
Amortized Bayesian Meta-Learning

Sachin Ravi & Alex Beatson
Department of Computer Science, Princeton University

{sachinr,abeatson}@cs.princeton.edu

Abstract

Meta-learning has proven to be a successful strategy in attacking problems in
supervised learning and reinforcement learning that involve small amounts of
data. State-of-the-art solutions involve learning an initialization and/or learning
algorithm using a set of training episodes so that the meta-learner can generalize to
an evaluation episode quickly. These methods perform well but often lack good
quantification of uncertainty, which can be vital to real-world applications when
data is lacking. We propose a meta-learning method which efficiently amortizes
hierarchical variational inference across tasks, learning a prior distribution over
neural network weights so that a few steps of Bayes by Backprop will produce a
good task-specific approximate posterior. We show that our method produces good
uncertainty estimates on contextual bandit and few-shot learning benchmarks.

1 Introduction

φi

θ

X
(Q)
i,j

Y
(Q)
i,j

X
(S)
i,j

Y
(S)
i,j

j = 1, . . . , N

i = 1, . . . ,M

Figure 1: Graphical model
for proposed amortized vari-
ational inference scheme. Dot-
ted lines denote variational ap-
proximations

Deep learning has achieved success in domains that involve a large
amount of labeled data [1, 2] or training samples [3, 4]. However, a
key aspect of human intelligence is our ability to learn new concepts
from only a few experiences. It has been hypothesized that this skill
arises from accumulating prior knowledge and using it appropri-
ately in new settings [5]. Meta-learning attempts to endow machine
learning models with the same ability by training a meta-learner to
perform well on a distribution of training tasks. The meta-learner
is then applied to an unseen task, usually assumed to be drawn
from a task distribution similar to the one used for training, with
the hope that it can learn to solve the new task efficiently. Though
performance on meta-learning benchmarks has greatly increased in
the past few years, it is unclear how well the associated methods
would perform in real-world settings, where the relationship between
training and evaluation tasks could be tenuous. For success in the
wild, in addition to good predictive accuracy, it is also important
for meta-learning models to have good predictive uncertainty - to
express high confidence when a prediction is likely to be correct but
display low confidence when a prediction could be unreliable.

Bayesian methods offer a principled framework to reason about
uncertainty, and approximate Bayesian methods have been used to
provide deep learning models with predictive uncertainty [6, 7]. Accordingly, we consider meta-
learning under a bayesian framework in order to transfer the aforementioned benefits to our setting.
Specifically, we extend the work of [8], who considered hierarchical variational inference for meta-
learning. In this paper, we show how the meta-learning framework of [9] can be used to efficiently
amortize variational inference for the Bayesian model of [8] in order to combine the former’s
flexibility and scalability with the latter’s uncertainty quantification.

2nd Workshop on Meta-Learning at NeurIPS 2018, Montréal, Canada.

2 Meta-Learning via Hierarchical Variational Inference

We first start by reviewing the hierarchical variational bayes formulation used in [8] for meta-learning.
Assume we observe data from M episodes, where the ith episode consists of data Di containing N
data items, meaning Di = {(Xi,j ,Yi,j)}Nj=1. We assume a hierarchical model with global latent
variable θ and episode-specific variables φi, i = 1, . . .M (see Figure 1). Hierarchical variational
inference can then be used to lower bound the likelihood of the data:

log

[
M∏
i=1

p(Di)

]
= log

[∫
p(θ)

[
M∏
i=1

∫
p(Di|φi)p(φi|θ) dφi

]
dθ

]

≥ Eq(θ;ψ)

[
M∑
i=1

Eq(φi;λi) [log p(Di|φi)]− KL(q(φi;λi)‖p(φi|θ))

]
− KL(q(θ;ψ)‖p(θ))

Here, ψ and λ1, . . . , λM are the variational parameters of the approximate posteriors over the global
latent variables θ and the local latent variables φ1, . . . , φM , respectively. Variational inference thus
involves solving the following optimization problem:

≡ argmin
ψ,λ1...,λM

Eq(θ;ψ)

[
M∑
i=1

−Eq(φi;λi) [log p(Di|φi)] + KL(q(φi;λi)‖p(φi|θ))

]
+ KL(q(θ;ψ)‖p(θ))

(1)

In [8], this optimization problem is solved via mini-batch gradient descent on the objective starting
from random initialization for all variational parameters. They maintain distinct variational parameters
λi for each episode i, each of which indexes a distribution over episode-specific weights q(φi;λi).

