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Abstract

Modular meta-learning is a new framework that generalizes to unseen datasets by
combining a small set of neural modules in different ways. In this work we propose
abstract graph networks: using graphs as abstractions of a system’s subparts
without a fixed assignment of nodes to system subparts, for which we would need
supervision. We combine this idea with modular meta-learning to get a flexible
framework with combinatorial generalization to new tasks built in. We then use it
to model the pushing of arbitrarily shaped objects from little or no training data.

1 Introduction
Meta-learning, or learning-to-learn, aims at fast generalization. The premise is that by training on a
distribution of tasks we can learn a learning algorithm that, when given a new task, will learn from
very little data. Recent progress in meta-learning has been very promising. However, we would like
to generalize in broader ways by exploiting inherent structure and compositionality in the domains.

We use the modular meta-learning framework (Alet et al., 2018), which generalizes by learning a set of
neural network modules that can be composed in different ways to solve a new task, without changing
their weights. We generalize to unseen data-sets by combining learned concepts in the domain,
exhibiting combinatorial generalization; "making infinite use of finite means"(von Humboldt).

Combinatorial generalization is also one of the main motivations behind graph neural networks
(GNNs). Therefore, we suggest that GNNs are an ideal structure to use as a rule for combining
modules in modular meta-learning. However, GNNs are typically only used when there is a clear
underlying graph structure in the domain: sets of entities and relations (such as charged particles or
body skeletons) with supervised data for each entity. This limits the domains in which graph networks
can be applied. We propose abstract graph networks (AGNs), which use GNNs as an abstraction of
a system into its sub-parts without the need to a-priori match each subpart to a concrete entity. A
similar idea underlies finite element methods frequently used in mathematics and engineering.

We show that combining modular meta-learning and AGNs generalizes well by choosing different
node and edge modules, leading to flexible generalization from little data. We apply this method
to a new diverse real-world dataset (Bauza et al., 2018) of a robot pushing objects of varying mass
distribution and shape on a planar surface. We generalize over both the distribution of objects we
trained on and out-of-distribution objects and surfaces from little data. Moreover, with a second
model (section 3.3) we generalize to new objects with no data, only a diagram of the object.

Figure 1: Modeled objects are made of the four possible sides. Masses can be attached
in the holes. There is an extra hole in the triangle, covered by the wafers.
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Figure 2: Modular meta-learning with Graph Networks; adapted from Alet et al. (2018).

2 Related Work

The work closest to ours in the meta-learning literature is by Kopicki et al. (2017) and Alet et al.
(2018). However, the former uses a product of experts and needs information about the points of
contact. The latter uses modular neural networks with an composition similar to a combination of
experts, which we show generalizes less well than our abstract graph neural network model.

We combine modular meta-learning and AGNs, aiming for combinatorial generalization by composing
a set of modules into different structures. This is part of a growing body of work that merges the best
aspects of deep learning with structured solution spaces in order to obtain broader generalizations
(Tenenbaum et al., 2011; Andreas et al., 2016; Meyerson & Miikkulainen, 2017; Chang et al., 2018).

By choosing between multiple modules for each edge and nods, our work is related to Kipf et al.
(2018). However, our meta-learning framework encodes the bias of time-independence and we are
able to optimize modules as a group instead of having to select them independently of one another.
More related work on GNNs can be found at the beginning of section 3.2 where we introduce abstract
graph networks in its context; additional related work can be found in appendix B.

3 Methods
In this section we describe modular meta-learning, abstract graph networks, graph element networks
and how they can be combined.

3.1 Modular meta-learning

Meta-learning, or learning to learn, can be seen as learning a learning algorithm. More formally,
in the context of supervised learning, instead of learning a regressor f with parameters Θ with the
objective that f(xtest,Θ) ≈ ytest, we aim to learn an algorithm A that takes a small training set
Dtrain = (xtrain,ytrain) and returns a hypothesis h that performs well on the test set:

h = A(Dtrain ,Θ) s.t. h(xtest) ≈ ytest; i.e. A minimizes L(A(Dtrain ,Θ)(xtest),ytest).

Similar to conventional learning algorithms, we optimize Θ, the parameters of A, to perform well.
Analogous to the training set, we have a meta-training set of tasks each with its own train and test.

