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1 Introduction
Both model-based and model-free reinforcement learning (RL) methods generally operate in one
of two regimes: all training is performed in advance, producing a model or policy that can be used
at test-time to make decisions in settings that approximately match those seen during training; or,
training is slowly performed online. However, in both of these cases, dynamic changes such as failure
of a robot’s components, encountering a new terrain, or other unexpected perturbations, can cause the
agent to fail. In contrast, humans can rapidly adapt their behavior to unseen physical perturbations
and changes in their dynamics [1]: If an agent has encountered a large number of perturbations in
the past, it can in principle use that experience to learn how to adapt. In this work, we propose a
meta-learning approach for learning online adaptation.

Although RL methods can achieve impressive results in simulation [8, 6, 9], the real world presents
two major challenges: sampling is exceedingly expensive, and unseen situations cause proficient
but specialized policies to fail at test time. Given that it is impractical to train separate policies to
accommodate all possible situations, this work proposes to learn how to quickly and effectively adapt
online to new tasks. We develop a model-based meta-RL algorithm, which allows for much greater
sample efficiency [2] than model-free meta-RL approaches [3, 11, 4]. Our approach foregoes the
episodic framework on which model-free meta-RL approaches rely on. Instead, our method considers
each timestep to potentially be a new “task;" this allows a task to represent anything from different
parts of the state space, to experiencing disturbances, or attempting a new goal. As a result, our
approach alleviates a central challenge of model-based reinforcement learning: acquiring an accurate
global model.

Figure 1: We implement our sample-
efficient meta-reinforcement learning algo-
rithm on a real legged millirobot, enabling on-
line adaptation to new tasks and unexpected
occurrences such as losing a leg.

The primary contribution of our work is an efficient
method for online adaptation, and to the best of our knowl-
edge, it is the first meta-RL algorithm to be applied on
a real robotic system. Our algorithm efficiently trains a
global model that is capable of using its recent experi-
ences to quickly adapt, achieving fast online adaptation in
dynamic environments. We evaluate two versions of our
approach, recurrence-based adaptive learner (ReBAL) and
gradient-based adaptive learner (GrBAL) on stochastic
continuous control tasks with complex contact dynamics
(Fig. 2). Our method attains substantial improvement over
prior approaches, and our experiments demonstrate online
adaptation on simulated agents (adapting online to novel
terrains, crippled body parts, and highly-dynamic environments) as well as a real dynamic legged
millirobot (adapting online to a missing leg, novel terrains and slopes, errors in pose estimation, and
pulling payloads).
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2 Meta-Learning for Online Model Adaptation
In this section, we present our approach for meta-learning for online model adaptation. Standard
meta-learning formulations require the learned model pθ∗ to adapt, using an update rule uψ∗ after
seeing M data points from some new “task.” Our notion of task is slightly more fluid, where every
segment of a trajectory can be considered to be a different “task,” and the past M observations can be
considered as providing more information about the current task setting. Since changes in system
dynamics, terrain details, or other environmental changes can occur at any time, we consider (at every
time step) the problem of adapting to the M past time steps.

We use the notion of environment E to denote different settings or configurations of a particular
problem. We assume a distribution of environments ρ(E) that share some common structure, such as
the same observation and action space, but may differ in their dynamics pE(s′|s,a). A sequence of
states and actions is denoted by τE(i, j) = (si,ai, ..., sj ,aj , sj+1). We pose the meta-RL problem in
this setting as an optimization over (θ, ψ) with respect to a maximum likelihood meta-objective. The
meta-objective is the likelihood of the data under a predictive model p̂θ′(s′|s,a) with parameters θ′,
where θ′ = uψ(τE(t−M, t− 1),θ) corresponds to model parameters that were updated using the
past M data points. Concretely, this corresponds to the following optimization:

min
θ,ψ

EE∼ρ(E)
t∼U([T−K−1])

[
L(τE(t, t+K),θ′E)

]
s.t.: θ′E = uψ(τE(t−M, t− 1),θ), (1)

where the loss L corresponds to the negative log likelihood of the data under the model:

L(τE(t, t+K),θ′E) , −
1

K

t+K∑
k=t

log p̂θ′E (sk+1|sk,ak). (2)

In the meta-objective in Equation 1, note that the past M points are used to adapt θ into θ′, and the
loss of this θ′ is evaluated on the future K points. Thus, we use the past M timesteps to provide
insight into how to adapt our model to perform well for nearby future timesteps. As outlined in
Algorithm 1, the update rule uψ for the inner update and a gradient step on θ for the outer update
allow us to optimize this meta-objective of adaptation. Thus, we achieve fast adaptation at test time
by being able to fine-tune the model using just M data points.

