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Abstract

Gradient-based meta-learners such as MAML [5] are able to learn a meta-prior
from similar tasks to adapt to novel tasks from the same distribution with few
gradient updates. One important limitation of such frameworks is that they seek
a common initialization shared across the entire task distribution, substantially
limiting the diversity of the task distributions that they are able to learn from.
In this paper, we augment MAML with the capability to identify tasks sampled
from a multimodal task distribution and adapt quickly through gradient updates.
Specifically, we propose a multimodal MAML algorithm that is able to modulate
its meta-learned prior according to the identified task, allowing faster adaptation.
We evaluate the proposed model on a diverse set of problems including regression,
few-shot image classification, and reinforcement learning. The results demonstrate
the effectiveness of our model in modulating the meta-learned prior in response to
the characteristics of tasks sampled from a multimodal distribution.

1 Introduction
Recent advances in meta-learning offer machines a way to learn from a distribution of tasks and adapt
to a new task from the same distribution using few samples [11, 31]. Different approaches for engaging
the task distribution exist. Optimization-based meta-learning methods offer learnable learning rules
and optimization algorithms [21, 2, 19, 1, 8], metric-based meta learners [11, 31, 26, 25, 27] address
few-shot classification by encoding task-related knowledge in a learned metric space. Model-based
meta-learning approaches [4, 32, 17, 15] generalize to a wider range of learning scenarios, seeking to
recognize the task identity from a few data samples and adapt to the tasks by adjusting a model’s state
(e.g. RNN’s internal states). Model-based methods demonstrate high performance at the expense
of hand-designing architectures, yet the optimal strategy of designing a meta-learner for arbitrary
tasks may not be obvious to humans. On the other hand, model-agnostic gradient-based meta-
learners [5, 6, 9, 12, 7] seek an initialization of model parameters such that a small number of gradient
updates will lead to fast learning on a new task, offering the flexibility in the choice of models.

While most existing gradient-based meta-learners rely on a single initialization, different modes
of a task distribution can require substantially different parameters, making it infeasible to find a
common initialization point for all tasks, given the same adaptation routine. When the modes of a task
distribution are disjoint and far apart, one can imagine that a set of separate meta-learners with each
covering one mode could better master the full distribution. However, this not only requires additional
identity information about the modes, which is not always available or could be ambiguous when
the task modes are not clearly disjoint, but also eliminates the possibility of associating transferable
knowledge across different modes of a task distribution. To overcome this issue, we aim to develop a
meta-learner that acquires a prior over a multimodal task distribution and adapts quickly within the
distribution with gradient descent.

To this end, we leverage the strengths of the two main lines of existing meta-learning methods:
model-based and gradient-based meta-learning. Specifically, we propose to augment gradient based
meta-learners with the capability of generalizing across a multimodal task distribution. Instead of
learning a single initialization point in the parameter space, we propose to first estimate the mode of
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Figure 1: Model overview.

Algorithm 1 META-TRAINING PROCEDURE.

1: Input: Task distribution P (T ), Hyper-parameters ↵ and �

2: Randomly initialize ✓ and !.
3: while not DONE do
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j

⇠ P (T )
5: for all j do
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⌘
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11: Update !  ! � �r
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P
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12: end while

a sampled task by examining task related samples. Given the estimated task mode, our model then
performs a step of model-based adaptation to modulate the meta-learned prior in the parameter space
to fit the sampled task. Then, from this model adapted meta-prior, a few steps of gradient-based
adaptation are performed towards the target task to progressively improve the performance on the
task. This main idea is illustrated in Figure 1.

2 Method

We aim to develop a Multi-Modal Model-Agnostic Meta-Learner (MUMOMAML) that is able to
quickly master a novel task sampled from a multimodal task distribution. To this end, we propose to
leverage the ability of model-based meta-learners to identify the modes of a task distribution as well
as the ability of gradient-based meta-learners to consistently improve the performance with a few
gradient steps. Specifically, we propose to learn a model-based meta-learner that produces a set of
task specific parameters to modulate the meta-learned prior parameters. Then, this modulated prior
learns to adapt to a target task rapidly through gradient-based optimization. An illustration of our
model is shown in Figure 1.

