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Abstract

Model-based control relies on having an accurate dynamics model. In situations
where the dynamics of the robot is not static (e.g., after a delivery quadcopter
picks or drops a package), it is paramount to accurately both estimate how the
dynamics is influenced and account for these changes at the control level. One
way of doing so is to condition the dynamics model on some latent variable which
represents the context. In this paper, we present CAMeLiD, a data-driven approach
to learn controllers that can quickly adapt to previously unseen dynamics. This is
done through a high-capacity neural network trained in a meta-learning manner
to infer the context of the dynamics and maintain approximate posteriors over the
dynamics model. This model is paired with an uncertainty-aware model-based
control framework based on iLQG. We demonstrate CAMeLiD on a quadrotor
delivery experiment, and show it results in substantial performance improvement
over baselines.

1 Introduction

Model-based learning control is a compelling framework for robotic learning due to its adaptivity,
sample efficiency and scalability [9, 6, 25, 3]. However, high capacity models such as neural networks
can not be rapidly adapted online, thus preventing their use in adaptive control-based methods
[14]. Gaussian Process models are attractive, as their Bayesian predictions are useful even with
limited data online, but they scale poorly [5]. Furthermore, incorporating prior information beyond
relatively simple characteristics such as smoothness or periodicity properties into GP regression can
be challenging, limiting their sample efficiency. Recently, meta-learning approaches have been shown
to be effective choices for rapid adaptation of high capacity models online [8]. However, previous
approaches such as [4] naively apply sampling-based control methods in a certainty-equivalent
fashion with a point estimate of the posterior dynamics model. In contrast, in this work we maintain
a more expressive estimate of the posterior dynamics model. We show how a Bayesian approach
to meta-learning dynamics models can be paired with an uncertainty-aware (or cautious, in the
terminology of adaptive control [19]) control algorithm to provide a more robust framework for
nonlinear adaptive control. In contrast to certainty-equivalent methods such as [4] that only leverage
an adaptive, deterministic dynamics model, we exhibit better performance and stability characteristics.

Problem Statement. We aim to control an unknown system, from which we have observed tra-
jectory data with varying latent parameters. For example, if we have a delivery quadrotor, we
may observe flight data for the vehicle with different loading conditions. Formally, we consider a
discrete-time dynamical system of the form

xt+1 = f(xt, ut; θ) + ε , (1)

where f(·, ·; ·) is a continuous nonlinear function, x ∈ X denotes the state, and u ∈ U is the action.
The dynamics are parameterized by latent parameters θ ∼ p(θ), and ε is a disturbance term that is
assumed to be Gaussian with known variance Σε. We assume the cost function, Cost(x, u) is known.
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Critically, however, we do not assume knowledge f , θ, or p(θ) to be known. We assume interaction
with the system is episodic, and θ is sampled at the beginning of each episode and is constant over
the episode.

We assume access to trajectory data D = {Dτ (θj)}Jj=1, where Dτ (θj) = {((xt, ut), xt+1)}τt=0.
From this data, we wish to learn an approximate model for both the dynamics function f , as well
as an approximate prior over θ. This setting is similar to the standard system identification setting,
although θ is not explicitly known to system designer as it may be in system identification. The
problem can thus be formulated as, given dataset D, problem horizon T , and initial state distribution
ρ(x0),

min
π∈Π

Eθ∼p(θ),x0∼ρ(x0)

[
T∑
t=0

Cost(xt, π(xt))

]
, (2)

subject to the dynamics, (1). We write π to denote a policy, and Π to denote the set of possible
policies. While this notation is more commonly used in the model-free regime, we take a model-based
approach in this paper. This problem can be seen as a generalization of the standard adaptive control
problem [2] to the “multi-task” case [1] or as the meta-reinforcement learning problem [13, 20, 22]
in which the cost function is known.

2 Meta-learning via ALPaCA models

Model-based control in uncertain environments with nonlinear dynamics requires a regression model
that is high-capacity, able to accurately capture the nonlinear dynamics; data-efficient, so as to make
the most of the limited transition data observed online; and computationally efficient, so that it may
be used in real-time.