While we focus on reinforcement learning problems in our experiments, this meta-learning approach
could be used for a learning to adapt online in a variety of sequence modeling domains. We present
our algorithm using both a recurrence and a gradient-based meta-learner, as we discuss next.

Gradient-Based Adaptive Learner (GrBAL). GrBAL uses a gradient-based meta-learning to
perform online adaptation; in particular, we use MAML [4]. In this case, our update rule is prescribed
by gradient descent (Eq. 3)

θ′E = uψ(τE(t−M, t− 1),θ) = θE +ψ∇θ
1

M

t−1∑
m=t−M

log p̂θE (sm+1|sm,am) (3)

Recurrence-Based Adaptive Learner (ReBAL). ReBAL, instead, utilizes a recurrent model,
which learns its own update rule (i.e., through its internal gating structure. In this case, ψ and uψ
corresponds to the weights of the recurrent model that update its hidden state.

3 Model-Based Meta-Reinforcement Learning
Now that we have discussed our approach for enabling online adaptation, we next propose how to
build upon this idea to develop a model-based meta-reinforcement learning algorithm. Given θ∗ and
ψ∗, the agent uses its recent experience to adapt the model parameters: θ′∗ = uψ∗(τ(t−M, t),θ∗).
This results in a model p̂θ′∗ that better captures the local dynamics in the current setting, task, or
environment. This adapted model is then passed to our controller, along with the reward function
r and a planning horizon H . We use model predictive path integral control (MPPI) [12], but, in
principle, our model adaptation approach is agnostic to the model predictive control (MPC) method
used. This use of MPC can help compensate for model inaccuracies by preventing accumulating
errors, since we replan at each time step using both updated state information and an updated model
p̂θ′E . See Algorithm 2 for this full adaptation procedure, and Algorithm 1 for the full meta-training
procedure, which uses Algorithm 2 to produce the on-policy rollouts used for model-bootstrapping.
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Algorithm 1 Model-Based Meta-RL (train)
Require: Distribution ρE over tasks
Require: Learning rate β ∈ R+

Require: Number of sampled tasks N ,
dataset D

Require: Task sampling freq. nS ∈ Z+

1: Randomly initialize θ
2: for i = 1, ... do
3: if i mod nS = 0 then
4: Sample E ∼ ρ(E)
5: Collect τE using Alg. 2
6: D ← D ∪ {τE}
7: end if
8: for j = 1 . . . N do
9: τE(t−M, t− 1), τE(t, t+K) ∼ D

10: θ′E ← uψ(τE(t−M, t− 1),θ)
11: Lj ← L(τE(t, t+K),θ′E)
12: end for

13: θ ← θ − β∇θ 1
N

N∑
j=1

Lj

14: ψ ← ψ − η∇ψ 1
N

N∑
j=1

Lj

15: end for
16: Return (θ, ψ) as (θ∗, ψ∗)

Algorithm 2 Online Model Adaptation
(test)
Require: Meta-learned parameters θ∗,ψ∗
Require: controller(), H , r, nA

1: D ← ∅
2: for each timestep t do
3: θ′∗ ← uψ∗(D(t−M, t− 1),θ∗)
4: a← controller(θ′∗, r,H, nA)
5: Execute a, add result to D
6: end for
7: Return rollout D

Figure 2: Two real-world and four simulated en-
vironments on which our method is evaluated and
adaptation is crucial for success (e.g., adapting to
different slopes and leg failures)

4 Results
We aim to answer the following questions: (1) how does our approach compare to meta model-free
RL in sample efficiency and performance, (2) does our approach enable fast adaptation, both inside
and outside of the training distribution, and (3) can our method learn to adapt online on a real robot?
For our experiments, we use simulated half-cheetah and ant agents (Fig. 2), using the MuJoCo physics
engine [10]. We specify training and testing details in the appendix.

4.1 Sample Efficiency

Figure 3: Compared to other methods, our model-based meta-
RL methods achieve good performance with 1000 × less data.
Dotted lines indicate performance at convergence.

