Evolvability ES: Scalable Evolutionary
Meta-Learning

Alexander Gajewski'* Jeff Clune> Kenneth O. Stanley?> Joel Lehman?
! Columbia University 2 Uber Al Labs

Abstract

This paper introduces Evolvability ES, an evolutionary meta-learning algorithm for
deep reinforcement learning that scales well with computation and to models with
many parameters (e.g. deep neural networks). This algorithm produces parameter
vectors for which random perturbations yield a repertoire of diverse behaviors;
we highlight that surprisingly, such points in the search space exist and can be
reliably found. The resultant algorithm is evocative of MAML (which optimizes
parameters to be amenable to quick further gradient descent), but operates in a much
different way, and provides a different profile of benefits and costs. We highlight
Evolvability ES’s potential through experiments in 2-D and 3-D locomotion tasks,
where surprisingly evolvable solutions are found that can be quickly adapted to
solve an unseen test-task. This work thus opens up a novel research direction in
exploiting the potential of evolvable representations for deep neural networks.

1 Introduction

Biology provides multiple perspectives on meta-learning, i.e. learning to learn. From one perspective,
biological evolution can be viewed as the meta-learning process that crafted the ability of humans
to flexibly learn across our individual lifetimes. In other words, evolution (i.e. the meta-learning
algorithm) crafted our plastic brains (i.e. our learning algorithm). Algorithms that train recurrent
neural networks (RNNs) to meta-learn RL algorithms [[16] [3]] or neural network (NN) learning rules
[11] can be seen in this light, as algorithms that create NNs that can adapt to task-specific challenges.

This paper focuses on a different analogy: evolution also rewards the ability to quickly adapt over
generations of evolution. For example, a prey species may benefit from quickly adjusting to an
adaptation of its predator, and vice versa. In biology, this ability for an organism to further evolve is
called its evolvability [8, [15]], a subject of much study also within evolutionary computation [[10} [1]],
where its inspiration is intriguingly similar to that of the meta-learning community. One framing of
evolvability is to search for setting(s) of parameters from which perturbations will generate a usefully
diverse set of solutions, allowing an individual or population to quickly adapt to new challenges
[LO,[18]. The connection between this thread of research and meta-learning in general offers a fruitful
opportunity for cross-pollination so far not exploited.

A previous algorithm to encourage this form of evolvability, called Evolvability Search [10], directly
searches for evolvable parameter vectors, but requires exhaustive computation. Taking inspiration
from Evolvability Search and a recent evolutionary strategy (ES) algorithm [13]], we extend stochastic
computation graphs [14]] to enable an ES-based algorithm that optimizes evolvability, which we
call Evolvability ES. This approach allows searching for evolvability at deep network scales, in a
way that easily benefits from additional computation. We show the potential of Evolvability ES
through a series of experiments in 2-D and 3-D simulated robot locomotion tasks, demonstrating that
perturbations of an evolved parameter vector can yield a surprising diversity of outcomes, and can
be quickly adapted to solve a particular task. By exposing the existence of such points in the search
space and introducing a principled approach to finding them, this work opens up a novel research
direction in exploiting the potential of evolvable representations in the era of deep learning.
*Work done while at Uber AI Labs

2nd Workshop on Meta-Learning at NeurIPS 2018, Montréal, Canada.

2 Evolution Strategies

Natural Evolution Strategies (NES; [[L7])) is a black-box optimization algorithm designed for non-
differentiable functions. Because the gradients of such a function f(z) are unavailable, NES instead
creates a smoother version of f that is differentiable, by defining a distribution 7(z;) over its
argument and setting the smoothed loss function J(#) = E_ [f(z)]. This function is then optimized
iteratively with gradient descent, where the gradients are estimated by samples from 7.

Salimans et al. [[13]] showed recently that NES with an isotropic Gaussian distribution of fixed variance
(i.e. m = N(u,0T) and 6 = p) is competitive with deep reinforcement learning on high-dimensional
reinforcement learning (RL) tasks, and can be very time-efficient because the expensive gradient
estimation is easily parallelizable. Salimans et al. [13]] refer to this algorithm as Evolution Strategies
(ES), and we adopt their terminology in this work, referring to it as Standard ES. Making a biological
analogy, 7 is can be viewed as the analogue of a population of individuals that evolves by one
generation at every gradient step, where p can be viewed as the parent individual, and samples from
7 can be termed that parent’s pseudo-offspring cloud.