ALPaCA is an efficient Bayesian approach to function regression in a meta-learning/multi-task
learning setting [15]. In this formulation, function regression is performed by using observed data to
update a posterior belief over a family of possible functions. In the context of adaptive dynamics
modeling, we are intereseted in the family of functions f : Rnx ×Rnu ×Θ→ Rnx parameterized by
latent variables θ ∈ Θ distributed according to p(θ). ALPaCA models a distribution over f through
the parametric model f̂(x) = KTφ(x, u;w), where φ(x, u;w) represents a feed-forward neural
network with weights w and output dimension nφ, and K is a nφ × nx matrix which can be thought
of as the linear last-layer weights of the network. ALPaCA maintains a matrix-normal distribution
over the last layer weights K ∼MN (K̄0,Λ

−1
0 ,Σε). This particular form reduces the task of online

function regression to Bayesian Linear Regression in the feature space defined by φ. This prior over
K is self-conjugate, so at time t the posterior over K is p(K | Xt,Φt−1) = MN (K̄t,Λ

−1
t ,Σε),

where
Λt = ΦTt−1Φt−1 + Λ0 and K̄t = Λ−1

t (Φt−1Xt + Λ0K̄0) ,

where XT
t = [x1, . . . , xt] and ΦTt−1 = [φ(x0, u0), . . . , φ(xt−1, ut−1)] are constructed from the

transition data observed up until time t.

How quickly and how well this Bayesian linear regression algorithm can learn online depends on
how well the feature mapping φ and the prior on K are suited to the domain. Critically, ALPaCA
employs a meta-learning strategy, training offline to optimize the performance of the online learning
algorithm for the domain of interest.

Specifically, leveraging an offline dataset D containing collections of (x, u, x′) tuples from different
contexts (i.e. values of θ), ALPaCA optimizes the weightsw of the feature mapping and the parameters
K̄0,Λ

−1
0 of the prior. In this offline meta-learning phase, we sample from D a collection DT (θj) =

{(xj,i, uj,i, xj,i+1)}T−1
i=0 , with xj,i+1 ∼ N (f(xj,i, uj,i; θj),Σε). We use the BLR update rules to

compute the posterior given the first t samples from the collection, which gives the posterior predictive
density for new transitions

x̂t+1 ∼ q(xt+1 | xt, ut, D̃t) = N (K̄T
t φ(xt, ut;w),Σt) , (3)

where
Σt = (1 + φT (xt, ut;w)Λ−1

t−1φ(xt, ut;w))� Σε , (4)

and D̃t is an online context dataset. ALPaCA optimizes the predictive density for w, K̄0, and Λ−1
0

via stochastic gradient descent, using the negative log likelihood of the remaining samples in D̃T

under this posterior as a loss function. This is equivalent to minimizing the KL divergence between
ALPaCA’s posterior distributions and the empirical posterior distributions seen in the dataset D.
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3 CAMeLiD

Forward Uncertainty Propagation. In model-based RL and adaptive control, it is necessary to
make good long-term predictions. However, models trained to perform one-step prediction have been
shown to be susceptible to compounding error when used to predict longer horizons [7, 11]. We
derive an approach to Gaussian uncertainty propagation tailored to the ALPaCA dynamics model that
enables computationally tractable yet accurate cost estimation over multistep predictions. Specifically,
we will replace the one-step max likelihood objective of ALPaCA with the multistep objective

max
K0,Λ0,w

J∑
j=1

p(x
(j)
T | x

(j)
0:t , u

(j)
0:t , K̄0,Λ0, w) , (5)

for arbitrary t and T ≥ t+ 1. Due to the nonlinear dynamics, exactly computing the density of x(j)
T

is intractable, and so we leverage linearization and moment matching to compute a tractable Gaussian
approximation. We do not consider the updates to the dynamics model that would occur online.1