Modular meta-learning (Alet et al., 2018) learns a set of small neural network modules and generalizes
by composing them. In particular, let m1, . . . ,mk be the set of modules, with parameters θ1, . . . , θk
and S a set of structures that describes how modules are composed. For example, simple compositions
can be adding the modules outputs, concatenating them, or using the output of several modules to
guide attention over the results of other modules.

Then Θ = ∪θi, and the algorithm A operates by searching over the set of possible structures S to
find the one that best fits Dtrain , and applies it to xtest. Let hS,Θ be the function that predicts the
output using the modular structure S and parameters Θ. Then:

S∗ = arg min
S∈S
L(hS,Θ(xtrain),ytrain); A(Dtrain ,Θ) = hS∗,Θ.

3.2 Abstract graph networks

Graph neural networks (Gori et al., 2005; Scarselli et al., 2009; Battaglia et al., 2018) perform
computations over a graph, with the aim of incorporating relational inductive biases: assuming the
existence of a set of entities and relations between them. In general, GNNs are applied in settings
where nodes and edges are explicit and match concrete entities of the domain. For instance, nodes
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can be objects (Chang et al., 2016; Battaglia et al., 2016), parts of these objects (Wang et al., 2018;
Mrowca et al., 2018) or users in a social network. In general, nodes and edges represent explicit
entities and relations, and supervised data is required for each component. We propose to use GNNs
as an abstraction of a system’s sub-parts,without a concrete match between entities and nodes.

Let G be a graph,we define an encoding function fin that goes from input to initial states of the
nodes and edges in G. We run several steps of message passing (Gilmer et al., 2017): in each step,
nodes read incoming messages, which are a function of their neighbours’ hidden states and their
corresponding edges, and use their current state and the sum of incoming messages to compute their
new state. Finally, we define a function fout that maps the nodes final states to the final output:
fout

(
MP (T ) (fin(x))

)
; trainable end-to-end. This defines a means of combination for the modules,

giving us different (differentiable) losses depending on the module we put in each position.

3.3 Graph element networks

Finite element methods(FEMs) are a widely used tool in engineering to solve boundary-value problems
for partial differential equations. They subdivide a complex problem in a domain (such as analyzing
stress forces on a bridge or temperature in a building) into a mesh of small elements where the
dynamics of the PDE can be approximated. With that inspiration, we propose a subtype of abstract
graph network, which we denote graph element networks (GEN). In GENs, we place nodes in a region
(usually of R2 or R3); each having specific coordinates. These nodes induce a Voronoi diagram
where a node is responsible for all points in space to which it is the closest representative.

As in general AGNs, we have to define a function between input and graph input (fin) and between
graph output and final output (fout) and the connectivity between the nodes. 1) fin: a natural choice
is to map the input to an initial ’vector field’ at a particular position in space. We can give the input to
the node responsible for the corresponding Voronoi region. For example, in our pushing example
we pick the initial position of the pusher and feed the input (including the said initial position) to its
closest node. 2) Connectivity: A simple choice is a regular grid over the region, thus also defining
the edges. A more general solution, with many desirable properties, is to use the edges from the
Delaunay triangulation of the nodes. The Delaunay triangulation is the graph where two nodes
are connected if and only if their corresponding Voronoi regions share an edge. 3) fout: a learned
integrator function that either sums or averages a transformation over the final states of each module;
thus being independent of the order and number of nodes.

In GENs nodes are still abstract (meaning they do not have a 1-to-1 correspondence with a discrete
element in the system), but they are grounded in a particular subregion. This makes it possible for
other data to inform the types of node modules to put in each node. For example, in our experiments
with pushing objects, the node types are informed by whether there is a mass, regular surface or
empty space in that particular position in space. This information can either completely determine the
node type (as in our current experiments) or only partially inform it: for instance we could imagine
knowing the shape of an object but not the density of each subpart.

Note that, in contrast with finite element methods, the dynamics of the system follow completely
unknown equations; giving us a more complicated, but also more flexible, framework. GEN nodes
and edges have different types, allowing dynamics to be different in different parts of the space; for
example depending on the material properties of that particular region. Moreover, we will also have a
similar trade-off between accuracy and computational performance where a bigger graph of smaller
Voronoi regions will have higher accuracy at the expense of more computational cost.