3 Stochastic Computation Graphs for ES-like Algorithms

In supplemental sections[S3]and[S4] we generalize stochastic computation graphs [[14] to more easily
account for nested expectations, and show that this new formalism yields surrogate loss functions
that can automatically be differentiated by popular tools like PyTorch [12]]. Through this approach,
nearly any loss function involving potentially nested expectations over differentiable probability
distributions can be automatically optimized with gradient descent through sampling. This approach
is applied in the next section to enable an efficient evolvability-optimizing variant of ES.

4 Evolvability ES

The approach described here searches for parameter vectors whose perturbations lead to diverse
behaviors, and which therefore may be quickly adapted to new tasks after training. This adaptability-
based training relates conceptually to Model-Agnostic Meta-Learning (MAML; [5]]), wherein a single
set of parameters is trained such that a few additional SGD training steps will adapt it to a new
task. However, MAML requires (1) differentiating through an optimization procedure, which is
computationally expensive and prone to local optima, and (2) an explicit mechanism for sampling
new tasks from a distribution, which may impose an inefficient curriculum for learning. In contrast,
Evolvability ES (1) optimizes for adaptability by maximizing the effect of random perturbations,
thereby avoiding differentiating through optimization, and (2) instantiates a self-adapting learning
curriculum: a solution is incentivized for its perturbations to increasingly span the space of behaviors
in a bottom-up fashion (see also Eysenbach et al. [4]]). As with ES [13]], Evolvability ES scales easily
and efficiently to make use of large-scale computation. We now formally describe the method.

Consider the isotropic Gaussian distribution 7 of ES. As in Evolvability Search [10], we wish to
maximize some statistic of behavioral diversity of a parameter vector’s perturbations. Formally,
behavior is represented as a behavior characteristic (BC; [9]]), a vector-valued function mapping
parameter vectors z to behaviors B(z). For example, in a locomotion task, a policy’s behavior might
be represented as its final position on a plane. Here, we consider two diversity statistics which lead to
maximum variance (MaxVar) and maximum entropy (MaxEnt) variants of Evolvability ES.

Max Var Evolvability ES maximizes the total variation of the BC over the population, which can be
formulated as the following loss function:

J(0) = DB [(B;(2) - wy)*] (D
J
where the expectation is over policies z ~ 7 (-;), the summation is over components j of the BC,

and f; represents the mean of the jth component of the BC.

MaxEnt Evolvability ES maximizes entropy rather than variance. To estimate entropy, we first
compute a kernel-density estimate of the distribution of behavior for some kernel function ¢, giving

p(B(2);0) = B [o(B(Z) — 2)], 2)
which can be applied to derive a loss function which estimates the entropy:
J(0) = —E: [log E/[p(B(2') - 2)]] . (3)

In practice, these loss functions are differentiated with PyTorch (as described in supplemental section
and both the loss and their gradients are then estimated from samples.

2

10

20 4

Final Position
S
—
S
®

—20 1 1 1 10

Number of Pseudo-Offspring

T T T T T T T T T T T T 10°
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

Generation Generation Generation
(a) Standard ES (b) MaxVar Evolvability ES (c) MaxEnt Evolvability ES

Figure 1: Distribution of behaviors over evolution in the 2-D locomotion domain. Heat-maps
of the final x positions of 10, 000 policies sampled from the population distribution are shown for
each generation over training time. These plots suggest that both Evolvability ES methods discover
policies that travel nearly as far both backwards and forwards as Standard ES travels forward alone.

5 Experiments

5.1 2-D Locomotion

In the 2-D locomotion task, a NN policy controls the Half-Cheetah robot from the PyBullet simulator
[2]]. The policy receives as input the robot’s position and velocity, and the angle and angular velocity
of its joints; the policy outputs as actions the torques to apply to each of the robot’s joints. In this
domain, we characterize behavior as the final x coordinate of the robot after a fixed number of steps
of the simulation. Hyperparameters and algorithmic details can be found in supplemental section[S2}
see supplemental section [ST]for experiments in a diagnostic setting.

