2.4

T
e
st

 l
o
ss

(b)

Train Test

0.0

0.3

0.6

Lo
ss

 i
m

p
ro

v
e
m

e
n
t

(c)

Figure 1: Learned optimizers outperform existing optimizers on training loss (a) and test loss (b).
(a,b) Training and test curves for a three layer CNN, trained on a subset of 32x32 imagenet classes
not seen during outer-training of the optimizer. Dashed lines indicate the best achieved performance
over an additional 130 seconds. We show two learned optimizers – one trained to minimize training
loss, and the other trained to minimize validation loss on the inner-problem. We compare against
Adam, RMSProp, and SGD+Momentum, individually tuning learning rate for the train and test loss
(Panel (a) and (b), respectively). On training loss (a), our learned optimizer approaches zero training
loss, and achieves it’s smallest loss values in less than one quarter the wall-clock time. On test
loss (b), our learned optimizer achieves a lower minimum, in roughly one third the wall-clock time.
Shaded regions correspond to 25 and 75 percentile over five random initializations of the CNN.
For plots showing performance in terms of step count rather than wall clock (where we achieve
even more dramatic speedups), and for more task instances, see Appendix E. (c) Distribution of
the performance difference between the learned optimizers and a learning rate tuned baseline of
either Adam, RMSProp, or Momentum (loss improvement). Positive values indicate performance
better than baseline. We show training and test losses for the outer-testing task distribution. On the
majority of tasks, the learned optimizers outperform the baseline.

2 Towards stable training of learned optimizers

Our goal is to learn an optimizer which is well suited to some set of target optimization tasks.
Learning an optimizer can be thought of as a bi-level optimization problem [28], with inner and
outer levels. The inner minimization consists of optimizing of the weights of a target problem by the
repeated application of a learned update rule. The update rule is a parameterized function that defines
how to map the weights at iteration t to iteration t+1. In the outer loop, these optimizer parameters
are updated so as to minimize some measure of optimizer performance, the outer-objective. For a
more detailed problem setup, see Appendix A.

To perform outer-training, we employ gradient descent through this unrolled optimization. Com-
puting outer-gradients through unrolled optimization procedures has been shown to produce poorly
conditioned loss surfaces [18]. We expand on this in Appendix A. To optimize in such a space one

2



0.0 0.3 0.6

Inner problems trained (millions)

10-10

100

1010

1020

G
ra

d
ie

n
t 

v
a
ri

a
n
ce

(a)

ES

RP

0.0 0.1 0.2 0.3 0.4 0.5

Inner problems trained (millions)

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

in
 i
n
n
e
r-

lo
ss

 a
t 

1
0

k(b)

0.0 0.2 0.4 0.6 0.8 1.0

Iner problems trained (millions)

0.8

1.2

1.6

2.0

2.4

V
a
lid

 i
n
n
e
r-

lo
ss

 a
t 

1
0

k(c)

Figure 2: (a) As outer-training progresses, the variance of the reparameterization gradient estimator
grows, while the variance of the ES estimator remains constant. (b,c) Performance after 10k iter-
ations of inner-training for different outer-parameters over the course of outer-training. Each line
represents a different random initialization of outer-parameters. Models are trained targeting the
train outer-objective (b), and the validation outer-objective (c). Dashed lines indicate performance
of learning rate tuned Adam. Model’s in orange are the best performing and used in §3.

might intuitively want to smooth the outer-objective loss surface. To do this, instead of optimiz-
ing the outer-objective directly, we instead optimize a smoothed outer-loss: Eθ̃∼N (θ,σ2I)

[
L
(
θ̃
)]

,

where L (·) is the outer-objective and σ2 is a fixed variance (set to 0.01) which determines the degree
of smoothing. This is the same approach taken in variational optimization [25]. We can construct
two different unbiased gradient estimators for L (θ): one via the reparameterization trick [29], and
one via the log-derivative trick similar to what is done in evolutionary strategies (ES) [30]. Follow-
ing the insight from [22] in the context of reinforcement learning, we combine these estimates using
inverse variance weighting [31]. When outer-training learned optimizes we find the variances of
these estimators can differ by as many as 20 orders of magnitude (Figure 2a). This merged estimator
addresses this by having at most the lowest of the two variances.

Finally, an increasing curriculum over steps per truncation is used over the course of outer-training.
This introduces bias early in training, but also allows for far more frequent outer-weight updates,
resulting in much faster outer-training in terms of wall-clock time. The full outer-training algorithm
is described in Appendix C.