We first evaluate our model-based meta-
RL methods (GrBAL and ReBAL) against
model-free RL, model-free meta-RL, and
model-based RL methods. See appendix
for details on these methods. Figure 3
shows average return across test environ-
ments w.r.t. the amount of data used for
meta-training. We meta-train the model-
free methods (TRPO and MAML-RL) until
convergence, using the equivalent of about
two days of real-world experience. In con-
trast, we meta-train the model-based meth-
ods (including ours) using the equivalent
of 1.5-3 hours of data. Our methods result in superior or equivalent performance to the model-free
agent that is trained with 1000 times more data. Our methods also surpass the performance of
the non-meta-learned model-based approaches. Finally, our performance closely matches the high
asymptotic performance of the model-free meta-RL method for half-cheetah disabled, and achieves a
suboptimal performance for ant crippled (but does so with 1000 times less data).

4.2 Fast Adaptation & Generalization
We further compare various methods from above in the low-data regime (1.5-3 hours of real-world
experience). We compare GrBAL and ReBAL against the following three methods: a non-adaptive
MB method (“MB”), an adaptive model-based method (“MB + DE") that uses dynamic-evaluation
at run time, and a model-free method (“TRPO"). We also provide the performance of a MB oracle,
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Figure 4: Sim: a variety of dynamic test environ-
ments, showing the difficulty of training a global
model and the importance of adaptation. Results
are normalized so MB oracle achieves 1.

Figure 5: Real-world: GrBAL outperforms both
MB and MB+DE when tested on tasks that require
online adaptation and/or were never seen during
training.

trained using unlimited data from the single test task (and thus requiring no generalization). We test
the ability of each approach to adapt to sudden changes in the environment (F.A. = fast adaptation),
as well as to generalize (Gen.) beyond the training environments.

As shown in Fig. 4, TRPO performs poorly in the low data regime. Although MB+DE achieves
better generalization than MB, the slow nature of its adaptation causes it to fall behind MB in the
environments that require fast adaptation. Our approach surpasses the other approaches in all tasks; in
fact, it surpasses even the model-based oracle in the HC pier and the F.A. ant environments, showing
the need for adaptation in stochastic environments, where even a model trained with a lot of data
cannot be robust to unexpected occurrences or disturbances. ReBAL displays strengths on tasks
where longer sequential inputs allow it to better asses current task settings, but overall, GrBAL seems
to perform better.

4.3 Real-World Results
To test our meta-MB RL method’s sample efficiency, as well as its ability to perform fast and effective
online adaptation, we applied GrBAL to a real legged millirobot. This small 6-legged robot, as
shown in Fig. 1 and Fig. 2, presents a modeling and control challenge in the form of highly stochastic
and dynamic movement, and is an excellent candidate for online adaptation for many reasons (see
the appendix for more details on the system itself). As above, we compare GrBAL to a model-
based method (MB) that involves neither meta-training nor online adaptation, as well as a dynamic
evaluation method that involves online adaptation of that MB model (MB+DE).

We meta-train a dynamics model for this robot (entirely on real-world data) using the meta-objective
described in Equation 1. We see that GrBAL has comparable performance on terrains from the
training distribution (see appendix), but greatly outperforms (Fig. 5) the other methods when faced
with unseen and/or changing tasks at test time. Fig. 6 shows that unlike MB and MB+DE, GrBAL
can quickly 1) adapt online to a missing leg, 2) adjust to novel terrains and slopes, 3) account for
miscalibration or errors in pose estimation, and 4) compensate for pulling payloads.

Figure 6: By effectively adapting online, our method performs well on new unseen tasks that require fast and
effective online adaptation for success. The dotted black line indicates the desired trajectory in the xy plane.

5 Conclusion
In this work, we present an approach for model-based meta reinforcement learning that enables
fast, online adaptation in dynamic environments. We show that meta-learning a model for online
adaptation results in a method that is able to adapt to unseen situations or sudden and drastic changes
in the environment, and is also sample efficient to train. We provide two instantiations of our
approach (ReBAL and GrBAL), and we provide a comparison with other prior methods on a range of
continuous control tasks. We show that our approach is practical for real-world in contrast to less
efficient model-free meta-reinforcement learning approaches, and that the capability to adapt quickly
is particularly important under complex real-world dynamics.
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A Comparisons

In our experiments, we compare our model-based meta-RL methods (GrBAL and ReBAL) to several
prior methods:

Model-free RL (TRPO): To evaluate the importance of adaptation, we compare to a model-free RL
agent that is trained across environments E ∼ ρ(E) using TRPO [8].

Model-free meta-RL (MAML-RL): We compare to a state-of-the-art model-free meta-RL method,
MAML-RL [4].

