
OBOE: Collaborative Filtering for AutoML
Initialization

Chengrun Yang, Yuji Akimoto, Dae Won Kim, Madeleine Udell
Cornell University

{cy438,ya242,dk444,udell}@cornell.edu

Abstract

Algorithm selection and hyperparameter tuning remain two of the most challenging
tasks in machine learning. The number of machine learning applications is growing
much faster than the number of machine learning experts, hence we see an increas-
ing demand for efficient automation of learning processes. Here, we introduce
OBOE, an algorithm for time-constrained model selection and hyperparameter
tuning. Taking advantage of similarity between datasets, OBOE finds promising
algorithm and hyperparameter configurations through collaborative filtering. Our
system explores these models under time constraints, so that rapid initializations
can be provided to warm-start more fine-grained optimization methods. One novel
aspect of our approach is a new heuristic for active learning in time-constrained ma-
trix completion based on optimal experiment design. Our experiments demonstrate
that OBOE delivers state-of-the-art performance faster than competing approaches
on a test bed of supervised learning problems.

1 Introduction
The large number of machine learning algorithms and their sensitivity to hyperparameter values make
it practically infeasible to enumerate all configurations. The field of AutoML seeks to efficiently
automate the selection of model configurations, and has attracted increasing attention in recent years.

We propose an algorithmic system, OBOE 1, that provides an initial tuning for AutoML. It addresses
two important problems: 1) time-constrained initialization: how to choose promising models under
time constraints, and 2) active learning: how to improve given further computational resources.

The first subproblem is important in that hyperparameter spaces have heterogenous shapes and are
poorly studied. One solution is collaborative filtering [1, 32, 36, 22], in which it is important to
characterize dataset similarity. One line of work uses dataset meta-features [25, 10, 9]; the other
(e.g., [35]) avoids meta-features. Our approach builds on both of these lines by treating low rank
representations of model performance vectors as latent meta-features, and thus rely exclusively on
model performance for dataset similarity.

The active learning subproblem aims to select the best model or gain the most information to guide
further model selection. Some approaches choose a function class to capture the dependence of model
performance on hyperparameters; examples are Gaussian processes [27, 30, 3, 11, 28, 13, 21, 31],
sparse Boolean functions [12] and decision trees [2, 16]. Our OBOE system uses the set of low rank
matrices as surrogate model, which is a flexible and general model class that enjoys the simplicity
and speed of well-developed numerical linear algebra algorithms.

One key component of our system is a model which predicts model runtime on datasets. Many
authors have previously studied algorithm runtime as a function of feature vectors [17], via ridge
regression [14], neural networks [29], Gaussian processes [15], etc. Several measures have been
proposed to trade-off between accuracy and runtime [20, 4]. We fit algorithm runtime onto dataset
size, which is particularly simple but surprisingly effective.

1This name comes from the musical instrument oboe that plays an initial note in an orchestra; the other
instruments use this note to tune to the right frequency before the performance begins.

2nd Workshop on Meta-Learning at NeurIPS 2018, Montréal, Canada.

In a linear model, classical experiment design [34, 23, 18, 26, 5] selects features that minimize
variance of the parameter estimate. Budget constraints can be added [19, 37]. We adopt this approach
to select promising machine learning models believed to finish within time budget.

This paper is organized as follows. Section 2 introduces notation and terminology. Section 3 describes
the main ideas we use in OBOE. Section 4 presents OBOE in detail. Section 5 shows experiments.

2 Notation and terminology
Each of the three phases in meta-learning — meta-training, meta-validation and meta-test — is a
(standard) learning process that includes training, validation and test.

All vectors in this paper are column vectors. Given a matrix A ∈ Rm×n, Ai,: and A:,j denote the ith
row and jth column of A, respectively. We define [n] = {1, . . . , n} for n ∈ Z. Given an ordered set
S = {s1, . . . , sk} where s1 < . . . < sk ∈ [n], we write A:S = [A:,s1 A:,s2 · · · A:,sk].