3 Experiments

3.1 Learned Optimizer Setup

The optimizer architecture used in all experiments consists of a simple fully connected neural net-
work, with one hidden layer containing 32 ReLU units applied to each target problem weight in-
dependently. The problem that each learned optimizer is trained against consists of training a three
layer convolutional neural network (32 units per layer) inner-trained for ten thousand inner-iterations
on 32x32x3 image classification tasks. We split the Imagenet dataset [32] by class into 700 training
and 300 validation classes, and sample training and validation problems by sampling 10 classes. See
Appendix D for further details.

3.2 Outer-training

Figure 2 shows the performance of the optimizer (averaged over 40 randomly sampled outer-train
and outer-test inner-problems) while outer-training. Despite the stability improvements described in
the last section, there is still variability in optimizer performance over random initializations of the
optimizer parameters. We use training loss to select the best model and use this in the remainder of
the evaluation.

3.3 Learned optimizer performance

Figure 1 shows performance of the learned optimizer, after outer-training, compared against other
first-order methods on a sampled validation task (classes not seen during outer-training). For all
first-order methods, we report the best performance after tuning the learning rate by grid search
using 11 values over a logarithmically spaced range from 10−4 to 10. Since our optimizer has direct

3



0 5000 10000

Inner steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ra

in
 l
o
ss

Learned (train outer-objective)

Learned (valid outer-objective)

Momentum

Adam

RMSProp

0 5000 10000

Inner steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
e
st

 l
o
ss

Figure 3: Despite outer-training only targeting optimizer performance on a three layer convolu-
tional network trained on 10 way classification problems derived from 32x32 Imagenet, the learned
optimizers demonstrate some ability to generalize to new architectures and datasets. Plot shows
train and test performance on a six layer convolutional neural network trained on 28x28 MNIST.
We compare against learning rate tuned Adam, RMSProp, and SGD+Momentum. Note that the
optimizer trained to target validation loss generalizes better than the one trained to target train loss.
See Appendix F for experiments testing generalization to additional tasks.

access to the model parameter values in addition to the gradients, it is possible for it to learn to
act as a parameter regularizer. It would be informative in future experiments to compare against
baselines where we perform a hyperparameter search over model regularization terms in addition
to optimizer hyperparameters. When outer-trained against the training outer-objective, Ltrain, we
achieve faster convergence on training loss by a factor of 5x (Figure 1a), but poor performance on
test loss (Figure 1b). However, when outer-trained against the validation outer-objective, Lvalid, we
also achieve faster optimization and reach a lower test loss (Figure 1b).

Figure 1 summarizes the performance of the learned optimizer across many sampled validation
tasks. It shows the difference in final test loss between the best first-order method and the learned
optimizer. We choose the best first-order method by selecting the best test performance over RM-
SProp, SGD+Momentum, and Adam. This learned optimizer (which does not require tuning on the
validation tasks) outperforms the best baseline optimizer 98% of the time.

Although the focus of our approach was not generalization, we find that our learned optimizer
nonetheless generalizes to varying degrees to dissimilar datasets, different numbers of units per
layer, different number of layers, and even to fully connected networks. In Figure 3 we show perfor-
mance on a six layer convolutional neural network trained on MNIST. Despite the different number
of layers, different dataset, and different input size, the learned optimizers still reduces the loss, and
in the case of the validation outer-objective trains faster to a lower test loss. We further explore the
limits of generalization of our learned optimizer on additional tasks in Appendix F.

4 Discussion

In this work we demonstrate two difficulties when training learned optimizers: “exploding” gradi-
ents, and a bias introduced by truncated backpropagation through time. To combat this, we construct
a variational bound of the outer-objective and minimize this via a combination of reparameterization
and ES style gradient estimators. By using our combined estimator and a curriculum over truncation
step we are able to train learned optimizers that achieve more than five times speedup on wallclock
time as compared to existing optimizers. In this work, we focused on applying optimizers to a re-
stricted family of tasks. While useful on its own right (e.g. rapid retraining of models on new data),
future work will explore the limits of “no free lunch” [33] to understand how and when learned
optimizers generalize across tasks.

Acknowledgments

We would like to thank Alex Alemi, Samy Bengio, Brian Cheung, Chelsea Finn, Hugo Larochelle,
Ben Poole, George Tucker, Olga Wichrowska, as well as the rest of the Brain Team for there helpful
conversations that helped shape this work.

4



References
[1] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of

convergence o (1/kˆ 2). In Doklady AN USSR, volume 269, pages 543–547, 1983.

[2] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[3] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[5] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Uni-
versité de Montréal, Département d’informatique et de recherche opérationnelle, 1990.

[6] Juergen Schmidhuber. On learning how to learn learning strategies. 1995.

[7] Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient
descent. In International Conference on Artificial Neural Networks, pages 87–94. Springer,
2001.

[8] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom
Schaul, and Nando de Freitas. Learning to learn by gradient descent by gradient descent. In
Advances in Neural Information Processing Systems, pages 3981–3989, 2016.

