
Deep Online Learning via Meta-Learning:
Continual Adaptation for Model-Based RL

Anusha Nagabandi
UC Berkeley

Chelsea Finn
UC Berkeley

Sergey Levine
UC Berkeley

1 Introduction

Human and animal learning is characterized not just by a capacity to acquire complex skills, but
also the ability to adapt rapidly (Herman, 2017; Flanagan & Wing, 1993) when those skills must
be carried out under new or changing conditions. Furthermore, these experiences are remembered,
and can be recalled to adapt more quickly when similar disturbances occur in the future (Doyon &
Benali, 2005). Since learning entirely new models on such short time-scales is impractical, we desire
algorithms that explicitly train models to adapt quickly from small amounts of data, allowing a single
model to be maximally useful. Such online adaptation is crucial for intelligent systems operating in
the real world, where changing factors and unexpected perturbations are the norm.

In this paper, we propose an algorithm for fast and continuous online learning that utilizes deep neural
network models to build and maintain a task distribution, allowing for the natural development of
both generalization as well as task specialization. Our working example is continuous adaptation in
the model-based reinforcement learning (RL) setting, though our approach generally addresses online
learning scenarios with streaming data. We assume each “trial" consists of multiple tasks, and that
the delineation between tasks is not provided explicitly – instead, the method must adaptively decide
what “tasks" represent, when to instantiate new tasks, and when to continue updating old ones.

We perform adaptation simply by using online stochastic gradient descent (SGD) on model parameters,
while maintaining a mixture model over model parameters for different tasks. The mixture is updated
via the Chinese restaurant process (CRP) (Stimberg et al., 2012), which enables new tasks to be
instantiated as needed over the course of a trial. Although online learning is perhaps one of the oldest
applications of SGD (Bottou, 1998), modern parametric models such as deep neural networks are
difficult to train online with this method (Sahoo et al., 2017) because they require medium-sized
minibatches and multiple epochs to arrive at sensible solutions, which is not suitable for online
streaming settings. One of our key observations is that meta-learning can learn a prior initialization
for the parameters to make such online adaptation feasible in only a handful of gradient steps.

The meta-training procedure we use is based on model-agnostic meta-learning (MAML) (Finn et al.,
2017). Meta-learning and MAML have previously been extended to model-based RL (Clavera et al.,
2018), but only for the k-shot adaptation setting: The meta-learned prior model is adapted to the k
most recent time steps, but the adaptation is not carried forward in time (i.e., adaptation is always
performed from the prior itself). This rigid batch-mode setting is restrictive in an online setup and
insufficient for tasks further outside of the training distribution. A more natural formulation is one
where the model receives a continuous stream of data and must adapt online to a non-stationary task
distribution. This requires fast adaptation and the ability to recall prior tasks, as well as an effective
adaptation strategy to interpolate as needed between the two.

The contribution of this paper is an online learning algorithm that uses expectation maximization, in
conjunction with a CRP prior on the task distribution, to learn mixtures of neural network models
that are updated with SGD. To our knowledge, our work is the first to apply meta-learning to learn
streaming online updates. We evaluate our method in the context of model-based RL and show
performance improvement over prior methods on a suite of challenging simulated continuous control
tasks (unexpected disturbances, environmental changes, and simulated motor failures). Videos
available at: https://sites.google.com/berkeley.edu/onlineviameta

2nd Workshop on Meta-Learning at NeurIPS 2018, Montréal, Canada.

https://sites.google.com/berkeley.edu/onlineviameta

2 Online Learning with a Mixture of Neural Networks
We formalize our online learning problem setting as follows: at each time step, the model receives
an input xt and produces a prediction ŷt. It then receives a ground truth label yt, which must be
used to adapt the model to increase its prediction accuracy on the next input xt+1. The true labels
are assumed to come from some task distribution P (Yt|Xt, Tt), where Tt is the task at time t. We
approximate this true model with a predictive model pθ(Tt)(yt|xt) on input xt for unknown task Tt.

We initialize our task distribution at time step 0 with θ0(T) = {θ∗} and |T | = 1. As mentioned above,
we choose to get this prior parameter vector θ∗ from MAML (Finn et al., 2017), which explicitly
optimizes for an initialization of a deep network that can achieve fast adaptation. After initializing
the task distribution with this prior, we then approximate task identities θt(Tt) and task probabilities
P (Tt) using an expectation maximization (EM) algorithm that optimizes the expected log-likelihood:

L = ETt∼P (Tt|xt,yt)[log pθt(T)(yt|xt)]. (1)

2.1 Approximate Online Inference

We use expectation maximization (EM) to update the model parameters. The E step estimates the task
distribution P (Tt) at the current time step, and the M step uses these inferred task responsibilities to
update the model parameters θt into θt+1.