A(D) is the cross-validation error of model A on dataset D. The expectation is with respect to the
way we split dataset into folds. The best model on D is the model in our collection of models that
achieves minimum error on D. A model A is said to be observed on D if we actually calculate A(D).
Hyper-hyperparameters refer to OBOE settings, e.g., the rank used to approximate the error matrix.

3 Methodology
Unsupervised inference of model performance While the distance between meta-feature vectors
is informative of dataset similarity, it is often difficult to determine a priori which meta-features to
use. Also, the computation of meta-features can be expensive (see Appendix H, Figure 7). To infer
model performance on a dataset without any meta-feature calculation that takes more time than it
takes to read in the dataset, we use collaborative filtering.

We construct an error matrix E ∈ RM×N , where rows are indexed by datasets and columns by
models. Empirically, E has approximately low rank: Figure 1 shows the singular values σi(E)
as a function of the index i. This serves as foundation of our algorithm. Hence we approximate
Eij ≈ xTi yj where xi and yj are the minimizers of

∑m
i=1

∑n
j=1(Eij − xTi yj)2 with xi, yj ∈ Rk for

i ∈ [M] and j ∈ [N]; the solution is given by PCA. In collaborative filtering, each xi and yj are the
latent meta-features of dataset i and model j, respectively.

Given a meta-test dataset, we choose a subset S ⊆ [N] of models and observe the performance ej of
model j for each j ∈ S, where S is determined by the dataset and runtime budget τ . We then infer
latent meta-features of that dataset by solving the least squares problem: minimize

∑
j∈S(ej−x̂T yj)2

with x̂ ∈ Rk. For all unobserved models, we predict their performance as êj = x̂T yj for j /∈ S.

The remaining challenge is to choose S and k, which will be addressed in the following sections.

Runtime prediction Estimated model runtime allows us to tradeoff between slow, informative and
fast, less informative models. We observe that we are able to predict runtime of half of the machine
learning models within a factor of two on more than 75% midsize OpenML classification datasets, as
shown in Appendix E and visualized in Figures 5 and 6. Our method uses polynomial regression
on nD and pD, the numbers of data points and features in D, since the theoretical complexities of
machine learning algorithms we use are O

(
(nD)3, (pD)3, (log(nD))3

)
. Hence we fit an independent

polynomial regression model for each model:

fj = argminfj∈F

M∑
i=1

(
fj(n

Di , pDi , log(nDi))− tDi
j

)2
, j ∈ [n]

where tDj is the runtime of machine learning model j on datasetD, and F is the set of all polynomials
of order no more than 3. We denote this procedure by fj = fit_runtime(n, p, t).

Time-constrained information gathering To select model subset S, we adopt an approach that
builds on classical experiment design: we suppose fitting each machine learning model j ∈ [n]
returns a linear measurement xT yj of x, corrupted by Gaussian noise. Then we choose which models
we should fit by defining an indicator vector v ∈ {0, 1}n, where entry vj indicates whether to fit
model j, and minimizing a scalarization of the covariance of the estimated meta-features x̂ of the new
dataset subject to runtime constraints. Let t̂j denote the predicted runtime of model j on a meta-test
dataset, and let yj denote its latent meta-features, for j ∈ [n]. Now we relax v ∈ Rn to allow for
non-Boolean values and solve the optimization problem

2

minimize
vj

log det
(n∑

j=1

vjyjy
T
j

)−1
subject to

n∑
j=1

vj t̂j ≤ τ

vj ∈ [0, 1] ∀j ∈ [n].

in which the scalarization by means of covariance determinant minimization is called D-optimal
design. Several other scalarizations can also be used, e.g., covariance norm (E-optimal) or trace
(A-optimal). This relaxed problem is a convex optimization problem, and we obtain an approximate
solution via rounding. Let S ⊆ [n] be the set of indices of e that we choose to observe, i.e. the set such
that vs rounds to 1 for s ∈ S. We denote this process by S = min_variance_ED(t̂, {yj}nj=1, τ).

4 OBOE

The OBOE system can be divided into two stages: offline and online, whose pseudocode is shown
in Appendix B. The offline stage is executed only once and stores information of meta-training
datasets. Time taken on this stage does not affect the prediction of OBOE on a new dataset; the
runtime experienced by the user is that of the online stage.