[9] Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo,
Misha Denil, Nando de Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and
generalize. International Conference on Machine Learning, 2017.

[10] Ke Li and Jitendra Malik. Learning to optimize neural nets. arXiv preprint arXiv:1703.00441,
2017.

[11] Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc Le. Neural optimizer search with rein-
forcement learning. 2017.

[12] David E Goldberg and John H Holland. Genetic algorithms and machine learning. Machine
learning, 3(2):95–99, 1988.

[13] Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization of a
synaptic learning rule. In Preprints Conf. Optimality in Artificial and Biological Neural Net-
works, pages 6–8. Univ. of Texas, 1992.

[14] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13(Feb):281–305, 2012.

[15] Ke Li and Jitendra Malik. Learning to optimize. International Conference on Learning Rep-
resentations, 2017.

[16] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of ma-
chine learning algorithms. In Advances in neural information processing systems, pages 2951–
2959, 2012.

[17] Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural computation,
12(8):1889–1900, 2000.

[18] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter opti-
mization through reversible learning. In International Conference on Machine Learning, pages
2113–2122, 2015.

[19] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78(10):1550–1560, 1990.

5



[20] Corentin Tallec and Yann Ollivier. Unbiasing truncated backpropagation through time. arXiv
preprint arXiv:1705.08209, 2017.

[21] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International Conference on Machine Learning, pages 1310–1318, 2013.

[22] Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. Pipps: Flexible model-
based policy search robust to the curse of chaos. In International Conference on Machine
Learning, pages 4062–4071, 2018.

[23] Ronald J Williams and David Zipser. A learning algorithm for continually running fully recur-
rent neural networks. Neural computation, 1(2):270–280, 1989.

[24] Yann Ollivier, Corentin Tallec, and Guillaume Charpiat. Training recurrent networks online
without backtracking. arXiv preprint arXiv:1507.07680, 2015.

[25] Joe Staines and David Barber. Variational optimization. arXiv preprint arXiv:1212.4507, 2012.

[26] Ingo Rechenberg. Evolutionsstrategie–optimierung technisher systeme nach prinzipien der
biologischen evolution. 1973.

[27] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex func-
tions. Technical report, Université catholique de Louvain, Center for Operations Research and
Econometrics (CORE), 2011.

[28] Luca Franceschi, Paolo Frasconi, Saverio Salzo, and Massimilano Pontil. Bilevel programming
for hyperparameter optimization and meta-learning. arXiv preprint arXiv:1806.04910, 2018.

[29] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[30] Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. Natural evolution strate-
gies. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational
Intelligence). IEEE Congress on, pages 3381–3387. IEEE, 2008.

[31] JL Fleiss. Review papers: The statistical basis of meta-analysis. Statistical methods in medical
research, 2(2):121–145, 1993.

[32] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[33] David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67–82, 1997.

[34] Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger B Grosse. Understanding short-horizon bias
in stochastic meta-optimization. pages 478–487, 2016.

[35] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

[36] James Lucas, Richard Zemel, and Roger Grosse. Aggregated momentum: Stability through
passive damping. arXiv preprint arXiv:1804.00325, 2018.

[37] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial intelli-
gence and statistics, pages 249–256, 2010.

[38] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

6



Term Definition

D Dataset consisting of train and validation split, Dtrain and Dvalid.
T The set of tasks, where each task is a dataset (e.g., a subset of Imagenet classes).

w(t) Parameters of inner-problem at iteration t. These are updated by the learned optimizer,
and depend implicitly on θ and Dtrain.

`
(
x;w(t)

)
Loss on inner-problem, for mini-batch x.

θ Parameters of the optimizer.
u (·; θ) Function defining the learned optimizer. The inner-loop update is w(t+1) =

u
(
w(t), x,∇w`, . . . ; θ

)
, for x ∼ Dtrain.

Ltrain (θ) Outer-level objective targeting training loss, ED∼T Ex∼Dtrain

[
1
T

∑T
t=1 `

(
x;w(t)

)]
.

Lvalid (θ) Outer-level objective targeting testing loss, ED∼T Ex∼Dvalid

[
1
T

∑T
t=1 `

(
x;w(t)

)]
.

L (θ) The variational (smoothed) outer-loop objective, Eθ̃∼N (θ,σ2I)

[
L
(
θ̃
)]

.

Figure 4: Top: Schematic of unrolled optimization. Bottom Definition of terms used in this paper.