We first estimate the expectations over all |T | parameters in the task distribution. The posterior of
each task probability P (Tt = T |xt,yt) can be written as follows:

P (Tt = T |xt,yt) ∝ pθ(T)(yt|xt, Tt = T)P (Tt = T). (2)

We then formulate the task prior P (Tt) using a CRP to enable new tasks to be instantiated during a
trial. At time t, the probability of each task T is

P (Tt = T) =
nT

t− 1 + α
(3)

where nT is the expected number of datapoints in task T for all steps 1, . . . , t − 1, and α is a
hyperparameter that controls the instantiation of new tasks. This prior therefore becomes

P (Tt = T) =

∑t−1
t′=1 P (Tt′ = T)

t− 1 + α
and P (Tt = new) =

α

t− 1 + α
(4)

Combining the prior and likelihood, we derive the following posterior task probability distribution:

P (Tt = T |xt,yt) ∝ pθ(T)(yt|xt, Tt = T)

[
t−1∑
t′=1

P (Tt′ = T) + δ(T is new)α

]
(5)

Having estimated P (Tt = T |xt,yt), we next perform the M step, which uses one gradient update to
improve the expected log-likelihood in Equation 1 based on the inferred task distributions: . Since
each t

θt+1(T) = θ∗ − β
t∑

t′=0

Pt(Tt′ = T |xt′ ,yt′)∇θt′ (T) log pθt′ (T)(yt′ |xt′) ∀ T (6)

If we assume that θt(T) has already been updated for all previous time steps t − 1, . . . , 0, we can
approximate this update by simply updating the previous parameters θt−1(T) on the current sample:

θt+1(T) = θt(T)− βPt(Tt = T |xt,yt)∇θt(T) log pθt(T)(yt|xt) ∀ T (7)

This procedure is an approximation, since updates to task parameters θt(T) will in reality change
the task probabilities at previous time steps. However, this approximation removes the need to
store previously seen data points and yields a fully online, streaming algorithm. We summarize the
complete algorithm in Alg. 1.

3 Experiments
We focus on these experimental questions: Can our method 1) autonomously discover some task
structure amid a stream of non-stationary data, 2) adapt to tasks that are further outside of the task
distribution than can be handled by a k-shot learning approach, 3) recognize and revert to tasks it has
seen before, 4) avoid overfitting to a recent task to prevent deterioration of performance upon the
next task switch, and 5) outperform other methods?

2

Figure 1: Online motor malfunction trials for half-cheetah, where task distributions either stay constant during
a trial or modulate at different frequencies. Online learning is critical for good performance, and continuous
gradient steps (GS) leads to overfitting to recent data and forgetting past skills.

Algorithm 1 Online Learning with a Parametric Mixture
of Neural Networks
Require: θ∗ from meta-training

Initialize |T | = 1, t = 0, θ0(T) = {θ∗}
for each time step t do

Calculate pθt(T)(yt|xt, Tt = T) for each T
Calculate Pt = Pt(Tt = T |xt,yt) for each T
Calculate θt+1 by adapting from θt for each T
Calculate θnew by adapting from θ∗ using xt−1,yt−1

if pθnew(t) > pθt(T) ∀T then
Add θnew to θt+1

Recalculate Pt for all T , using θt+1

Recalculate θt+1 for all T , using updated Pt
end if
T ∗ = argmaxT (pθt(T)(yt|xt, Tt = T))
Select θbest(t) = θt+1(T

∗)
Perform prediction ŷt = pθbest(t)(yt|xt)

end for

To study these questions, we instantiate
our online learning via meta-learning
method in a model-based RL context.
We set the input xt to be the concatena-
tion of K previous states and actions xt =
[st−1,at−1, st−2,at−2, . . . , st−K ,at−K], and
the output to be corresponding next states
yt = [st, . . . , st−K+1]. This provides us
with a slightly larger batch of data for each
online update, since using individual time
steps alone can be very noisy. The underlying
predictive model represents each transition as an
independent Gaussian, such that pθ(yt|xt) =∏K
i=1N (st−i+1; fθ(st−i,at−i), σ

2), where σ2

is a constant. To perform control, the model
with the highest task probability at the current
step is used for planning (Clavera et al., 2018).