Offline stage We generate the error matrix under balanced error rate, the average of false positive
and false negative rates across different classes, and record runtime of machine learning model on
datasets. This is used to fit runtime predictors described in Section 3.

Online stage As shown below, fit_one_round is a subroutine of time target doubling.

• Time-constrained model selection (fit_one_round) We first predict model runtime on the
meta-test dataset using fitted runtime predictors. Then we use experiment design to select a subset
S of entries of e, the performance vector of the test dataset, to observe. The observed entries
are used to compute x̂, an estimation of the latent meta-features of the test dataset. We then
use x̂ to predict every entry of e. We build an ensemble out of models predicted to perform
well within time target τ̃ , by means of greedy forward selection [7, 6]. This step outputs a
classifier, and can be placed after further hyperparameter tuning. We denote this subroutine as
Ã =ensemble_selection(S, eS , zS), which takes as input the set of base learners S with their
cross-validation errors eS and predicted labels zS = {zs|s ∈ S}, and outputs ensemble learner Ã.

• Time target doubling To select rank k, OBOE starts with a small initial rank along with a small
time target, and then doubles the time target for fit_one_round until the elapsed time reaches
half of the total budget. Rank k increments by 1 if the validation error of the ensemble learner
decreases after doubling the time target, and otherwise does not change.

5 Experimental evaluation
Code for the OBOE system is at https://github.com/udellgroup/oboe; code for experiments
is at https://github.com/udellgroup/oboe-testing. Experimental setup and minor results
can be found in Appendix D.

Cold-start functionality OBOE uses D-optimal experiment design to cold-start model selection.
In Figure 2, we compare this with A- and E-optimal design and nonlinear regression in Alors [22],
by means of leave-one-out cross-validation on midsize OpenML datasets. The horizontal axis is the
number of models selected; the vertical axis is the average percentage of best-ranked models shared
between true and predicted performance vectors. D-optimal design robustly outperforms.

Performance comparison across AutoML systems We compare AutoML systems that are able
to select among different algorithm types under time constraints: OBOE (whose error matrix was
generated by OpenML datasets), auto-sklearn [9], and a time-constrained random baseline. Figure 3
shows the percentile and ranking changes of prediction errors as runtime repeatedly doubles.

Several observations on the experimental results are 2:

1 OBOE on average performs as well as or better than competing approaches (Figures 3c and 3d).

2Auto-sklearn’s GitHub Issue #537 says “Do not start Auto-sklearn for time limits less than 60s". We
compare OBOE with auto-sklearn to demonstrate OBOE’s ability of model selection within a short time.

3

https://github.com/udellgroup/oboe
https://github.com/udellgroup/oboe-testing

0 10 20 30 40 50
index i

100

101

102

103

104

105

σ
i

Figure 1: Singular value decay of an error matrix.

2 4 6 8 10
number of best entries

0%
5%

10%
15%
20%
25%
30%
35%

av
er

ag
e

ac
cu

ra
cy

p
er

ce
nt

ag
e

D-optimal

A-optimal

E-optimal

Alors

Figure 2: Comparison of cold-start methods.

1.0 2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

0.1

0.2

0.3

0.4

0.5

b
al

an
ce

d
er

ro
r

ra
te

(a) midsize OpenML datasets (meta-training)

1.0 2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

0.0

0.1

0.2

0.3

0.4

0.5

b
al

an
ce

d
er

ro
r

ra
te

(b) midsize UCI datasets (meta-test)
2.0 4.0 8.0 16.0 32.0 64.0

runtime budget (s)

1.6

1.8

2.0

2.2

2.4

av
er

ag
e

ra
n

k

Oboe

auto-sklearn

random

1.0 2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

1.6

1.8

2.0

2.2

2.4

av
er

ag
e

ra
n

k

(c) midsize OpenML datasets (meta-training)

1.0 2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

1.6

1.8

2.0

2.2

2.4

av
er

ag
e

ra
n

k

(d) midsize UCI datasets (meta-test)

Figure 3: Time-constrained performance of AutoML systems. In 3a and 3b, solid lines represent
medians; shaded areas with corresponding colors represent the regions between 75th and 25th
percentiles. Until the first time the system can produce a model, we classify every data point with the
most common class label. Figures 3c and 3d show system rankings (1 is best and 3 is worst).