Model-based RL (MB): Similar to the model-free agent, we also compare to a single model-based
RL agent, to evaluate the importance of adaptation. This model is trained using supervised model-error
and iterative model bootstrapping.

Model-based RL with dynamic evaluation (MB+DE): We compare to an agent trained with model-
based RL, as above. However, at test time, the model is adapted by taking a gradient step at each
timestep using the past M observations, akin to dynamic evaluation [5]. This final comparison
evaluates the benefit of explicitly training for adaptability.

All model-based approaches (MB, MB+DE, GrBAL, and ReBAL) use model bootstrapping (i.e.,
iterations of aggregating data from on-policy rollouts and using that data to re-train the model). They
also use the same neural network architecture and the same planner within experiments: MPPI [12]
for the simulated experiments and random shooting (RS) [7] for the real-world experiments.

B Environments

We conduct experiments on a variety of simulated robots using the MuJoCo physics engine. For all
of our environments, we model the transition probabilities as Gaussian random variables with mean
parameterized by the neural network model, and fixed variance. In this case, maximum likelihood
estimation corresponds to minimizing the mean squared error. Here, we present the details of the
simulated tasks from the result sections.

Half-cheetah (HC): disabled joint. For each meta-training rollout, we randomly sample a joint to
be disabled (i.e., the agent cannot apply torques to that joint). At test time, we evaluate performance
in three different situations: (a) disabling a joint seen at train time, (b) disabling an unseen joint, and
(c) switching between disabled joints during a rollout.

HC: sloped terrain. During meta-training, we choose terrain of varying gentle upward and down-
ward slopes. In this task, it is especially important to incorporate past experience into the model, since
the cheetah has no means of directly observing the incline. At test time, we evaluate performance on
(d) a gentle upward slope, (e) a steep hill that goes up and down, and (f ) a steep upward slope.

HC: pier. In this task, the cheetah runs over a series of blocks that are floating on water. Each block
moves up and down when stepped on, and the changes in the dynamics are drastic and rapid, due to
each block having different damping and friction properties. The HC is meta-trained on varying these
block properties, and tested on (g) a specific configuration of block properties.

Ant: crippled leg. For each meta-training rollout, we randomly sample a leg on a quadrupedal
robot and disable it. Disabling a leg unexpected drastically changes the dynamics. We evaluate on (h)
crippling a leg from the training distribution, (i) crippling a leg from outside the training distribution,
and (j) crippling a leg in the middle of a rollout.

7-DoF arm: force perturbations. We train a 7-DoF robot arm to carry an object to a goal position
while applying random perturbation forces to the object. At test time, we evaluate with (k) a constant
low force to the object, (l) a force 3× stronger than during training, and (m) a force that randomly
changes every 50 time-steps. This allow us to evaluate the ability of our method to adapt online to
perturbations that clearly lie outside the training distribution.

C Real robot

To test our meta-MB RL method’s sample efficiency, as well as its ability to perform fast and effective
online adaptation, we applied GrBAL to a real legged millirobot. Due to the cost of running real robot
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experiments, we choose the better performing method (i.e., GrBAL) to evaluate on the real robot.
This small 6-legged robot presents a modeling and control challenge in the form of highly stochastic
and dynamic movement. This robot is an excellent candidate for online adaptation for many reasons:
the rapid manufacturing techniques and numerous custom-design steps used to construct this robot
make it impossible to reproduce the same dynamics each time, its linkages and other body parts
deteriorate over time, and it moves very quickly and dynamically with bounding-style gaits; hence,
its dynamics are strongly dependent on the terrain or task at hand.

The state space of the robot is a 24-dimensional vector, including center of mass positions and
velocities, center of mass pose and angular velocities, back-EMF readings of motors, encoder
readings of leg motor angles and velocities, and battery voltage. We define the action space to be
velocity setpoints of the rotating legs. The action space has a dimension of two, since one motor on
each side is coupled to all three of the legs on that side. All experiments are conducted in a motion
capture room. Computation is done on an external computer, and the velocity setpoints are streamed
over radio at 10 Hz to be executed by a PID controller on the microcontroller on-board of the robot.

We collect approximately 30 minutes of data from each of the three training terrains (carpet, styrofoam,
turf). This data was entirely collected using a random policy, in conjunction with a safety policy,
whose sole purpose was to prevent the robot from exiting the area of interest.

Table 1 shows that after training the agent on 30 minutes of random data from three different terrains,
GrBAL achieves comparable trajectory following costs to the baselines (on the terrains seen during
training). Note that results of GrBAL on tasks that are further outside of the training distribution are
presented and discussed in the results section of the paper.