When graph structures are fixed and module types are completely determined by an external source
(such as a picture of the object), we are doing multitask learning between the meta-train tasks and
then transferring to new domains without any need for experimental data; only using the picture of
the object. However, in general the nodes may not be known (a material not seen at training) or we
may customize the graph to the system to get the best accuracy given fixed computational resources.

4 Experiments

The dataset (Bauza et al., 2018), consists of 250 pushes for each of 250 objects, which were
constructed by attaching 4 pieces to a central part with magnets and possibly adding masses, such as
the one shown in figure. We also collected data for out-of-distribution objects and a different surface.
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Figure 3: Left: AGN wheel graph
plus ’pusher’ node (details in ap-
pendix C). Center: GEN with a
5x5 grid, nodes conditioned on im-
age; highlighted two Voronoi regions.
Right: not implemented GEN with
Delaunay edges and optimized posi-
tions

For pushing, we train two structures. 1) a few-shot learning abstract graph network structure which
models the object as a wheel graph with bidirectional edges. This structure has many desirable
properties: low graph diameter, sparsity and a notion of locality (the position of nodes matters). All
details can be found in appendix C. 2) A multitask learning graph element network, where we also
receive a top-view image for each object, from which we can extract a model without the need for
any data. For the GEN, the graph is a 5 by 5 grid on [−10cm, 10cm]2 with the module type of each
node is entirely determined by the ’material’ at its position (empty, small/big mass, no mass).

We normalize each dimension of input and output so that the MSE (mean square error) of each
coordinate is 1 across all meta-training dataset points. This setting allows us to create a loss that
combines angle changes with position changes, which have different orders of magnitude. As a result,
the baseline of predicting the current position for the next position (no motion) has MSE 1, and allows
to interpret the performance of other algorithms as a percentage of the total variance.

We use algorithm 1 to train our system on 200 objects/tasks and test on 50 tasks; within each task
we train on 50 points and test on 200. We compare against an object-independent regressor that
has a single training set with the full 250 points for 200 objects(50k points), and evaluates on the
50 remaining tasks. Additionally, we compare to modular meta-learning but on an attention-based
non-AGN structure used in our previous work. We find that the method with pooled data performs
the worst, outperformed by both modular meta-learning approaches, and that the use of AGNs
significantly improves performance over the original modular structure. See table 1 for all results.

We also picked 5 objects for which we collected 2500 points, trained a single model for each of them
on 2000 points and tested on 500 and obtained a MSE of 0.04. Previous experiments have shown
that the test loss stops decreasing significantly after 2000 points (Bauza & Rodriguez, 2017), which
leads us to believe this is a good approximation of the Bayes error rate: the irreducible error due to
camera and actuation noise, position on the surface, and other factors. Therefore, even though our
meta-learned models only use 50 points we are very close to the estimated Bayes error.

Evaluation MSE distance equivalent

Predicting no movement 1.00 21.6 mm
Estimated Bayes error rate .04 4.3 mm
Original distribution (no meta-learning) .14 8.1 mm
Original distribution (Alet et al. (2018)) .08 6.1 mm
Original distribution (meta-learning & AGN) .06 5.3 mm
Original distribution (image-conditioned & GEN) .05 4.7 mm
Out of distribution obj.&surface (no meta-learning) .51 15.4 mm
Out of distribution obj.&surface (Alet et al. (2018)) .34 12.5 mm
Out of distribution obj.&surface (meta-learning & AGN) .29 11.6 mm
Out of distribution objects (no meta-learning) .34 12.7 mm
Out of distribution objects (Alet et al. (2018)) .30 11.8 mm
Out of distribution objects (meta-learning & AGN) .25 10.8 mm
Out of distribution surface (no meta-learning) .21 9.8 mm
Out of distribution surface (Alet et al. (2018)) .09 6.6 mm
Out of distribution surface (meta-learning & AGN) .08 5.9 mm

Table 1: Summary of results. Different datasets are separated by horizontal lines.