2 Quality of the initial models computed by OBOE and by auto-sklearn are comparable, but OBOE
computes its first nontrivial model more than 8× faster than auto-sklearn (Figures 3a and 3b). In
contrast, auto-sklearn must first compute meta-features for each dataset, which requires substantial
computational time, as shown in Appendix H, Figure 7.

3 Interestingly, the rate at which the OBOE models improves with time is faster than that of auto-
sklearn: the level of improvements OBOE makes before 16s matches that of auto-sklearn from 16s to
64s. This indicates that increased computational time may be better spent in fitting more models than
optimizing over hyperparameters, to which auto-sklearn devotes the remaining time.

4 Experiment design leads to better results than random selection in almost all cases.

6 Summary
OBOE is an AutoML system that uses ideas from collaborative filtering and optimal experiment design
to predict performance of machine learning models. By fitting a few models on the meta-test dataset,
this system transfers knowledge from meta-training datasets to select a promising set of models.
OBOE naturally handles different algorithm and hyperparameter types and can match state-of-the-art
performance of AutoML systems much more quickly than competing approaches.

This work demonstrates the promise of collaborative filtering approaches to AutoML. However, many
improvements are possible. Future work to adapt OBOE to different loss metrics, budget types, sparse
error matrices and a wider range of machine learning algorithms, as well as to augment the initializa-
tions given by OBOE with fine tuning by any state-of-the-art hyperparameter optimization method,
may yield substantial improvements. Furthermore, we look forward to seeing more approaches to the
challenge of choosing hyper-hyperparameter settings subject to limited computation and data. With
continuing efforts by the AutoML community, we look forward to a world in which domain experts
seeking to use machine learning can focus on data quality and problem formulation, rather than on
tasks — such as algorithm selection and hyperparameter tuning — which are suitable for automation.

4

References
[1] Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michele Sebag. Collaborative hyperparameter

tuning. In ICML, pages 199–207, 2013.

[2] Thomas Bartz-Beielstein and Sandor Markon. Tuning search algorithms for real-world applica-
tions: A regression tree based approach. In Congress on Evolutionary Computation, volume 1,
pages 1111–1118. IEEE, 2004.

[3] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems, pages 2546–
2554, 2011.

[4] Bernd Bischl, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas, and Michel Lang.
mlrMBO: A modular framework for model-based optimization of expensive black-box functions.
arXiv preprint arXiv:1703.03373, 2017.

[5] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press,
2004.

[6] Rich Caruana, Art Munson, and Alexandru Niculescu-Mizil. Getting the most out of ensemble
selection. In ICDM, pages 828–833. IEEE, 2006.

[7] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble selection
from libraries of models. In ICML, page 18. ACM, 2004.

[8] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.

[9] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. Efficient and robust automated machine learning. In Advances in Neural
Information Processing Systems, pages 2962–2970, 2015.

[10] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Using meta-learning to initialize
Bayesian optimization of hyperparameters. In International Conference on Meta-learning and
Algorithm Selection, pages 3–10. Citeseer, 2014.

[11] Nicolo Fusi and Huseyn Melih Elibol. Probabilistic matrix factorization for automated machine
learning. arXiv preprint arXiv:1705.05355, 2017.

[12] Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter Optimization: A Spectral
Approach. arXiv preprint arXiv:1706.00764, 2017.

[13] Ralf Herbrich, Neil D Lawrence, and Matthias Seeger. Fast sparse Gaussian process methods:
The informative vector machine. In Advances in Neural Information Processing Systems, pages
625–632, 2003.

[14] Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, and Mayur Naik. Predicting
execution time of computer programs using sparse polynomial regression. In Advances in Neural
Information Processing Systems, pages 883–891, 2010.