We conduct experiments on the half-cheetah
agent and a hexapedal crawler agent in the MuJoCo physics engine (Todorov et al., 2012). We
compare to several alternative methods. We consider two other approaches that leverage meta-
training: (a) adapt at each time step from the meta-trained prior θ∗ (TS) as typically done (Clavera
et al., 2018), (b) adapt at each time step from the previous parameter (GS). The latter version oftens
overfits to recently observed tasks, so it should indicate the importance of our method effectively
identifying task structure to avoid overfitting and enable recall. We also compare to: MB (with-
out meta-training and without adaptation) and DE (without meta-training but with adaptation via
gradient-descent at each time step (Krause et al., 2017)).

3.1 Half-Cheetah Motor Malfunctions
In the first set of experiments, training data consists of each rollout experiencing a random actuator
malfunction (i.e., polarity or magnitude of actions applied to that actuator are altered). Fig. 1 (left)
shows that MB and DE are insufficient, and TS is unable to adapt enough to achieve these drastically
out-of-distribution test tasks. The continuous adaptation of GS performs well when the task is
constant (i.e., set ’sign negative’ where all actuators are prescribed to be opposite polarity), but GS
deteriorates under a non-stationary task distribution, as in the other tasks. Due to overspecialization
on recent incoming data, methods that continuously adapt like GS tend to forget and lose previously
existing skills. This overfitting is also illustrated by the deterioration in performance in Fig. 1 (right).
Finally, we visualize the latent task probabilities in Fig. 2, where the agent recognizes alternating
periods of normal and crippled-leg operation. Note that both recognition and adaptation are done
online, using neither a bank of past data nor a human-specified set of task categories.

3.2 Crippling of End Effectors on Six-Legged Crawler
Next, we study another, more complex agent: a 6-legged crawler. In these experiments, all mod-
els are trained on random joints being crippled (i.e., unable to apply actuator commands). Fig. 3
(left) shows all methods being comparable for a configuration of crippled joints fixed for the en-

3

Figure 2: Latent task probability distribution when the underlying motor malfunction changes every 500 time
steps. Our method recovers the task structure (online), recognizes task changes, and recalls previously seen tasks.

Figure 4: Left: online recognition of latent task probability distribution for alternating periods of normal/crippled
experience for crawler. Right: TS/GS not improving after multiple times of seeing the same tasks.

tire duration of its test-time experience. Fig. 3 (right) shows a non-stationary task distribution
that illustrates the need for online adaptation (MB fails), the need for a good prior to adapt from
(DE fails), the harm of overfitting to recent experience and forgetting older skills (GS low per-
formance), and the need for further adaptation away from the prior (limited TS performance).

Figure 3: Crawler: end-effector crippling.

Fig. 4 (left) shows that our method is able to build
its own representation of “task" switches, and we see
that this switch does indeed correspond to recogniz-
ing regions of leg crippling. Fig. 4 (right) shows the
cumulative sum of rewards for trials where 500-1000
and 1500-2000 were periods of crippling. We see that
TS does not improve when seeing a task again, GS
gets worse, and our method is noticeably better as it
sees the task more often. Note that with our method,
one skill does not explicitly hinder the other.

We ran another experiment by letting the crawler ex-
perience (during each trial) walking straight, making
turns, and sometimes having a crippled leg. We com-
pared the performance during the first 500 time steps
of "walking forward in a normal configuration" to its last 500 time steps of "walking forward in
a normal configuration." While the beginning performance of GS was comparable to our method
(average performance difference of +/-10%), its ending performance was 200% lower. Note the
detrimental effect of updating knowledge without allowing for separate task specialization/adaptation.

4 Discussion and Future Work
We presented an online learning method for neural network models that can handle non-stationary,
multi-task settings. Our method adapts the model directly with SGD, where an EM algorithm uses a
CRP prior to maintain a distribution over tasks. Although SGD generally makes for a poor online
learning algorithm in the streaming setting for large parametric models, we observe that, by (1)
meta-training the model for fast adaptation with MAML and (2) using our algorithm for probabilistic
updates at test time, we can enable effective online learning with neural networks. Our results showed
that our method can develop its own notion of task, continuously adapt away from the prior as
necessary (for tasks that require more adaptation), and recall tasks it has seen before. Although we
use model-based RL as our evaluation domain, our method is general and could be applied to other
streaming and online learning settings. An exciting direction for future work would be to apply our
method to domains such as time series modeling.