The gradient-based meta-learner, parameterized by ✓, is optimized to quickly adapt to target tasks
with few gradient steps by seeking a good parameter initialization similar to [5]. For the architecture
of the gradient-based meta-learner, we consider a neural network consisting of N blocks where
the i-th block is a convolutional or a fully-connected layer parameterized by ✓

i

. The model-based
meta-learner, parameterized by !, aims to identify the mode of a sampled task from a few samples
and then modulate the meta-learned prior parameters of the gradient-based meta-learner to enable
rapid adaptation in the identified mode. The model-based meta-learner consists of a task embedding
network and a modulation network.

Given K data points and labels {x

k

, y

k

}
k=1,...,K

, the task embedding network f learns to
produce an embedding vector � that encodes the characteristics of a task according to � =
f({x

k

, y

k

}
k=1,...,K

; !
f

). The modulation network g learns to modulate the meta-learned prior
of the gradient-based meta-learner in the parameter space based on the task embedding vector �. To
enable specialization of each block of the gradient-based meta-learner to the task, we apply the mod-
ulation block-wise to activate or deactivate the units of a block (i.e. a channel of a convolutional layer
or a neuron of a fully-connected layer). Specifically, modulation network produces the modulation
vectors for each block i by ⌧1, ..., ⌧N

= g(�; !
g

), forming a collection of modulated parameters ⌧ .
We formalize the procedure of applying modulation as: �

i

= ✓

i

� ⌧

i

, where �

i

represents the modu-
lated prior parameters for the gradient-based meta-learner, and � represents a general modulation
function. In the experiments, we investigate some representative modulation operations including
attention-based modulation [16, 30] and feature-wise linear modulation (FiLM) [18].

Training The training procedure for jointly optimizing the model-based and gradient-based meta-
learners is summarized in Algorithm 1. Note that ⌧ is not updated in the inner loop, as the model-based
meta-learner is only responsible for finding a good task-specific initialization through modulation.
The implementation details can be found in Section C and Section D.
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Table 1: Model’s performance on the multimodal 5-shot regression with two or three modes. Gaussian noise
with µ = 0 and � = 0.3 is applied. The three mode regression is in general more difficult (thus higher error). In
Multi-MAML, the GT modulation represents using ground-truth task identification to select different MAML
models for each task mode. MUMOMAML (wt. FiLM) outperforms other methods by a significant margin.

Configuration Two Modes (MSE) Three Modes (MSE)
Method Modulation Post Modulation Post Adaptation Post Modulation Post Adaptation

MAML [5] - 15.9255 1.0852 12.5994 1.1633
Multi-MAML GT 16.2894 0.4330 12.3742 0.7791

MUMOMAML (ours) Softmax 3.9140 0.4795 0.6889 0.4884
MUMOMAML (ours) Sigmoid 1.4992 0.3414 2.4047 0.4414
MUMOMAML (ours) FiLM 1.7094 0.3125 1.9234 0.4048

Sinusoidal Functions Linear Functions Quadratic Functions

(a) MUMOMAML after modulation vs. other prior models

(b) MUMOMAML after adaptation vs. other posterior models (c) Task embeddings

Figure 2: Few-shot adaptation for the multimodal regression task. (a): Without any gradient update, MUMO-
MAML (blue) fits target functions by modulating the meta-learned prior, outperforming the prior models of
MAML (green) and Multi-MAML (gray). (b): After five steps of gradient updates, MUMOMAML outperforms
MAML and Multi-MAML on all functions. More visualizations in Figure 8 and Figure 9. (c): tSNE plots of the
task embeddings � produced by our model from randomly sampled tasks; marker color indicates different types
of functions. The plot reveals a clear clustering according to different task modes, showing that MUMOMAML
is able to infer the mode from a few samples and produce a meaningful embedding. The distance among
distributions aligns with the intuition of the similarity of functions (e.g. a quadratic function can sometimes be
similar to a sinusoidal or a linear function while a sinusoidal function is usually different from a linear function).

3 Experiments
To verify that the proposed method is able to quickly master tasks sampled from multimodal task
distributions, we compare it with baselines on a variety of tasks, including regression, reinforcement
learning, and few-shot image classification 1.

3.1 Regression
We investigate our model’s capability of learning on few-shot regression tasks sampled from multi-
modal task distributions. In these tasks, a few input/output pairs {x

k

, y

k

}
k=1,...,K

sampled from a
one dimensional function are given and the model is asked to predict L output values y

q

1, ..., y
q

L

for
input queries x

q

1, ..., x
q

L

. We set up two regression settings with two task modes (sinusoidal and linear
functions) or three modes (quadratic functions added). Please see Section D for details.