Figure[I]shows the distribution of behavior over training time. First, these results show that, surpris-
ingly, there exist policies such that small perturbations in parameter space result in diametrically
opposed behaviors. Both variants perform roughly equivalently, despite the intuition that the MaxEnt
version should demonstrate a distribution of behaviors that is spread more uniformly.

Supplemental Figure[S2]a shows performance curves for all methods in this domain (for maximum
distance travelled, the metric that Standard ES optimizes but that Evolvability ES optimizes for only
indirectly). As expected (because it directly optimizes for this metric), Standard ES finds policies
that locomote slightly further than Evolvability ES, though this is not true in every pair of runs.

5.2 3-D Locomotion

In the 3-D locomotion task, a policy controls the Ant robot from the PyBullet simulator [2]], receiving
as inputs the robot’s position and velocity, and the angle and angular velocity of its joints; and
outputting torques for each of its joints. In this domain, a policy’s BC is its final x, y position.

Figure 2] shows the distributions of behavior after training. Interestingly, both variants form a ring
of policies, i.e. the method finds a parameter vector from which nearly all directions of travel are
reachable through parameter perturbations. Note that for Evolvability ES there is low density of
behaviors in the interior of the ring (i.e. few mutations are degenerate), whereas Standard ES exhibits
a moderate-density trail of reduced performance (i.e. its policy is less robust to mutation).

Figure [S2] shows the final position of the policy that moved farthest in the « direction, among
10, 000 individuals sampled from the population each generation over training time. Interestingly,
in this domain, Evolvability ES sometimes finds policies which move farther than those found by
Standard ES, though it is has no direct pressure to move farther (and Standard ES does).

5.3 Fast Adaptation in the 3-D Locomotion Domain

We next test adaptation to new tasks, similar to previous experiments with MAML [5]]. As before,
we first train Evolvability ES in the the 3-D locomotion domain. Using such trained populations as
initializations for Standard ES, we then set as an explicit objective for the agent to walk in a particular
direction, here, for simplicity, to travel as far as possible along the positive x axis. Note that during
initial training the algorithm had no information about this specific goal.

40 10°

2
= 201 1 1 “;’f‘# 6% 100 é%
g ¥ 3
Z ¥ 4x1008
« 3 E
o 0 L] 3x10° 8
] 5 o3
£ o0 i ;] 2x10° ¢
. Z.
—40 - - - - - - : r : 100
40 -2 0 20 40 40 -2 0 20 40 —40 -2 0 20 10
Final X Position Final X Position Final X Position
(a) Standard ES (b) MaxVar Evolvability ES (c) MaxEnt Evolvability ES

Figure 2: Distribution of behaviors after training in the 3-D locomotion domain. Heat-maps of
the final positions of 10, 000 policies sampled from the population distribution at generation 100.
These plots suggest that both Evolvability ES variants successfully find policies which move in many
different directions, and roughly as far as Standard ES travels in the positive = direction alone.

40

o
K|
z
z 2079 &
£ S
b= S
8 ,_ E
o] £ 1 10" g
- > i £
& 201 ‘ 1 £
\.ﬂr’—‘" Bl
' z
—40 : : . . : . . ; ; 100
40 -20 0 20 40 —40 -20 0 20 40 —40 20 0 20 10
Final X Position Final X Position Final X Position
(a) Before Adaptation (b) After 5 Generations (c) After 20 Generations

Figure 3: Distribution of behaviors during adaptation in the 3-D locomotion domain. Heat-maps
are shown of the final positions of 10, 000 policies sampled from the population distribution initialized
with MaxEnt Evolvability ES, and adapted to move in the positive x direction with Standard ES over
several generations. These plots suggest that MaxEnt Evolvability ES successfully finds policies that
can quickly adapt to perform new tasks. See Figure @ for the MaxVar version.

Figures [3]and [S3|show heat-maps of behavior characteristics for the pre-trained populations produced
by Evolvability ES, as well as following a small number of Standard ES updates. The population
successfully converges in accordance with the new selection pressure, and importantly, it adapts much
more quickly than does a randomly initialized population, as shown in Figure[S4] The conclusion is
that Evolvability ES is a viable meta-learning algorithm, applicable to similar situations as is MAML.