[15] Frank Hutter, Youssef Hamadi, Holger H Hoos, and Kevin Leyton-Brown. Performance
prediction and automated tuning of randomized and parametric algorithms. In International
Conference on Principles and Practice of Constraint Programming, pages 213–228. Springer,
2006.

[16] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential Model-Based Optimization
for General Algorithm Configuration. LION, 5:507–523, 2011.

[17] Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Algorithm runtime prediction:
Methods & evaluation. Artificial Intelligence, 206:79–111, 2014.

[18] RC St John and Norman R Draper. D-optimality for regression designs: a review. Technometrics,
17(1):15–23, 1975.

5

[19] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements in Gaussian
processes: Theory, efficient algorithms and empirical studies. Journal of Machine Learning
Research, 9(Feb):235–284, 2008.

[20] Rui Leite, Pavel Brazdil, and Joaquin Vanschoren. Selecting classification algorithms with
active testing. In International Workshop on Machine Learning and Data Mining in Pattern
Recognition, pages 117–131. Springer, 2012.

[21] David JC MacKay. Information-based objective functions for active data selection. Neural
Computation, 4(4):590–604, 1992.

[22] Mustafa Mısır and Michèle Sebag. Alors: An algorithm recommender system. Artificial
Intelligence, 244:291–314, 2017.

[23] Alexander M Mood et al. On Hotelling’s weighing problem. The Annals of Mathematical
Statistics, 17(4):432–446, 1946.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[25] Bernhard Pfahringer, Hilan Bensusan, and Christophe G Giraud-Carrier. Meta-Learning by
Landmarking Various Learning Algorithms. In ICML, pages 743–750, 2000.

[26] Friedrich Pukelsheim. Optimal design of experiments, volume 50. SIAM, 1993.

[27] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning.
the MIT Press, 2006.

[28] Paola Sebastiani and Henry P Wynn. Maximum entropy sampling and optimal Bayesian
experimental design. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
62(1):145–157, 2000.

[29] Kate Smith-Miles and Jano van Hemert. Discovering the suitability of optimisation algorithms
by learning from evolved instances. Annals of Mathematics and Artificial Intelligence, 61(2):87–
104, 2011.

[30] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, pages 2951–2959,
2012.

[31] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

[32] David H Stern, Horst Samulowitz, Ralf Herbrich, Thore Graepel, Luca Pulina, and Armando
Tacchella. Collaborative Expert Portfolio Management. In AAAI, pages 179–184, 2010.

[33] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked
Science in Machine Learning. SIGKDD Explorations, 15(2):49–60, 2013.

[34] Abraham Wald. On the efficient design of statistical investigations. The Annals of Mathematical
Statistics, 14(2):134–140, 1943.

[35] M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Learning hyperparameter optimization
initializations. In IEEE International Conference on Data Science and Advanced Analytics,
pages 1–10, Oct 2015.

[36] Dani Yogatama and Gideon Mann. Efficient transfer learning method for automatic hyperpa-
rameter tuning. In Artificial Intelligence and Statistics, pages 1077–1085, 2014.

[37] Yuyu Zhang, Mohammad Taha Bahadori, Hang Su, and Jimeng Sun. FLASH: fast Bayesian
optimization for data analytic pipelines. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 2065–2074. ACM, 2016.

6

A Visualization of learning vs meta-learning

Figure 4 visualizes the idea of meta-learning, as well as how we split datasets for experimental
evaluation. Each colored block is a set of datasets.

Training

Validation

Test

Learning

(a) Learning

Training

Validation

Test

Learning

Training

Metalearning

Validation

Test

Training

Validation

Test

Metatraining

Meta
validation

Meta
test

(b) Meta-learning

Figure 4: Standard vs meta learning.