A Unrolled optimization for learning optimizers

A.1 Problem Framework

Our goal is to learn an optimizer which is well suited to some set of target optimization tasks.
Throughout the paper, we will use the notation defined in Figure 4. Learning an optimizer can be
thought of as a bi-level optimization problem [28], with inner and outer levels. The inner minimiza-
tion consists of optimizing of the weights (w) of a target problem `(w) by the repeated application
of an update rule (u (·)). The update rule is a parameterized function that defines how to map the
weights at iteration t to iteration t+1: w(t+1) = u(w(t); θ). Here, θ represents the parameters of the
learned optimizer. In the outer loop, these optimizer parameters (θ) are updated so as to minimize
some measure of optimizer performance, the outer-objective (L(θ)). Our choice for L will be the
average value of the target loss (` (·)) measured over either training or validation data. Throughout
the paper, we use inner- and outer- prefixes to make it clear when we are referring to applying a
learned optimizer on a target problem (inner) versus training a learned optimizer (outer).

A.2 Unrolled optimization

In order to train an optimizer, we wish to compute derivatives of the outer-objective L with respect
to the optimizer parameters, θ. Doing this requires unrolling the optimization process. That is, we
can form an unrolled computational graph that consists of iteratively applying an optimizer (u) to
optimize the weights (w) of a target problem (Figure 4). Computing gradients for the optimizer
parameters involves backpropagating the outer loss through this unrolled computational graph. This
is a costly operation, as the entire inner-optimization problem must be unrolled in order to get
a single outer-gradient. Partitioning the unrolled computation into separate segments, known as
truncated backpropagation, allows one to compute multiple outer-gradients over shorter segments.
That is, rather than compute the full gradient from iteration t = 0 to t = T , we compute gradients
in windows from t = a to t = a + τ . The choice for the number of inner-steps per truncation is
challenging. Using a large number of steps per truncation can result in exploding gradients making
outer-training difficult, while using a small number of steps can produce biased gradients resulting
in poor performance. In the following sections we analyze these two problems.

7



0 2 4

Inner problem parameter

0

20

40

In
n
e
r 

p
ro

b
le

m
 l
o
ss

(a)

0 50 100

Inner problem training steps

0

2

4

In
n
e
r 

p
ro

b
le

m
 p

a
ra

m
e
te

r(b)

10-2 10-1 100

(1-momentum)

0

10

20

In
n
e
r 

p
ro

b
le

m
 f

in
a
l 
lo

ss

(c)

5

10

20

50

0

1

2

Lo
g
 (1

-m
o
m

e
n
tu

m
)

Outer-parameter direction

2.4

2.8

3.2

O
u
te

r-
lo

ss

(d) (e)

5

10

20

5
Unroll Steps

10 20

Figure 5: Outer-problem optimization landscapes can become increasingly pathological with in-
creasing inner-problem step count. (a) A toy 1D inner-problem loss surface with two local minimum.
Initial parameter value (w(0)) is indicated by the star. (b) Final inner-parameter value (w(T )) as a
function of the number of inner problem training steps T , when inner-problem training is performed
by SGD+momentum. Color denotes different values of the optimizer’s momentum parameter. Low
momentum values (yellows) converge to the first local minimum at w = 0. Slightly higher momen-
tum values (greens) escape this minimum to settle at the global minimum (w ≈ .5). Even larger
values (purples) oscillate before eventually settling in one of the two minimum. (c) The final loss
after some number steps of optimization as a function of the momentum. The final loss surface is
smooth for small number of training steps T . However, larger values of T result in near discon-
tinuous loss surfaces around the transition points between the 2 minimum. (d) Similar to c, where
the inner problem is a MLP, the learned optimizer is the one used this paper, and for a 1D slice
through the outer-parameters θ along the gradient direction. (e) 2D rather than 1D slices through
θ, for different numbers of inner-loop steps. Intensity indicates value of Ltrain (θ); darker is lower.
Similar pathologies are observed to those which manifest in the toy problem.

A.3 Exponential explosion of gradients with increased sequence length

We can illustrate the problem of exploding gradients analytically with a simple example: learning a
learning rate. Following the notation in Figure 4, we define the optimizer as

w(t+1) = u(w(t); θ) = w(t) − θ∇`
(
w(t)

)
,

where θ is a scalar learning rate that we wish to learn for minimizing some target problem `(w(t)).
For simplicity, we assume a deterministic loss (`(·)) with no batch of data (x).

The quantity we are interested in is the derivative of the loss after T steps of gradient descent with
respect to θ. We can compute this gradient (see Appendix B) as:

d`(w(T ))

dθ
=

〈
−g(T ),

T−1∑
i=0

 T−1∏
j=i+1

(I − θH(j))

 g(i)

〉
,

where g(i) and H(j) are the gradient and Hessian of the target problem `(w) at iteration i and j,
respectively. We see that this equation involves a sum of products of Hessians. In particular, the first
term in the sum involves a product over the entire sequence of Hessians observed during training.
That is, the outer-gradient becomes a matrix polynomial of degree T , where T is the number of
gradient descent steps. Thus, the outer-gradient grows exponentially with T .