5.4 Meta-Learning Specialists

While some applications require only a single meta-learned policy, other applications may require
meta-learning multiple policies, each specialized to adapt to particular families of tasks [18]. To
study this, we compare two multi-modal variants of Evolvability ES, where the different modes
of a Gaussian Mixture Model (GMM,; [7]) distribution can learn to specialize. In the first variant
(vanilla GMM), we run Evolvability ES with a multi-modal GMM population, where each mode is
equally likely and is separately randomly initialized. In the second variant (splitting GMM), we first
train a uni-modal population with Evolvability ES until convergence, then seed a GMM from it, by
initializing the new component means from independent samples from the pre-trained uni-modal
population to break symmetry. Figures[S3|and [S6] compare the qualitative performance of these two
variants; in this domain, the splitting GMM more efficiently evolves complementary specialists.

6 Conclusion

We have presented Evolvability ES, a novel and scalable algorithm for evolving populations that span
diverse behaviors and that may be quickly adapted to perform new tasks. Experiments in 2D and 3D
locomotion domains demonstrate the algorithm’s potential, and surprisingly reveal that points in the
search space exist from which random parameter perturbations yield a wide diversity of behavior; the
conclusion is that Evolvability ES is a new addition to the toolbox of meta-learning algorithms and
opens up a new research direction for exploring evolvable representations for deep NNs.

References

[1] Lee Altenberg et al. The evolution of evolvability in genetic programming. Advances in genetic
programming, 3:47-74, 1994,

[2] E Coumans and Y Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. GitHub repository, 2016.

[3] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RIZ:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

[4] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all
you need: Learning skills without a reward function. CoRR, abs/1802.06070, 2018. URL
http://arxiv.org/abs/1802.06070.

[5] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. arXiv preprint arXiv:1703.03400, 2017.

[6] Michael C. Fu. Chapter 19 gradient estimation. Simulation Handbooks in Operations Research
and Management Science, 13:575, 2006. doi: 10.1016/s0927-0507(06)13019-4.

[7] DP Geoffrey McLachlan. Finite mixture models, 2000.

[8] Marc Kirschner and John Gerhart. Evolvability. Proceedings of the National Academy of
Sciences, 95(15):8420-8427, 1998.

[9] Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation, 19(2):189-223, 2011.

[10] Henok Mengistu, Joel Lehman, and Jeff Clune. Evolvability search. Proceedings of the 2016 on
Genetic and Evolutionary Computation Conference - GECCO 16, 2016. doi: 10.1145/2908812.
2908838.

[11] Thomas Miconi, Jeff Clune, and Kenneth O Stanley. Differentiable plasticity: training plastic
neural networks with backpropagation. arXiv preprint arXiv:1804.02464, 2018.

[12] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[13] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning, 2017.

[14] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation
using stochastic computation graphs. CoRR, abs/1506.05254, 2015. URL http://arxiv|
org/abs/1506.05254.

[15] Giinter P Wagner and Lee Altenberg. Perspective: complex adaptations and the evolution of
evolvability. Evolution, 50(3):967-976, 1996.

[16] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

[17] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, and Jiirgen Schmidhuber. Natural
evolution strategies, 2011.

[18] Bryan Wilder and Kenneth Stanley. Reconciling explanations for the evolution of evolvability.
Adaptive Behavior, 23(3):171-179, 2015.

http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1506.05254
http://arxiv.org/abs/1506.05254

M“

o

N
I\l'

Behavior
Genome

M

T T T T T T T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000

(‘enome Generation Generation
(a) Interference Pattern (b) MaxVar Evolvability ES (c¢) MaxEnt Evolvability ES

Figure S1: Interference Pattern Results. In the interference pattern task, a solution consists of a
single floating point parameter, which corresponds to the x coordinate on the interference pattern
shown in (a). An individual’s behavior characteristic is then mapped as the corresponding y coordinate
on the interference pattern. The training plots shown in (b) and (c) validate both Evolvablity ES
variants, showing that they converge to the point with behavior that is most sensitive to perturbations,
shown above with a dashed line.