B Algorithm pseudocode

B.1 Offline stage

Algorithm 1 Offline Stage

Require: meta-training datasets {Di}mi=1, models {Aj}nj=1, algorithm performance metricM
Ensure: error matrix E, runtime matrix T , fitted runtime predictors {fj}nj=1

1: for i = 1, 2, . . . ,m do
2: nDi , pDi ← number of data points and features in Di

3: for j = 1, 2, . . . , n do
4: Eij ← error of model Aj on dataset Di in terms of metricM
5: Tij ← runtime of fitting model Aj on dataset Di

6: end for
7: end for
8: for j = 1, 2, . . . , n do
9: fit fj = fit_runtime(n, p, Tj)

10: end for

B.2 Online stage

Algorithm 2 is a subroutine of Algorithm 3; the latter of which shows the whole online stage.

Algorithm 2 fit_one_round({yj}nj=1, {fj}nj=1,Dtr, τ̃)

Require: model latent meta-features {yj}nj=1, fitted runtime predictors {fj}nj=1, training fold of the
meta-test dataset Dtr, time target for this round τ̃

Ensure: ensemble learner Ã
1: for j = 1, 2, . . . , n do
2: t̂j ← fj(n

Dtr , pDtr)
3: end for
4: S = min_variance_ED(t̂, {yj}nj=1, τ̃)
5: for k = 1, 2, . . . , |S| do
6: eSk , zSk ← cross-validation error and predicted labels of model ASk on Dtr

7: end for
8: Ã =ensemble_selection(S, eS , zS)

7

Algorithm 3 Online Stage

Require: error matrix E, runtime matrix T , meta-test dataset D, total time budget τ , fitted runtime
predictors {fj}nj=1, initial time target τ̃0, initial approximate rank k0

Ensure: ensemble learner Ã
1: xi, yj ← argmin

∑m
i=1

∑n
j=1(Eij − xTi yj)2, xi ∈ Rmin(m,n) for i ∈ [M] , yj ∈ Rmin(m,n)

for j ∈ [N]
2: Dtr,Dval,Dte ← training, validation and test folds of D
3: τ̃ ← τ̃0
4: k ← k0
5: while τ̃ ≤ τ/2 do
6: {ỹj}nj=1 ← k-dimensional subvectors of {yj}nj=1

7: Ã← fit_one_round({ỹj}nj=1, {fj}nj=1,Dtr, τ̃)

8: e′
Ã
← Ã(Dval)

9: if e′
Ã
< eÃ then

10: k ← k + 1
11: end if
12: τ̃ ← 2τ̃
13: eÃ ← e′

Ã
14: end while

8

C Models used for error matrix generation

Table 1 shows all the algorithms (in alphabetical order; the same below) together with their hy-
perparameter settings that we have considered to date. We run these algorithms on datasets using
scikit-learn 0.19.2 [24]. Hyperparameter settings not listed in this table are set to be default values in
the scikit-learn library. Hyperparameter names in Table 1 are consistent with scikit-learn classifier
arguments.

Table 1: Base algorithms and hyperparameter settings
Algorithm type Hyperparameter names (values)
Adaboost n_estimators (50,100), learning_rate (1.0,1.5,2.0,2.5,3)
Decision tree min_samples_split

(2,4,8,16,32,64,128,256,512,1024,0.01,0.001,0.0001,1e-05)
Extra trees min_samples_split

(2,4,8,16,32,64,128,256,512,1024,0.01,0.001,0.0001,1e-05),
criterion (gini,entropy)

Gradient boosting learning_rate
(0.001,0.01,0.025,0.05,0.1,0.25,0.5),
max_depth (3, 6), max_features
(null,log2)

Gaussian naive Bayes -
kNN n_neighbors (1,3,5,7,9,11,13,15), p (1,2)
Logistic regression C (0.25,0.5,0.75,1,1.5,2,3,4),

solver (liblinear,saga), penalty
(l1,l2)

Multilayer perceptron learning_rate_init
(0.0001,0.001,0.01),
learning_rate (adaptive), solver
(sgd,adam), alpha (0.0001, 0.01)

Perceptron -
Random forest min_samples_split

(2,4,8,16,32,64,128,256,512,1024,0.01,0.001,0.0001,1e-05),
criterion (gini,entropy)

Kernel SVM C (0.125,0.25,0.5,0.75,1,2,4,8,16),
kernel (rbf,poly), coef0 (0,10)

Linear SVM C (0.125,0.25,0.5,0.75,1,2,4,8,16)

D Experimental evaluation details

Datasets We test different AutoML systems on OpenML [33] and UCI [8] classification datasets,
with between 150 and 10,000 data points and with no missing entries, which we call midsize OpenML
and UCI datasets. Since data pre-processing is not our focus, we pre-process all datasets in the same
way: one-hot encode categorical features and then standardize all features to have zero mean and unit
variance. These pre-processed datasets are used in all the experiments.