As a baseline beside MAML, we propose Multi-MAML, which consists of M (the number of
modes) separate MAML models which are chosen for each query based on ground-truth task-mode
labels. This baseline serves as an upper-bound for the performance of MAML when the task-mode
labels are available. The quantitative results are shown in Table 1. We observe that Multi-MAML
outperforms MAML, showing that MAML’s performance degrades on multimodal task distributions.
MUMOMAML consistently achieves better results than Multi-MAML, demonstrating that our model
is able to discover and exploit transferable knowledge across the modes to improve its performance.
The marginal gap between the performance of our model in two and three mode settings indicates that
MUMOMAML is able to clearly identify the task modes and has sufficient capacity for all modes.

We compared attention modulation with Sigmoid or Softmax and FiLM modulation and found that
FiLM achieves better results. We therefore use FiLM for further experiments. Please refer to Section
A for additional details. Qualitative results visualizing the predicted functions are shown in Figure 2.

1Due to the page limit, the results of few-shot image classification are presented and discussed in Section B
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(a) 2D Navigation (b) Target Location (c) Target Speed (d) 2D Navigation Results

Figure 3: (a-c) Adaptation curves for MUMOMAML and MAML baseline in 2D navigation and half-cheetah
environments. The “after modulation” step represents the rewards of the modulated policy for MUMOMAML
and the initial rewards for MAML. MUMOMAML outperforms MAML across the gradient update steps
given a single extra trajectory. (d) Visualized trajectories sampled using MUMOMAML in the 2D navigation
environment. The contours represent the probability density of the goal distribution (red: high probability; blue:
low probability). The trajectories demonstrate the effect of modulation and the subsequent fine tuning with
gradient steps. Additional trajectory visualizations can be found in Figure 10.

Figure 2 (a) shows that our model is able to identify tasks and fit to the sampled function well without
performing gradient steps. Figure 2 (b) shows that our model consistently outperforms the baselines
with gradient updates. Figure 2 (c) plots a tSNE [14], showing the model-based module is able to
identify the task modes and produce embedding vectors �. Additional results are shown in Section E.

3.2 Reinforcement Learning

Figure 4: A tSNE plot of task
embeddings of randomly sam-
pled tasks in Target Location en-
vironment capturing the bimodal
task distribution.

We experiment with MUMOMAML in three reinforcement learning
(RL) environments to verify its ability to learn to rapidly adapt to
tasks sampled from multimodal task distributions given a minimum
amount of interaction with an environment. 2

2D Navigation. We utilize a 2D navigation environment with bi-
modal task distribution to investigate the capabilities of the embed-
ding network to identify the task mode based on trajectories sampled
from RL environments and the modulation network to modulate a
policy network. In this environment, the agent is rewarded for moving
close to a goal location. The model-based meta-learner is able to
identify the task modes and modulate the policy accordingly, allowing
efficient fast adaptation. This is shown in the agent trajectories and
the average return plots presented in Figure 3 (a) and (d), where our
model outperforms MAML with any number of gradient steps.

Half-cheetah Target Location and Speed. To investigate the scala-
bility of our method to more complex RL environments we experi-
ment with locomotion tasks based on the half-cheetah model. In the
target location and target speed environments the agent is rewarded for moving close to the target
location or moving at target speed respectively. The targets are sampled from bimodal distributions.
In these environments, the dynamics are considerably more complex than in the 2D navigation case.
MUMOMAML is able to utilize the model-based meta-learner to effectively modulate the policy
network and retain an advantage over MAML across all gradient update steps as seen from the
adaptation curves in Figure 3 (b) and Figure 3 (c). A tSNE plot of the embeddings in Figure 4 shows
that our model is able to produce meaningful task embeddings �.

4 Conclusion
We presented a novel meta-learning approach that is able to leverage the strengths of both model-
based and gradient-based meta-learners to discover and exploit the structure of multimodal task
distributions. With the ability to effectively recognize the task modes as well as rapidly adapt through
a few gradient steps, our proposed MUMOMAML achieved superior generalization performance on
multimodal few-shot regression, reinforcement learning, and image classification.

2Please refer to Section D for details on the experimental setting.
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