Due to space constraints, we will exclude the derivation of the forward uncertainty propagation. The
result, however, is that p(x(j)

i+1 | x
(j)
0:t , u

(j)
0:t , K̄0,Λ0, w) ≈ N (µi+1,Σi+1), with

µi+1 = K̄Tφ(µi, ui) and Σi+1 = Σε+K̄
Tφx(µi, ui)Σiφ

T
x (µi, ui)K̄+E[φTi Λ−1φi]�Σε, (6)

with K̄ := K̄t, Λ := Λt, φx = ∇xφ, φi = φ(xi, ui), and

E[φTi Λ−1φi] = tr(φTx (µi, ui)Λ
−1φx(µi, ui)Σi) + φT (µi, ui)Λ

−1φ(µi, ui).

This objective may be used to train the ALPaCA dynamics model for extended-horizon prediction.

Uncertainty-Aware Control. In this section, we derive a locally-optimal stochastic control algo-
rithm, which may be seen as a version of iLQR-style control schemes [24]. This controller alternates
between forward passes, in which the system dynamics are linearized, and backwards passes in which
the control is locally optimized. These local quadratic optimal control methods have been shown
to be practical in numerous applications, from large-scale robot control [23] to several applications
in reinforcement learning [18, 12]. The controller derivation proceeds in terms of deviations from a
nominal trajectory, which are written δxi and δui. The forward pass is done with nominal controls
ūi to generate nominal means µ̄i. For the backward pass, we must linearize the ALPaCA dynamics
model around the nominal trajectory. Let Ai = φx(µ̄i, ūi) and Bi = φu(µ̄i, ūi). Then, we may
write the linearized deviation dynamics as δµi+1 = K̄TAiδµi + K̄TBiδui. We will leverage the
approximate relationship, φ(xi, ui) ≈ φ̄i +Aiδµi +Biδui. Note that δxi+1 ∼ N (δµi+1,Σi+1).

Quadratizing, the cost-to-go may be written as Ji(δxi) = Vi + V Tx,iδxi + 1
2δx

T
i Vxx,iδxi. By the

Bellman equation, Ji(δxi) may be written

min
u∈U
{Cost(δxi, δui) + E[Ji+1(δxi+1)]} = min

u∈U

1

2

[
1
δxi
δui

]T  Q̂i Q̂Tx,i Q̂Tu,i
Q̂x,i Q̂xx,i Q̂xu,i
Q̂u,i Q̂ux,i Q̂uu,i

[
1
δxi
δui

]
(7)

with
Q̂i = Ci + Vi+1 + (1 + φ̄Ti Λ−1φ̄i)tr(ΣεVxx,i+1) ,

Q̂x,i = Cx,i +ATi K̄Vx,i+1 + (ATi Λ−1φ̄i)� tr(ΣεVxx,i+1) ,

Q̂u,i = Cu,i +BTi K̄Vx,i+1 + (BTi Λ−1φ̄i)� tr(ΣεVxx,i+1) ,

Q̂xx,i = Cxx,i +ATi K̄Vxx,i+1K̄
TAi + (ATi Λ−1Ai)� tr(ΣεVxx,i+1) ,

Q̂uu,i = Cuu,i +BTi K̄Vxx,i+1K̄
TBi + (BTi Λ−1Bi)� tr(ΣεVxx,i+1) ,

Q̂ux,i = Q̂Txu,i = Cux,i +BTi K̄Vxx,i+1K̄
TAi + STxu,i + (BTi Λ−1Ai)� tr(ΣεVxx,i+1) ,

where the C terms are the quadratization of the cost function. The last term in each equation captures
the model uncertainty. Indeed, note that as Λ−1 → 0, the effect of the model uncertainty decays
to zero. Combining these expressions, the optimal control law may be written δui = li + Liδxi,
where li = −Q̂−1

uu,iQ̂u,i, and Li = −Q̂−1
uu,iQ̂ux,i. Finally, the value may be computed recursively via

Vi = Q̂i − Q̂Tu,iQ̂
−1
uu,iQ̂u,i , Vx,i = Q̂x,i − Q̂Tu,iQ̂

−1
uu,iQ̂ux,i , and Vxx,i = Q̂xx,i − Q̂Tux,iQ̂

−1
uu,iQ̂ux,i.