Supplemental Information

Included in the supplemental information is a simple explanatory task for better understanding
Evolvability ES (section[ST); experimental details and hyperparameters for all algorithms (section
[S2); a description of stochastic computation graphs and how we extended them (sections [S3] and [S4));
and the particular stochastic computation graphs that enable calculating loss and gradients for ES and
Evolvability ES (section [S3)).

S1 Interference Pattern Task

To validate the Evolvability ES approach, this illustrative experiment introduces a simple optimization
problem. Consider the interference pattern in Figure[STh. In this figure, the z-axis represents the
1-dimensional parameter space, and the y-axis represents the 1-dimensional behavior characterization.
Intuitively, an evolvability-seeking algorithm should find parameter settings such that small parameter
perturbations will result in diverse behaviors. In this task, the most evolvable point in the search
space is 555 ~ 7.9, where perturbations will have the largest effect on behavior.

Indeed, Figure[ST|shows that both variants of Evolvability ES approach the optimal value in parameter
space as training progresses. Interestingly, if in this domain the true goal were to maximize y (instead
of maximizing its variance), Evolvability ES would outperform Standard ES, since the gradient of
E[y] with respect to the mean of a distribution with standard deviation larger than the period of the
faster sine wave will be approximately zero.

S2 Experimental Details

This section presents additional plots useful for better understanding the performance of Evolvability
ES, as well as further details and hyperparameters for all algorithms.

S2.1 Additional Plots

Figure [S2]shows training curves for algorithms in both of the locomotion domains.

Figure [S3| highlights how the distribution of behaviors changes during meta-learning test-time to
quickly adapt to the task at hand for Max Var Evolvability ES (see Figure [3|for the MaxEnt version),
and Figure [S4]shows the advantage of Evolvability ES for fast adaptation over training from scratch.

Figures [S5]and [S6| contrast the two variants of multi-modal Evolvability ES.

60
—— Standard

B

MaxVar

—— MaxEnt

'S
S
s
w
S
L

)
S
s

»
s

— Standard

=
o
s

Max Final Distance
Max Final Distance

MaxVar
—— MaxEnt
01 T T T T T 017 T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Generation Generation
(a) 2D Locomotion (b) 3D Locomotion

Figure S2: Evolvability Training Curves. Comparison between Standard ES, MaxVar Evolvability
ES, and MaxEnt Evolvability ES on (a) the 2D locomotion task, and (b) the 3D locomotion task. Both
plots show the maximum final distance from the origin over 10, 000 samples from the population
distribution during training. Median and range over 6 runs shown. These plots show that both variants
of Evolvability ES typically find policies which move almost as far as Standard ES on both domains,
despite moving in many more directions than Standard ES.

40

gD

£

2

= 201 g 1 1 &
£ ¢ Q
E 2
¢ E
o4 . | i ; J 10" £
e E Z
z o
E] s 3
Sl g :
’ Z

~40 : : . . : 100
—10 -20 0 20 40 —40 —20 0 20 40 —40 20 0 20 140
Final X Position Final X Position Final X Position
(a) Before Adaptation (b) After 5 Generations (c) After 20 Generations

Figure S3: Distribution of behaviors during adaptation in the 3D locomotion domain. Heat-
maps of the final positions of 10, 000 policies sampled from the population distribution initialized
with MaxVar Evolvability ES, and adapted to move in the positive = direction with Standard ES over
several generations. These plots suggest that MaxVar Evolvability ES successfully finds policies
which can quickly adapt to perform new tasks. See Figure |§| for the MaxEnt version.

40 4
30
<]
é
% 107
S
01 —— Standard
MaxVar
—10 —— MaxEnt
0 5 10 15

Generation

Figure S4: Adaptation Training Curves. Comparison between three different initial populations
trained with Standard ES for only 20 generations, one initialized randomly, one trained for 100 gener-
ations with MaxVar Evolvability ES, and one trained for 100 generations with MaxEnt Evolvability
ES. This plot shows the maximum x position over 10,000 policies sampled from the population
distribution during training. Median and range over 6 runs shown. This plot suggests that populations
trained by both methods of Evolvability ES evolve much more quickly than randomly initialized
population.

ho
.
{”\
=)

Final Y Position
i
Number of Pseudo-Offspring

QWE I v ,J;