We can see another problem with long unrolled gradients empirically. Consider the task of optimiz-
ing a loss surface with two local minima defined as `(w) = (w− 4)(w− 3)w2 with initial condition
w(0) = −1.2 using a momentum based optimizer with a parameterized momentum value θ (Figure
5a). At low momentum values the optimizer converges in the first of the two local minima, whereas

8



0 5000 10000

Inner problems trained

3.6

3.0

2.4

Lo
g
 l
e
a
rn

in
g
 r

a
te

(a)

10000

1000

100

10

0 2000 4000 6000 8000 10000

Inner-iteration

1.0

0.8

0.6

0.4

0.2

0.0

0.2

O
u
te

r-
g
ra

d
ie

n
t

(b)

0 2000 4000 6000 8000 10000

Inner-iteration

4

2

0

2

4

C
u
m

u
la

ti
v
e
 o

u
te

r-
g
ra

d
ie

n
t

(c)

10

50

100

500

Figure 6: Large biases can result from reducing the number of steps per truncation in unrolled
optimization. (a) Each line represents an experiment with the same total number of inner-steps (10k)
but a different number of unrolling steps per truncation. In all cases, the initial learning rate is 0.001
(dashed line). We find low truncation amounts move away from the optimal learning rate (0.004),
increasing the outer-loss. (b) Outer-gradient at each truncation over the course of inner-training.
Initial outer-gradients are highly negative, trying to increase the learning rate, while later outer-
gradients are slightly above zero, decreasing learning rate. The total outer-gradient is the sum of
these two competing directions. (c) Cumulative value of outer-gradient vs inner-training step. When
a line crosses the zero point, the outer-learned learning rate is at an equilibrium. For low unrolling
steps, the cumulative sum is positive after a small number of steps, resulting in a increasing learning
rate, and decreasing outer-loss. As more inner-steps are taken, the bias increases, eventually flipping
the outer-gradient direction resulting in increasing outer-loss.

for larger momentum values the optimizer settles in the second minima. With even larger values
of momentum, the iterate oscillates between the two minima before settling. We visualize both the
trajectory of w(t) over training and the final loss value for different momentum values in Figure 5b
and 5c. With increasing unrolling steps, the loss surface as a function of the momentum θ becomes
less and less smooth, and develops near-discontinuities at some values of the momentum.

In the case of neural network inner-problems and neural network optimizers, the outer-loss surface
can grow even more complex with increasing number of unrolling steps. We illustrate this in Figure
5d and 5e for slices through the loss landscape L (θ) of the outer-problem for a neural network
optimizer.

A.4 Increasing bias with truncated gradients

Existing work on learned optimizers often avoids exploding gradients §A.3 by using a short trun-
cation window. Here, we demonstrate the bias short truncation windows can introduce in unrolled
optimization. These results are similar to those presented in (author?) [34], except that we utilize
multiple truncations rather than a single, shortened unroll. First, consider outer-learning the learn-
ing rate of Adam when optimizing a small two layer neural network on MNIST[35]. Grid search
can be used to find the optimal learning rate which is 0.004. We initialize Adam with a learning
rate of 0.001 and outer-train using increasing truncation amounts (Figure 6a). Despite initializing
close to the optimal learning rate, when outer-training with truncated backprop the resulting learning
rate decreases, increasing the outer-loss. The sum of truncated outer-gradients are anti-correlated
to the true outer-gradient. We visualize the per-truncation gradients for 500 step unrolls in Figure
6b and cumulative truncated gradients in Figure 6c. Early in inner-training there is a large negative
outer-gradient which increases the learning rate. Later in inner-training, the outer-gradients are pos-
itive, decreasing the learning rate. Thus, the optimizer parameter is pulled in opposite directions by
truncated gradients early versus late in inner-training, revealing an inherent tension with truncated
unrolled optimization.

B Derivation of the unrolled gradient

After T steps of gradient descent, the final loss becomes `(w(T )). We can update the parameters

of the optimizer (θ) by computing the derivative of this final loss with respect to θ: d`(w(T ))
dθ =

9



∇`(w(T ))T dw
(T )

dθ . The second term in this expression can be defined recursively as:

dw(T )

dθ
=
(
I − θ∇2`

(
w(T−1)

)) dw(T−1)

dθ
−∇`

(
w(T−1)

)
,

where∇` and∇2` are the gradient and Hessian of the target problem, respectively. This expression
highlights where the exploding outer-gradient comes from: the recursive definition of dw

(T )

dθ means
that computing it will involve a product of the Hessian at every iteration.