We evaluate on 11 shapes that were not constructed using the four sides and magnets (see Bauza et al.
(2018) for details). We also evaluated the effect of using a different surface (plywood) rather than the
one used for the training data. In both cases we observe a predictable drop in performance, but we
account for more than 70% of the variance, even when both factors change.
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A BOUNCEGRAD algorithm for abstract graph networks

Notation

• G: graph, with node n1, . . . , nr and directed edges e1, . . . , er′ .
• fin: encoding function from input to graph initial states.
• fout: decoding function from graph final states to output.
• G: set of node modules g1, . . . , g|G|, where gi is a network with weights θgi .
• H: set of edge modules h1, . . . , h|H|, where hi is a network with weights θhi .
• S: a structure, one module per node mn1

, . . . ,mnr
, one module per edge me1 , . . . ,mer′ .

Each mni
is a pointer to G and each mej is a pointer to H.
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• T 1, . . . , T k: set of regression tasks, from which we can sample (x, y) pairs.

• MP(T )(G, S)(xt)→ xt+1: message-passing function applied T times.
• L(ytarget, ypred): loss function; in our case |ytarget − ypred|2.
• L: instantiation of a loss. This includes the actual loss value and infrastructure to backprop-

agate it.

Algorithm 2 Alternating optimization between structures and modules on abstract graph networks.
1: procedure INITIALIZESTRUCTURE(G,G,H) . Initialize with random modules
2: for ni ∈ G.nodes do S.mni ←random_elt(G)
3: for ei ∈ G.edges do S.mei ←random_elt(H)
4: procedure PROPOSESTRUCTURE(S,G,G,H)
5: P ← S
6: if Bernouilli(1/2) then
7: idx← random_elt(G.nodes); P.mnidx ←random_elt(G)
8: else
9: idx← random_elt(G.edges); P.meidx ←random_elt(H)

10: return P
11: procedure EVALUATE(G, S,L,x,y)
12: p← fout

(
MP(T )(G, S)(fin(x))

)
. Running the AGN with modular structure S

13: return L(y,p)
14: procedure BOUNCEGRAD(G, fin, fout,G,H, T 1, . . . , T k) . Modules in G,H start untrained
15: for l ∈ [1, k] do
16: Sl ← InitializeStructure(G,G,H)

17: while not done do
18: l← random_elt([1, k])
19: P ← ProposeStructure(Sl,G,G,H)
20: (x,y)← sample(T l) . Train data
21: LSl ←Evaluate(G, Sl,L,x,y)
22: LP ←Evaluate(G, P,L,x,y)
23: Sl ←SimulatedAnnealing((Sl, LSl), (P,LP )) . Choose between Sl and P
24: (x′,y′)← sample(T l) . Test data
25: L←Evaluate(G, Sl,L,x′,y′)
26: for h ∈ H do θh ←GradientDescent(L, θh)
27: for g ∈ G do θg ←GradientDescent(L, θg)
28: return G,H . Return specialized modules

B Extra related work

The literature in meta-learning (Schmidhuber, 1987; Thrun & Pratt, 2012; Lake et al., 2015) and
multi-task learning(Torrey & Shavlik, 2010) is now too extensive to cover entirely, with (Koch et al.,
2015; Vinyals et al., 2016; Duan et al., 2017; Mishra et al., 2018; Finn et al., 2017; Nichol et al.,
2018) being some prominent examples. The work closest to ours in the meta-learning literature
is by Kopicki et al. (2017) and Alet et al. (2018). However, the former uses a product of experts
and needs information about the points of contact. The latter uses modular neural networks with an
approach similar to a combination of experts, which we show generalizes less well than our graph
neural network model.

We join modular meta-learning (Alet et al., 2018) and abstract graph networks, aiming for combinato-
rial generalization (Humboldt, 1999; Chomsky, 2014) by composing a set of modules in different
structures. In this sense, we are part of a growing number of works aiming to merge the best of deep
learning with structure aiming at broader generalizations (Tenenbaum et al., 2011; Andreas et al.,
2016; Meyerson & Miikkulainen, 2017; Xu et al., 2017; Fernando et al., 2017; Rosenbaum et al.,
2017; Marcus, 2018; Pearl, 2018; Liang et al., 2018; Battaglia et al., 2018; Chang et al., 2018; Chitnis
et al., 2018; Ellis et al., 2018).