D.1 Why we build an ensemble in the online stage?

In the online stage, OBOE can return to the user either: 1) a collection of promising models, which
can be used to initialize any other AutoML system; or 2) an ensemble of machine learning models,
so as to offer one single prediction for each test point. A collection of models is required to build
an ensemble of models. However, it is difficult to characterize the quality of a collection of models,
since there is no widely acknowledged performance metric for model collections. Hence we focus on
building an ensemble of models in experimental evaluations.

9

D.2 Hyper-hyperparameter choice

Cold-start functionality We consider performance measured by relative RMSE ‖e− ê‖2/‖e‖2 of
the predicted performance vector and by the number of correctly predicted best models, both averaged
across datasets. The approximate rank of the error matrix is set to be the number of eigenvalues larger
than 1% of the largest, which is 38 here. The time limit in experiment design implementation is set to
be 4 seconds; the meta-features used in the Alors implementation are listed in Appendix F, Table 3;
the nonlinear regressor used in the Alors implementation is the default RandomForestRegressor
in scikit-learn 0.19.2 [24].

Error metric OBOE uses balanced error rate to construct the error matrix, and works on the premise
that the error matrix can be approximated by a low rank matrix. However, there is nothing special
about the balanced error rate metric: most metrics result in an approximately low rank error matrix.
For example, when using the AUC metric to measure error, the 418-by-219 error matrix from midsize
OpenML datasets has only 38 eigenvalues greater than 1% of the largest, and 12 greater than 3%.

D.3 Performance comparison across AutoML systems

D.3.1 Approaches

OBOE As columns of the error matrix, we use the algorithm types and hyperparameter ranges listed
in Appendix C, Table 1. We chose to vary hyperparameters people usually tune, and picked their
ranges to contain the values people usually use. We have not optimized over them. The datasets we
use as rows are the midsize OpenML datasets. In our implementation, each entry of E is generated
using 5-fold cross-validation. The (decaying) eigenvalues of this error matrix are shown in Figure 1
of the main paper.

auto-sklearn We compare with auto-sklearn+meta-learning+ensemble, using the method
classification.AutoSklearnClassifier in auto-sklearn 0.4.0 [9].

Random Models chosen by a completely random baseline may take longer to complete than the
time budget, in which case no result would be reported. Instead, we adopt a time-constrained random
baseline that replaces the experiment design subroutine of OBOE with a time-constrained random
selection method: we randomly select a subset of models that we predict will complete within the
time target of each doubling round.

D.3.2 Experimental setup

Our system does not perform further hyperparameter optimization after selecting a subset of models
and forming an ensemble, while we do allow auto-sklearn to perform hyperparameter optimization
after model selection to ensure it makes full use of the time budget. This choice gives auto-sklearn a
slight advantage over OBOE.

We ran all experiments on a server with 128 Intel® Xeon® E7-4850 v4 2.10GHz CPU cores and
1056GB memory. The process of running each system on a specific dataset is limited to a single CPU
core.

10

E Runtime prediction performances on individual machine learning
algorithms

Runtime prediction accuracy on OpenML datasets with between 150 and 10,000 data points and with
no missing entries is shown in Table 2 and visualized in Figures 5 and 6.