B.1 Ablations

Baseline (n=12)

Gradients (n=9)
ES (n=9)

10 unroll (n
=8)

100 unroll (n
=10)

1000 unroll (n
=8)

No RMS (n=5)

No Mom (n=5)

Only Grads (n=4)

No Time (n=5)
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

O
u
te

r-
o
b
je

ct
iv

e

Gradient Estimators Fixed Truncations Optimizer Input Features

Figure 7: We compare the model described in §3.1 with different features removed. Shown above
is the distribution of outer-loss performance across n random seed averaged between 380k and 420k
inner problem trained. For full learning curves, see Appendix H. First, with regard to gradient
estimators we find the combined estimator is more stable and out performs both the analytic gradient,
and evolutionary strategies. With regard to a curriculum, we find poor convergence with lower
numbers of unrolling steps (10, 100) and high variance with larger numbers of truncation’s steps
(1000). Finally with regard to optimizer features, we find our learned optimizers perform nearly as
well without the RMS terms and without the time horizon input, but fails to converge when not given
access to momentum based features.
To assess the importance of the gradient estimator discussed in §2, the unrolling curriculum §??,
as well as the features fed to the optimizer enumerated in §3.1, we re-trained the learned optimizer
removing each of these additions. In particular, we trained optimizers with: only the analytic gra-
dient (Only Gradients), only with evolutionary strategies (Only ES), a fixed number unrolled steps
(10, 100, 1000) as opposed to a schedule, no RMS gradient scaling (No RMS), no momentum terms
(No Mom), no momentum and no RMS scaling (Only Grads), and without the current iteration (No
Time). To account for variance, each configuration is repeated with multiple random seeds. Figure 7
summarizes these findings, showing the learned optimizer performance for each of these ablations.
We find that the gradient estimator (in §2) and a increasing schedule of unroll steps are critical to
performance, along with including momentum as an input to the optimizer.

C Outer-Training Algorithm

D Architecture details

D.1 Architecture

In a similar vein to diagonal preconditioning optimizers, and existing learned optimizers our archi-
tecture operates on each parameter independently. Unlike other works, we do not use a recurrent
model as we have not found applications where the performance gains are worth the increased com-
putation. We instead employ a single hidden layer feed forward MLP with 32 hidden units. This
MLP takes as input momentum terms, as well as rms terms inspired by Adam computed at a few
different decay values: [0.5, 0.9, 0.99, 0.999, 0.9999] [9]. A similar idea has been explored with

regard to momentum parameters in [36]. We also pass in 2 terms: r =
1

rms + ε
and rms also from

computations performed in Adam. Despite being critical in [9] we find these features of minimal

10



Initialize outer-parameters (θ).
while Outer-training, for each parallel worker do

Sample a dataset D, from T .
Initialize the inner loop parameters w(0) randomly.
for Each truncation in the inner loop do

Sample ES perturbation: e ∼ N(0, σ2I).
Sample a number of steps per truncation, k, based on current outer-training index.
Compute a positive, and negative sequence starting from w(t) by iteratively applying (for k
steps), u(·; θ + e), to w(t)

Compute a pair of outer-objectives L+, and L− using the 2 sequences of w from t to k
using either the train or validation inner-problem data.
Compute a single sample of grp = ∇θ 1

2 (L
+ + L−).

Compute a single sample of ges = 1
2 (L

+ − L−)∇θlog(N(e; θ, σ2I))
Store the sample of (grp, ges) in a buffer until a batch of samples is ready.
Assign the final w from one of the two sequences to w(t+k).

end for
end while
while Outer-training and in parallel do

When a batch of gradients is available, compute empirical variance and empirical mean of
each weight for each estimator.
Use inverse variance weighting to compute the combined gradient estimate.
update meta-parameters with SGD: θ ← θ − αgcombined where α is a learning rate.

end while
Algorithm 1: Outer-training algorithm using the combined gradient estimator.

impact (see §B.1). This is 5 · 4 = 20 features in total. The current gradient as well as the current
weight value are also used as features. By passing in weight values, the optimizer can learn to do
arbitrary norm weight decay. To emulate learning rate schedules, the current training iteration is fed
in transformed via applying a tanh squashing functions at different timescales: tanh(t/η−1) where
η is the timescale. We use 9 timescales logarithmicly spaced from (3, 300k). This leaves us in total
with 31 features.

All non-time features are normalized by the second moment with regard to other elements in the
“batch” dimension (the other weights of the weight tensor). We choose this over other normalization
strategies to preserve directionality. These activations are then passed the into a hidden layer, 32 unit
MLP with relu activations. Many existing optimizer hyperparameters (such as learning rate) operate
on an exponential scale. As such, the network produces two outputs, and we combine them in an
exponential manner: exp(λexpo1)λlino2 making use of two temperature parameters λexp and λlin
which are both set to 1e−3. Without these scaling terms, the default initialization yields steps on the
order of size 1 – far above the step size of any known optimizer and result in highly chaotic regions
of θ. It is still possible to optimize given our estimator, but training is slow and the solutions found
are quite different.