4

References
Léon Bottou. Online learning and stochastic approximations. On-line learning in neural networks,

17(9):142, 1998.

Ignasi Clavera, Anusha Nagabandi, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. Learning to adapt: Meta-learning for model-based control. arXiv preprint arXiv:1803.11347,
2018.

Julien Doyon and Habib Benali. Reorganization and plasticity in the adult brain during learning of
motor skills. Current opinion in neurobiology, 15(2):161–167, 2005.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. International Conference on Machine Learning (ICML), 2017.

J Randall Flanagan and Alan M Wing. Modulation of grip force with load force during point-to-point
arm movements. Experimental Brain Research, 95(1):131–143, 1993.

Robert Herman. Neural control of locomotion, volume 18. Springer, 2017.

Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation of neural
sequence models. CoRR, abs/1709.07432, 2017.

Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi. Online deep learning: Learning deep
neural networks on the fly. arXiv preprint arXiv:1711.03705, 2017.

Florian Stimberg, Andreas Ruttor, and Manfred Opper. Bayesian inference for change points
in dynamical systems with reusable states-a chinese restaurant process approach. In Artificial
Intelligence and Statistics, pp. 1117–1124, 2012.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

5

5 Other Results

Here, we present a set of experiments whose results demonstrate some unexpected results.

This set of experiments includes a half-cheetah agent traversing terrains of differing slopes. The
prior model is meta-trained on data from terrains with random shallow slopes, and the test trials
are executed on difficult out-of-distribution tasks such as basins, steep hills, etc. For the three meta-
learning and adaptation options (ours, GS, TS), we expect GS to perform poorly due to continuous
gradient steps causing it to overfit to recent data; that is, we expect that experience on the upward
slopes to lead to deterioration of performance on downward slopes, etc. However, we see (Fig. 5) that
the meta-learning procedure seems to have initialized the agent with a parameter space in which these
various “tasks" are not seen as substantially different. Thus, even when our method is faced with the
option of switching tasks or adding new tasks to its dynamic latent task distribution, it chooses not
to do so. Unlike findings that we will see later, it is interesting that the discovered task space here
does not correspond to human-distinguishable categorical labels. Finally, we clarify that these tasks
of changing slopes are not particularly similar to each other (and that the discovered task space is
perhaps useful), because the two non-meta-learning baselines (MB and DE) fail at these test tasks
despite having similar performance on the shallow training tasks.

Figure 5: Half-cheetah landscape traversal shows the need for adaptation, similar performance of the three
meta-learning approaches, and our method’s choice to only use one latent task variable to describe the varying
terrain.

6 Hyperparameters

In all experiments, we use a dynamics model consisting of three hidden layers, each of dimension
500, with ReLU nonlinearities. The control method that we use is random-shooting model predictive
control (MPC) where 1000 candidate action sequences each of horizon length H=10 are sampled
at each time step, fed through the predictive model, and ranked by their expected reward. The first
action step from the highest-scoring candidate action sequence is then executed before the entire
planning process repeats again at the next time step.

Below, we list relevant training and testing parameters for the various methods used in our experiments.
Task/itr corresponds to the number of tasks sampled during each iteration of collecting data to train
the model, and # TS/itr is the total number of times steps collected during that iteration (sum over all
tasks).

6

Table 1: Hyperparameters for train-time

Iters Epochs # Tasks/itr # TS/itr K outer LR inner LR (η)

Ours/TS/GS 12 50 16 2000-3000 16 0.001 0.01

MB/DE 12 50 16 2000-3000 16 0.001 N/A

Table 2: Hyperparameters for run-time

α(CRP) LR (model update) K (previous data)

Ours 1 0.01 16

GS N/A 0.01 16

TS N/A 0.01 16

MB N/A N/A N/A

DE N/A 0.01 16

7 Test-time Performance vs Training Data

We verify below that as the meta-trained models are trained with more data, their performance on test
tasks does improve.

Figure 6: Performance on test tasks (i.e., unseen during training) of models that are meta-trained with differing
amounts of data. Performance numbers here are normalized per agent, between 0 and 1.

7

	Introduction
	Online Learning with a Mixture of Neural Networks
	Approximate Online Inference

	Experiments
	Half-Cheetah Motor Malfunctions
	Crippling of End Effectors on Six-Legged Crawler

	Discussion and Future Work
	Other Results
	Hyperparameters
	Test-time Performance vs Training Data