Table 2: Runtime prediction accuracy on OpenML datasets
Algorithm type Runtime prediction accuracy

within factor of 2 within factor of 4
Adaboost 83.6% 94.3%
Decision tree 76.7% 88.1%
Extra trees 96.6% 99.5%
Gradient boosting 53.9% 84.3%
Gaussian naive Bayes 89.6% 96.7%
kNN 85.2% 88.2%
Logistic regression 41.1% 76.0%
Multilayer perceptron 78.9% 96.0%
Perceptron 75.4% 94.3%
Random Forest 94.4% 98.2%
Kernel SVM 59.9% 86.7%
Linear SVM 30.1% 73.2%

Figure 5: Performance of runtime prediction on midsize OpenML datasets; the algorithm-wise
performance is shown in Figure 6.

11

Figure 6: Runtime prediction performance on different machine learning algorithms, on midsize
OpenML datasets.

F Dataset meta-features

Dataset meta-features (used in Figure 2 of the main paper for the Alors implementation, and in
Figure 3 for the auto-sklearn [9] implementation) are listed in Table 3.

12

Table 3: Dataset meta-features
Meta-feature name Explanation
number of instances number of data points in the dataset
log number of instances the (natural) logarithm of number of in-

stances
number of classes
number of features
log number of features the (natural) logarithm of number of fea-

tures
number of instances with missing values
percentage of instances with missing values
number of features with missing values
percentage of features with missing values
number of missing values
percentage of missing values
number of numeric features
number of categorical features
ratio numerical to nominal the ratio of number of numerical features to

the number of categorical features
ratio numerical to nominal
dataset ratio the ratio of number of features to the num-

ber of data points
log dataset ratio the natural logarithm of dataset ratio
inverse dataset ratio
log inverse dataset ratio
class probability (min, max, mean, std) the (min, max, mean, std) of ratios of data

points in each class
symbols (min, max, mean, std, sum) the (min, max, mean, std, sum) of the num-

bers of symbols in all categorical features
kurtosis (min, max, mean, std)
skewness (min, max, mean, std)
class entropy the entropy of the distribution of class labels

(logarithm base 2)

landmarking [25] meta-features
LDA
decision tree decision tree classifier with 10-fold cross

validation
decision node learner 10-fold cross-validated decision tree

classifier with criterion="entropy",
max_depth=1, min_samples_split=2,
min_samples_leaf=1,
max_features=None

random node learner 10-fold cross-validated decision tree clas-
sifier with max_features=1 and the same
above for the rest

1-NN
PCA fraction of components for 95% variance the fraction of components that account for

95% of variance
PCA kurtosis first PC kurtosis of the dimensionality-reduced data

matrix along the first principal component
PCA skewness first PC skewness of the dimensionality-reduced

data matrix along the first principal com-
ponent

13

G Cold-start comparison

As a single time point in Figure 2 of the main paper, relative RMSE and number of best entry overlaps
given by different approaches are shown in Table 4.

Table 4: Results in Figure when number of models selected equals 5.
Metric Cold-start method

D A E Alors

Relative RMSE 18% 43% 31% 85%
Overlap of best 5 models 0.89 0.89 0.80 0.58

H Meta-feature calculation time

On a number of not very large datasets, the time taken to calculate meta-features in the previous
section are already non-negligible, as shown in Figure 7. Each dot represents one midsize OpenML
dataset.

0 5000 10000
Number of data points

0

5

10

15

M
et

af
ea

tu
re

ca
lc

u
la

ti
on

ti
m

e
(s

)

0 100 200 300
Number of features

0

5

10

15
M

et
af

ea
tu

re
ca

lc
u

la
ti

on
ti

m
e

(s
)

Figure 7: Meta-feature calculation time and corresponding dataset sizes of the midsize OpenML
datasets. The collection of meta-features is the same as that used by auto-sklearn [9]. We can see
some calculation times are not negligible.

14

	Introduction
	Notation and terminology
	Methodology
	Oboe
	Experimental evaluation
	Summary
	Visualization of learning vs meta-learning
	Algorithm pseudocode
	Offline stage
	Online stage

	Models used for error matrix generation
	Experimental evaluation details
	Why we build an ensemble in the online stage?
	Hyper-hyperparameter choice
	Performance comparison across AutoML systems
	Approaches
	Experimental setup

	Runtime prediction performances on individual machine learning algorithms
	Dataset meta-features
	Cold-start comparison
	Meta-feature calculation time