—20
R - T T : : T T T T T T T T v T 10°
—40 —-20 0 20 40 —40 —20 0 20 40 —40 —20 0 20 40
Final X Position Final X Position Final X Position
(a) Uni-Modal Evolvability ES (b) Vanilla GMM (c) Splitting GMM

Figure S5: Distribution of behaviors for uni- and multi-modal MaxVar Evolvability ES variants.
Heat-maps of the final positions of 10,000 policies sampled from the population distribution at
generation 100 of Max Var Evolvability ES, with (a) one component and (b) a vanilla GMM with two
components. Also shown is the result of splitting the single component in (a) into two components
and evolving for 20 additional generations. These plots suggest that the vanilla GMM fails to fill
some of the behavior space, and that the splitting GMM is somewhat more successful.

40 k : 1 10!

£ .

)

&0
g
2
g &
£ <
0 3 g
B r 5 &
& —20 & 1 : 1 k™ B
65 58 "Ry,]
9 “?M = b g
401, y . 0
—40 —20 0 20 40 —40 —20 0 20 40 —40 20 0 20 40
Final X Position Final X Position Final X Position
(a) Uni-Modal Evolvability ES (b) Vanilla GMM (c) Splitting GMM

Figure S6: Distribution of behaviors for uni- and multi-modal MaxEnt Evolvability ES variants.
Heat-maps are shown of the final positions of 10, 000 policies sampled from the population at
generation 100 of MaxEnt Evolvability ES, with (a) one component and (b) a vanilla GMM with
two components. Also shown is the result of (c) splitting the trained single component into two
components, and evolving for 20 additional generations. These plots suggest that the splitting GMM
is more successful at filling the behavior space.

S2.2 Hyperparameters and Training Details

For Standard ES, fitness was rank-normalized to take values symmetrically between —0.5 and 0.5 at
each generation before computing gradient steps. For both variants of Evolvability ES, BCs were
whitened to have mean zero and a standard deviation of one at each generation before computing
losses and gradients. This was done instead of rank normalization in order to preserve density
information for variance and entropy estimation.

A Gaussian kernel with standard deviation 1.0 was used for the MaxEnt variant of Evolvability ES to
estimate the density of behavior given samples from the population distribution.

S2.2.1 Interference Pattern Details
The interference pattern was generated by the function

f(z) = 5sin g sin 20z. @)
Hyperparameters for the interference pattern task are shown in Tables[ST|and [S2]

S2.2.2 Locomotion Task Details

For the locomotion tasks, all environments were run deterministically and no action noise was used
during training. The only source of randomness was from sampling from the population distribution.

Hyperparameter Setting

Learning Rate 0.05
Population Standard Deviation 0.5
Population Size 500

Table S1: MaxVar Hyperparameters: Interference Pattern Task.

Hyperparameter Setting
Learning Rate 0.01
Population Standard Deviation 0.5
Population Size 500
Kernel Standard Deviation 1.0

Table S2: MaxEnt Hyperparameters: Interference Pattern Task.

Policies were executed in the environment for 1, 000 timesteps. For comparison to Evolvability ES,
the fitness function for Standard ES was set to be the final = position of a policy, rewarding Standard
ES for walking as far as possible in positive = direction.

NNs for both 2D and 3D locomotion were composed of two hidden layers with 256 hidden units
each, resulting in 166.7K total parameters, and were regularized with L2 penalties during training.
Inputs to the networks were normalized to have mean zero and a standard deviation of one based the
mean and standard deviation of the states seen in a random subset of all training rollouts, with each
rollout having probability 0.01 of being sampled.

Experiments were performed on a cluster system and were distributed across a pool of 550 CPU cores
shared between two runs of the same algorithm. Each run took approximately 5 hours to complete.

Hyperparameters for both variants of Evolvability ES are shown Tables [S3]and [S4]

Hyperparameter Setting
Learning Rate 0.01
Population Standard Deviation 0.02
Population Size 10,000
L2 Regularization Coefficient 0.05

Table S3: MaxVar Hyperparameters: Locomotion Tasks.