Left Str Z-z F-8
Carpet GrBAL 4.07 3.26 7.08 5.28

MB 3.94 3.26 6.56 5.21
Styrofoam GrBAL 3.90 3.75 7.55 6.01

MB 4.09 4.06 7.48 6.54
Turf GrBAL 1.99 1.65 2.79 3.40

MB 1.87 1.69 3.52 2.61
Table 1: Trajectory following costs for real-world GrBAL and MB results, showing comparable performance
on terrains from the training distribution.

D Effect of Meta-Training Distribution

To see how training distribution affects test performance, we ran an experiment that used GrBAL to
train models of the 7-DOF arm, where each model was trained on the same number of datapoints
during meta-training, but those datapoints came from different ranges of force perturbations. We
observe (in the plot below) that

1. Seeing more during training is helpful during testing — a model that saw a large range of force
perturbations during training performed the best

2. A model that saw no perturbation forces during training did the worst

3. The middle 3 models show comparable performance in the "constant force = 4" case, which is an
out-of-distribution task for those models. Thus, there is not actually a strong restriction on what needs
to be seen during training in order for adaptation to occur at train time (though there is a general trend
that more is better)
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Figure 7: Effect of the meta-training distribution on test performance

E Model Prediction Errors: Pre-update vs. Post-update

In this section, we show the effect of adaptation in the case of GrBAL. In particular, we show the
histogram of the K step normalized error, as well as the per-timestep visualization of this error during
a trajectory. Across all tasks and environments, the post-updated model p̂θ′∗ achieves lower prediction
error than the pre-updted model p̂θ∗ .

Figure 8: Histogram of the K step normalized error across different tasks. GrBAL accomplishes lower model
error when using the parameters given by the update rule.
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Figure 9: At each time-step we show the K step normalized error across different tasks. GrBAL accomplishes
lower model error using the parameters given by the update rule.

F Reward functions

For each MuJoCo agent, the same reward function is used across its various tasks. Table 2 shows the
reward functions used for each agent. We denote by xt the x-coordinate of the agent at time t, eet
refers to the position of the end-effector of the 7-DoF arm, and g corresponds to the position of the
desired goal.

Table 2: Reward functions
Reward function

Half-cheetah xt+1−xt

0.01 − 0.05‖at‖22
Ant xt+1−xt

0.0e − 0.005‖at‖22 + 0.05

7-DoF Arm −‖eet − g‖22
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G Hyperparameters

Below, we list the hyperparameters of our experiments. In all experiments we used a single gra-
dient step for the update rule of GrBAL. The learning rate (LR) of TRPO corresponds to the
Kullback–Leibler divergence constraint. # Task/itr corresponds to the number of tasks sampled
for collecting data to train the model or model, whereas # TS/itr is the total number of times steps
collected (for all tasks). Finally, T refers to the horizon of the task.

Table 3: Hyperparameters for the half-cheetah tasks
LR Inner LR Epochs K M Batch Size # Tasks/itr # TS/itr T nA Train H Train nA Test H Test

GrBAL 0.001 0.01 50 32 32 500 32 64000 1000 1000 10 2500 15

ReBAL 0.001 - 50 32 32 500 32 64000 1000 1000 10 2500 15

MB 0.001 - 50 - - 500 64 64000 1000 1000 10 2500 15

TRPO 0.05 - - - - 50000 50 50000 1000 - - - -

Table 4: Hyperparameters for the ant tasks
LR Inner LR Epochs K M Batch Size # Tasks/itr # TS/itr T nA Train H Train nA Test H Test

GrBAL 0.001 0.001 50 10 16 500 32 24000 500 1000 15 1000 15

ReBAL 0.001 - 50 32 16 500 32 32000 500 1000 15 1000 15

MB 0.001 - 70 - - 500 10 10000 500 1000 15 1000 15

TRPO 0.05 - - - - 50000 50 50000 500 - - - -

Table 5: Hyperparameters for the 7-DoF arm tasks
LR Inner LR Epochs K M Batch Size # Tasks/itr # TS/itr T na Train H Train na Test H Test

GrBAL 0.001 0.001 50 32 16 1500 32 24000 500 1000 15 1000 15

ReBAL 0.001 - 50 32 16 1500 32 24000 500 1000 15 1000 15

MB 0.001 - 70 - - 10000 10 10000 500 1000 15 1000 15

TRPO 0.05 - - - - 50000 50 50000 500 - - - -
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