D.2 Outer-Data Distributions

The outer-training set consists of a family of 10 way classification problems using cross entropy loss
on subsets of 32x32 Imagenet. To form a outer-train and outer-test set, we randomly split imagenet
into 700 classes for outer-train, and 300 classes for outer-test.

D.3 Inner-problem

The optimizer targets a 3 layer convolutional neural network with 3x3 kernels, and 32 units per
layer. The first 2 layers are stride 2, and the 3rd layer has stride 1. We use relu activations and
glorot initializations [37]. At the last convolutional layer, an average pool is performed, and a linear
projection is applied to get the 10 output classes.

11



D.4 Outer-Training

We train using the algorithm described in 1 using a linear schedule on the number of unrolling
steps from 50 - 10k over the course of 5k outer-training iterations. To add variation in length, we
additionally shift this length by a percentage uniformly sampled between (-20%, 20%). We optimize
the outer-parameters, θ, using Adam [4] with a batch size of 128 and with a learning rate of 0.003 for
the training outer-objective and 0.0003 for the validation outer-objective, and β1 = 0.5(following
existing literature on non-stationary optimization [38]). While both values of learning rate work for
both outer-objectives, we find the validation outer-objective to be considerably harder, and training
is more stable with the lower learning rate.

12



E Additional inner loop problem learning curves

We plot additional learning curves from both the outer-train task distribution and the outer-validation
task distribution. The horizontal lines represent the minimum performance achieved over 20k steps.
See Figure 1.

0 5000 10000

Inner steps

0.0

0.5

1.0

1.5

2.0

T
ra

in
 l
o
ss

Learned (train outer-objective)

Learned (valid outer-objective)

Momentum

Adam

RMSProp

0 5000 10000

Inner steps

1.0

1.2

1.4

1.6

1.8

2.0

2.2

T
e
st

 l
o
ss

Figure 8: Additional outer-validation problem.

0 5000 10000

Inner steps

0.0

0.5

1.0

1.5

2.0

T
ra

in
 l
o
ss

Learned (train outer-objective)

Learned (valid outer-objective)

Momentum

Adam

RMSProp

0 5000 10000

Inner steps

1.0

1.2

1.4

1.6

1.8

2.0

2.2
T
e
st

 l
o
ss

0 5000 10000

Inner steps

0.0

0.5

1.0

1.5

2.0

T
ra

in
 l
o
ss

Learned (train outer-objective)

Learned (valid outer-objective)

Momentum

Adam

RMSProp

0 5000 10000

Inner steps

1.0

1.2

1.4

1.6

1.8

2.0

2.2

T
e
st

 l
o
ss

Figure 9: Outer-training problems.

13



F Out of domain generalization

In this work, we focus our attention to learning optimizers over a specific task distribution (3 layer
convolutional networks trained on 10 way subsets of 32x32 Imagenet). In addition to testing on these
in domain problems (Appendix E), we test our learned optimizer on a variety of out of domain target
problems. Despite little variation in the outer-training task distribution, our models show promising
generalization when transferred to a wide range of different architectures (fully connected, convo-
lutional networks) depths (2 layer to 6 layer) and number of parameters (models roughly 16x more
parameters). We see these as promising sign that our learned optimizer has a reasonable but not
perfect inductive bias. We leave training with increased variation to encourage better generalization
as an area for future work.

0 5000 10000

Inner steps

0.0

0.1

0.2

0.3

0.4

0.5

T
ra

in
 l
o
ss

Learned (train outer-objective)

Learned (valid outer-objective)

Momentum

Adam

RMSProp

0 5000 10000

Inner steps

0.0

0.1

0.2

0.3

0.4

0.5

T
e
st

 l
o
ss

Figure 10: Inner problem: 2 hidden layer fully connected network. 32 units per layer with relu
activations trained on 14x14 MNIST.

0 5000 10000

Inner steps

0.0

0.1

0.2

0.3

0.4

0.5

T
ra

in
 l
o
ss

Learned (train outer-objective)

Learned (valid outer-objective)

Momentum

Adam

RMSProp

0 5000 10000

Inner steps

0.0

0.1

0.2

0.3

0.4

0.5

T
e
st

 l
o
ss

Figure 11: Inner problem: 3 hidden layer fully connected network. 128 units per layer with relu
activations trained on 14x14 MNIST.