1Considering the impact of control to parameter uncertainty is known as dual control, and is known to be
extremely difficult, even in the approximate case [17].
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Controller Dyn. Cost
Baseline 1-Step 519± 29.8

N-Step 830± 182
CE 1-Step 567± 55.6

N-Step 515.5± 32.7
Cautious 1-Step 605± 110

N-Step 506.5± 31.0

Controller Dyn. Failure Rate
Baseline 1-Step 0.10 (0.045, 0.165)

N-Step 0.02 (0.000, 0.057)
CE 1-Step 0.26 (0.178, 0.349)

N-Step 0.07 (0.023, 0.127)
Cautious 1-Step 0.13 (0.067, 0.201)

N-Step 0.00 (0.000,0.022)

Table 1: Performance (average cost) and failure
rate on the quadrotor delivery task.
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Figure 1: One sample trajectory of the quadrotor
problem under the CAMeLiD controller (black).
The dotted red trajectory shows the baseline con-
troller. The green trajectories are rollouts under
the sequence of actions taken by the controller,
under K sampled from the posterior.

Algorithm Overview. Using the multi-step training objective discussed previously, CAMeLiD
may be trained via maximum likelihood. The training objective closely follows that of [15], just
with a multi-step objective. Because the approximate posterior predictive distribution is Gaussian,
the feature weights w as well as the prior over the last layer may be learned via stochastic gradient
descent.

During the online (control) phase, the uncertainty-aware iLQG controller may be used. In our
experiments, we use the regularization approach and convergence criteria of [23], which substantially
improved performance. As is standard for iLQG, CAMeLiD consists of a forward pass in which the
cost function is quadratized and the dynamics are linearized around the nominal trajectory. In the
backward pass, the nominal control is update via computing the cost-to-go terms and the associated
control policy. To improve the efficiency of the online model update, a recursive last layer update is
used [15].

4 Experimental Results

We demonstrate the capabilities of the CAMeLiD framework on the physically intuitive domain of a
planar quadrotor, a standard benchmark problem in control and reinforcement learning [21, 16, 10].
We consider a delivery task, where a quadrotor has the goal of moving to a pre-specified goal state,
with a random mass attached at a random position along the quad. We encode the locomotion task
through a cost function which encourages the agent to move to position (0, 3) while remaining
upright.

We compare three control schemes on this task. We refer to the uncertainty-aware model we have
described in the previous section as Cautious in our experimental results. The Certainty Equivalent
(CE) model consists of the adaptive ALPaCA-based dynamics model without the additive S terms
in the iterative LQG. As such, the CE approach matches the approach taken in [4], which used
meta-learned dynamics models that provide only a point estimate of the posterior. The Baseline
model is simply a dynamics model trained via domain randomization. It is trained to maximize log
likelihood over all training data, without online adaptation. It is paired with a certainty-equivalent
controller. We investigate these three approaches with both dynamics models that have been trained
on one step prediction and multi-step prediction. The dynamics models were trained on a dataset of
trajectories of the quadrotor maneuvering with different payloads and configurations.

The mean performance, together with 95% confidence intervals, of CAMeLiD is reported in Table 1.
As the high cost of crashing skewed the mean computations, we have separately reported the failure
rate, and the mean cost incurred on successful runs. Note that the mean cost for the cautious controller
includes trials on which the other controllers failed, and thus this is a penalty against the cautious
method. In general, the certainty equivalent and cautious controllers outperform the non-adaptive
controller. However, the certainty equivalent controller has a higher failure rate. By incorporating the
model uncertainty into the control algorithm, the CAMeLiD is able to maintain the low costs of an
adaptive controller while also remaining robust. A representative rollout is shown in Figure 1.
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