We are part of a growing body of work that merges the best aspects of deep learning with structured
solution spaces in order to obtain broader generalizations (Tenenbaum et al., 2011; Andreas et al.,
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2016; Meyerson & Miikkulainen, 2017; Xu et al., 2017; Fernando et al., 2017; Rosenbaum et al.,
2017; Marcus, 2018; Pearl, 2018; Liang et al., 2018; Battaglia et al., 2018; Chang et al., 2018; Chitnis
et al., 2018; Ellis et al., 2018).

Graph neural networks (Gori et al., 2005; Scarselli et al., 2009; Gilmer et al., 2017; Battaglia et al.,
2018) perform computations over a graph, with the aim of incorporating relational inductive biases:
assuming the existence of a set of entities and relations between them. In general, GNNs are applied
in settings where nodes and edges are explicit and match concrete entities of the domain. For instance,
nodes can be objects (Chang et al., 2016; van Steenkiste et al., 2018; Battaglia et al., 2016; Watters
et al., 2017) or be parts of these objects (Wang et al., 2018; Sanchez-Gonzalez et al., 2018; Battaglia
et al., 2016; Mrowca et al., 2018; Li et al., 2018). In general, nodes and edges represent explicit
entities and relations, and supervised data is generally required for each component.

The interest on pushing is not new and it has been extensively studied theoretically (Mason, 1986;
Peshkin & Sanderson, 1988; Lynch et al., 1992; Liu, 2011; Behrens, 2013; Zhou & Mason, 2017),
with pure learning methods (Finn et al., 2016; Agrawal et al., 2016; Pinto et al., 2016; Bauza &
Rodriguez, 2017; Alet et al., 2018) and by leveraging theory for machine learning methods (Hogan
et al., 2017; Ajay et al., 2018; Byravan & Fox, 2017).

C All details about our Abstract Graph Network for pushing

We can describe the dynamics of the object as a function of the dynamics of its parts. To do so, we
model the object as a graph, and more concretely, a wheel graph. A wheel graph has the property of
having a very low diameter (2) yet, in contrast to a star graph, also has a notion of ’locality’. Moreover,
all exterior nodes are computationally equivalent, which will make it easier to share modules between
them.

The pusher is modeled via a single node. This node will interact with all the other nodes via the same
’edge module’. Since we would like the pusher to only interact with a very small part of the object
we will use a (learned) attention mechanism, ensuring that the module node sends a stronger signal to
a single part of the object. This is similar to Velickovic et al. (2017) using attention in the outgoing
direction instead of incoming edges.

Our module composition is to build a graph neural network with the shape of a wheel graph. Therefore,
for a wheel of N exterior nodes we will need 4N ’edge modules’: N going clockwise, N counter-
clockwise, N to the center and N out from the center. We then have N + 1 node modules (N exterior,
1 central). Filling these slots with different modules will give us different structures, which in turn
will lead to different predictions. The pusher node and edge modules are constant across datasets.

As we mentioned earlier, all the exterior nodes are symmetric; which doesn’t allow us to have a
sense of direction. To break this symmetry set a custom ’code’ to each node’s hidden state; modules
can read, but not write, to these parts of the hidden state. The code for the i-th exterior node to
[cos 2πi

N , sin 2πi
N , 0, 0, 0, 0, 0]. The central node is initialized with [0, 0, 1, 0, 0, 0, 0, 0] and the pusher

with [0, 0, 0, 1, Xx, Xy, Xθ], initially being the only node containing the input.

We run 5 steps of message passing; enough for the information to go from the pusher to node A(1
step), then node B (2 steps), and finally to C(2 steps) with the goal of capturing global dynamics.
After these 5 steps we pick the last 3 positions of the each exterior node and multiply them by the
cosine of the corresponding angle, we pick the -6:-3 positions and multiply them by the sine of the
corresponding angle and average all these vectors into a 3-dimensional output. Note that, since the
integral of sine and cosine is 0, the Graph Neural Network is forced to learn to place different states
in different nodes.

Finally, note that we fix the angles, not the concrete positions. Since these angles can be defined for all
shapes; this abstraction naturally extends to all 2d shapes. Moreover, we expect (and experimentally
show) that modules can be reused to play similar local and global effects on very different shapes.
We conjecture that the same architecture could model rich object-object interactions: this could be
achieved by having multiple wheels and edges with attention created between nearby objects at each
timestep; similar to Chang et al. (2016).
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