0 5000 10000

Inner steps

0.0

0.1

0.2

0.3

0.4

0.5

T
ra

in
 l
o
ss

Learned (train outer-objective)

Learned (valid outer-objective)

Momentum

Adam

RMSProp

0 5000 10000

Inner steps

0.0

0.1

0.2

0.3

0.4

0.5

T
e
st

 l
o
ss

Figure 12: Inner problem: 6 convolutional layer network. 32 units per layer, strides: [2,1,2,1,1,1]
with relu activations on 28x28 MNIST.

14



G Inner-loop training speed

When training models, often one cares about taking less wallclock time as compared to performance
per weight update. Much like existing first order optimizers, the computation performed in our
learned optimizer is linear in terms of number of parameters in the model being trained and smaller
than the cost of computing gradients. The bulk of the computation in our model consists of two
batched matrix multiplies of size 31x32, and 32x2. When training models that make use of weight
sharing, e.g. RNN or CNN, the computation performed per weight often grows super linearly with
model size. As the learned optimizer methods are scaled up, the additional overhead in performing
more complex weight updates will vanish.

For the specific models we test in this paper, we measure the performance of our optimizer on CPU
and GPU. We implement Adam, SGD, and our learned optimizer in TensorFlow for this compar-
ison. Given the small scale of problem we are working at, we implement training in graph in a
tf.while loop to avoid TensorFlow Session overhead. We use random input data instead of real data
to avoid any data loading confounding. On CPU the learned optimizer executes at 80 batches a
second where Adam runs at 92 batches a second and SGD at 93 batches per second. The learned
optimizer is 16% slower than both.

On a GPU (Nvidia Titan X) we measure 177 batches per second for the learned and 278 batches per
second for Adam, and 358 for sgd. This is or 57% slower than adam and 102% slower than SGD.

Overhead is considerably higher on GPU due to the increased number of ops, and thus kernel exe-
cutions, sent to the GPU. We expect a fused kernel can dramatically reduce this overhead. Despite
the slowdown in computation, the performance gains (greater than 400% faster in steps) far exceed
the slowdown, resulting in an optimizer that is still considerably faster when measured in wallclock
time.

15



H Ablation learning curves

0.0 0.2 0.4 0.6

Inner problems trained (millions)

1.0

1.5

2.0

2.5
O

u
te

r 
o
b
je

ct
iv

e
Baseline N=9

Gradients N=5

0.0 0.2 0.4 0.6

Inner problems trained (millions)

1.0

1.5

2.0

2.5

O
u
te

r 
o
b
je

ct
iv

e

Baseline N=9

ES N=5

0.0 0.2 0.4 0.6

Inner problems trained (millions)

1.0

1.5

2.0

2.5

O
u
te

r 
o
b
je

ct
iv

e

Baseline N=9

10 unroll N=5

0.0 0.2 0.4 0.6

Inner problems trained (millions)

1.0

1.5

2.0

2.5

O
u
te

r 
o
b
je

ct
iv

e

Baseline N=9

100 unroll N=5

0.0 0.2 0.4 0.6

Inner problems trained (millions)

1.0

1.5

2.0

2.5

O
u
te

r 
o
b
je

ct
iv

e

Baseline N=9

1000 unroll N=6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6

Inner problems trained (millions)

1.0

1.5

2.0

2.5

O
u
te

r 
o
b
je

ct
iv

e

Baseline N=9

No RMS N=5

0.0 0.2 0.4 0.6

Inner problems trained (millions)

1.0

1.5

2.0

2.5

O
u
te

r 
o
b
je

ct
iv

e

Baseline N=9

No Mom N=5

0.0 0.2 0.4 0.6

Inner problems trained (millions)

1.0

1.5

2.0

2.5

O
u
te

r 
o
b
je

ct
iv

e

Baseline N=9

Only Grads N=4

0.0 0.2 0.4 0.6

Inner problems trained (millions)

1.0

1.5

2.0

2.5

O
u
te

r 
o
b
je

ct
iv

e

Baseline N=9

No Time N=5

Figure 13: Training curves for ablations described in §B.1. The thick line bordered in black is the
median performance, with the shaded region containing the 25% and 75% percentile. Thinner solid
lines are individual runs.

16


	Introduction
	Towards stable training of learned optimizers
	Experiments
	Learned Optimizer Setup
	Outer-training
	Learned optimizer performance

	Discussion
	Unrolled optimization for learning optimizers
	Problem Framework
	Unrolled optimization
	Exponential explosion of gradients with increased sequence length
	Increasing bias with truncated gradients

	Derivation of the unrolled gradient
	Ablations

	Outer-Training Algorithm
	Architecture details
	Architecture
	Outer-Data Distributions
	Inner-problem
	Outer-Training

	Additional inner loop problem learning curves
	Out of domain generalization
	Inner-loop training speed
	Ablation learning curves