S3 Stochastic Computation Graphs

A stochastic computation graph, as defined in Schulman et al. [14]], is a directed acyclic graph
consisting of fixed input nodes, deterministic nodes representing functions of their inputs, and
stochastic nodes representing random variables distributed conditionally on their inputs.

A stochastic computation graph G represents the expectation (over its stochastic nodes {z;}) of the
sum of its output nodes {f;}, as a function of its input nodes {x; }:

g($17~-~7$l) :Ezl,...,zm lz fz] (5)
i=1

For example, consider the stochastic computation graph in Figure reproduced from [14]. This
graph G represents the expectation

g(x07 9) = E-lexz [fl(zl) =+ fQ(IQ)] ’ 6)

Hyperparameter Setting

Learning Rate 0.01
Population Standard Deviation 0.02
Population Size 10,000
L2 Regularization Coefficient 0.05
Kernel Bandwidth 1.0

Table S4: MaxEnt Hyperparameters: Locomotion Tasks.

Figure S7: Example stochastic computation graph: input nodes are depicted with no border, deter-
ministic nodes with square borders, and stochastic nodes with circular borders.

where 1 ~ p(-; 29,0) and x5 ~ p(-;z1,0).

A key property of stochastic computation graphs is that they may be differentiated with respect to
their inputs. Using the score function estimator [6], we have that

VoG (20,0) = Ez, 2, {Ve log p(w1;0,70)(f1(21) + fa(x2)) + Ve logp(w2; 0, 21) fa(z2) |- (7)

Schulman et al. [[14]] also derive surrogate loss functions for stochastic computation graphs, allowing
for implementations of stochastic computation graphs with existing automatic differentiation software.

For example, given a sample {2} }1<;<n of 21 and {z}1<;<n of z2, we can write

L(0) = %Zlogp(x’i;ﬁwo)(fl(mi) + fa(23)) +log p(ws; 0, 2) fa (). ®)

Now to estimate VoG (g, 0), we have
VoG(wo,0) = VoL (0), ©)

which may be computed with popular automatic differentiation software.

S4 Nested Stochastic Computation Graphs

We make two changes to the stochastic computation graph formalism:

1. We add a third type of node which represents the expectation over one of its parent stochastic
nodes of one of its inputs. We require that a stochastic node representing a random variable
z be a dependency of exactly one expectation node over z, and that every expectation node
over a random variable z depend on a stochastic node representing z.

2. Consider a stochastic node representing a random variable z conditionally dependent on
a node y. Rather than expressing this as a dependency of z on y, we represent this as a
dependency between the expectation node over z on y. Formally, this means all stochastic
nodes are required to be leaves of the computation graph.

Because “nested stochastic computation graphs,” as we term them, contain their expectations explic-

itly, they simply represent the sum of their output nodes (instead of the expected sum of their output
nodes, as with regular stochastic computation graphs).

10

Lo

Figure S8: Example nested stochastic computation graph: input nodes are depicted with no border,
deterministic nodes with square borders, stochastic nodes with circular borders, and expectation
nodes with double elliptical borders.

As an example, consider the nested stochastic computation graph G depicted in Figure[S8] First, note
that G is indeed a nested stochastic computation graph, because the stochastic nodes and expectation
nodes correspond, and because all stochastic nodes are leaves of the graph. Next, note that G is
equivalent to the stochastic computation graph of Figure|S7|in the sense that it computes the same
function of its inputs:

G(x0,0) = Ea, [f1(21) + o, [f2(22)]] (10)
:Exl,xz [f1($1)+f2($2)] (11)

The original stochastic computation graph formalism has the advantage of more clearly depicting
conditional relationships, but this new formalism has two advantages:

1. Nested stochastic computation graphs can represent arbitrarily nested expectations. We have
already seen this in part with the example of Figure but we shall see this more clearly in
a few sections.

2. It is trivial to define surrogate loss functions for nested stochastic computation graphs.
Moreover, these surrogate loss functions have the property that in the forward pass, they
estimate the true loss function.

Consider a nested stochastic computation graph G with input nodes {6} U {x; }, and suppose we wish
to compute VoG (6,21, ..., x,). We would like to be able to compute the gradient of any node with
respect to any of its inputs, as this would allow us to use the well-known backpropagation algorithm
to compute VyG. Unfortunately, it is often impossible to write the gradient of an expectation in
closed form; we shall instead estimate VG given a sample from the stochastic nodes of G.

Suppose G has a output node E. [f], the only expectation node in G. Suppose moreover that E., | f]
has inputs {&;} (apart from f) so z ~ p(-, &1 ... &n), and suppose f has inputs {y; }. Note that to
satisfy the definition of a nested stochastic computation graph f must ultimately depend on z, so we
write f as f(y1, ..., y; 2). See Figure[S9|for a visual representation of G.

If we wish to compute V,E. [f(y1, ..., y:; 2)], using the likelihood ratio interpretation of the score
function [6] and given a sample {z; }1<;<n of z, we can write

L(w) = %Zf(yl,...,yl;zw(zi), (12)

where L is the likelihood ratio given by

E i :p(zza£177£m)
G = e, e (19

and setting &} = &; gives

11

-

Em

—

U1 Ui

Figure S9: Nested stochastic computation graph with a single expectation node.

pr(zla 617 e 7£m)
p(Zi;€17 cee a€M)
:vang(nglaafm) (15)

Vul(z) = (14)

Note that f can either depend on w directly, if w € {y;}, or through the distribution of z, if w € {¢;}.
Differentiating, we have

A 1
VolL(w) = N Z Frs- oy 2)Vo£(z) + Vo f(yr, -y 2)L(2:), (16)

and setting &/ = &; we see that V,, L(w) is an estimate of V,E. [f(y1, ...,y 2)]-

Generalizing this trick to an arbitrary nested stochastic computation graph G, we see that creating a

surrogate loss function L is as simple as replacing each expectation node with a sample mean as in
Equation [12] weighted by the likelihood ratio £(z;). Note that since £(z;) = 1, the surrogate loss is
simply the method of moments estimate of the true loss.

Considering again the graph of Figure[S8] we can construct a surrogate loss function
7 1 i i i i
L6, 20) = Z <f1 (z}) + Z fo(xh) L(xh; 9)>£(x1; 0, o). (17)
i J

While this may not seem like very much of an improvement at first, it is insightful to note how similar
the forms of Equations[I0|and[T7)are. In particular, this similarity makes it straightforward to write a
custom “expectation” operation for use in automatic differentiation software which computes the
sample mean weighted by the likelihood ratio.

S5 Stochastic Computation Graphs for ES and Evolvability ES

As mentioned in the main text of the paper, we can estimate the gradients of the ES and Evolvability
ES loss functions with the score function estimator because we can represent these loss functions as
(nested) stochastic computation graphs. Figure[ST0[shows a (nested) stochastic computation graph
representing the Standard ES loss function. This yields the following surrogate loss function for ES:

- 1
L(0) = N Zi:f(zi)ﬁ(zi% (18)
where £(z;) is the likelihood function.

12

O=I

0

Figure S10: Nested stochastic computation graph representing Natural Evolution Strategies.

0
Figure S11: Nested stochastic computation graph representing the loss function of MaxVar Evolvabil-
ity ES.

Figure [S11| shows a nested stochastic computation graph representing MaxVar Evolvability ES,
yielding the following surrogate loss function:

L(6) = % Z B(2)2L(z;6) (19)

Finally, Figure |S12|shows a nested stochastic computation graph representing the loss function for
MaxEnt Evolvability ES, yielding the following surrogate loss function:

L(6) = f% Z log Z ©(B(2') = 2)L(2;0) | L(2:;0) (20)

O

B
|
© —log E.[-log]
|
B

O

Figure S12: Nested stochastic computation graph representing the loss function of MaxEnt Evolv-
ability ES.

13

	Introduction
	Evolution Strategies
	Stochastic Computation Graphs for ES-like Algorithms
	Evolvability ES

	Experiments
	2-D Locomotion
	3-D Locomotion
	Fast Adaptation in the 3-D Locomotion Domain
	Meta-Learning Specialists

	Conclusion
	Interference Pattern Task
	Experimental Details
	Additional Plots
	Hyperparameters and Training Details
	Interference Pattern Details
	Locomotion Task Details

	Stochastic Computation Graphs
	Nested Stochastic Computation Graphs
	Stochastic Computation Graphs for ES and Evolvability ES