3 Amortized Bayesian Meta-Learning

Learning local variational parameters λi for a large number of episodes M becomes difficult as M
grows due to the costs of storing and computing each λi. These problems are compounded when
each φi is the weight of a deep neural network and each λi are variational parameters of the weight
distribution. Instead of maintaining M different variational parameters λi indexing distributions over
neural network weights φi, we compute λi on the fly with amortized variational inference (AVI),
where a global learned model is used to predict λi from Di. A popular use of AVI is training a
variational autoencoder [10], where a trained encoder network produces the variational parameters
for each data point. Rather than training an encoder to predict λi given the episode, we show that
inference can be amortized by finding a good initialization. We represent the variational parameters
for each episode as the output of several steps of gradient descent from a global initialization.

Let LDi(λ, θ) = −Eq(φi;λ) [log p(Di|φi)] + KL(q(φi;λ)‖p(φi|θ)) be the part of the objective corre-
sponding to data Di. Let the procedure SGDK(D, λ(init), θ) represent the variational parameters
produced after K steps of gradient descent on the objective LD(λ, θ) with respect to λ starting at the
initialization λ(0) = λ(init) and where θ is held constant i.e.:

1. λ(0) = λ(init)

2. for k = 0, . . . ,K − 1, set
λ(k+1) = λ(k) − α∇λ(k)LD(λ(k), θ)

We represent the variational distribution for each dataset qθ(φi|Di) in terms of the local variational
parameters λi produced after K steps of gradient descent on the loss for dataset Di, starting from the
global initialization θ:

qθ(φi|Di) = q(φi;SGDK(Di, θ, θ)).
Note that θ here serves as both the global initialization of local variational parameters and the
parameters of the prior p(φ | θ). We could pick a separate prior and global initialization, but we
found tying the prior and initialization did not seem to have a negative affect on performance, while
significantly reducing the number of total parameters necessary. With this form of the variational

2

distribution, this turns the optimization problem of (1) into:

argmin
ψ

Eq(θ;ψ)

[
M∑
i=1

−Eqθ(φi|Di) [log p(Di|φi)] + KL(qθ(φi|Di)‖p(φi|θ))

]
+ KL(q(θ;ψ)‖p(θ)).

(2)

Because each qθ(φi|Di) depends on ψ via θ (the initialization for the variational parameters before
performing K steps of gradient descent), we can also backpropagate through the computation of q
via the gradient descent process to compute updates for ψ. This corresponds to learning a global
initialization of the variational parameters such that a few steps of gradient descent will produce a
good local variational distribution for any given dataset.

We assume a setting where M >> N , i.e. we have many more episodes than data points within each
episode. Accordingly, we are most interested in quantifying uncertainty within a given episode and
desire accurate predictive uncertainty in qθ(φi|Di). We assume that uncertainty in the global latent
variables θ should be low due to the large number of episodes, and therefore use a point estimate for
the global latent variables, letting q(θ;ψ) be a dirac delta function q(θ) = 1{θ = θ∗}. This removes
the need for global variational parameters ψ and simplifies our optimization problem to:

argmin
θ

[
M∑
i=1

−Eqθ(φi|Di) [log p(Di|φi)] + KL(qθ(φi|Di)‖p(φi|θ))

]
+ KL(q(θ)‖p(θ)), (3)

where θ∗ is the solution to the above optimization problem. Note that KL(q(θ)‖p(θ)) term can be
computed even when q(θ) = 1{θ = θ∗}, as KL(q(θ)||p(θ)) = Eθ∼q[− log p(θ)] = − log p(θ∗).

3.1 Amortized Variational Inference using only support set

In the few-shot learning problem, we must consider train and test splits for each dataset in each
episode. We will call the training examples in each dataset the support set and the test examples
in each dataset the query set . Thus, Di = D(S)

i ∪ D(Q)
i , where D(S)

i = {(X(S)
i,j ,Y

(S)
i,j)}Nj=1 and

D(Q)
i = {(X(Q)

i,j ,Y
(Q)
i,j)}N ′

j=1, and the assumption is that during evaluation, we are only givenD(S)
i to

determine our variational distribution q(φi) and measure the performance of the model by evaluating
the variational distribution on corresponding D(Q)

i . In order to match what is done during training
and evaluation, we consider a modified version of the objective of (3) that incorporates this support
and query set split, giving us the following objective:

argmin
θ

[
M∑
i=1

−E
qθ

(
φi|D(S)

i

) [log p(Di|φi)] + KL
(
qθ

(
φi|D(S)

i

)
‖p(φi|θ)

)]
+ KL(q(θ)‖p(θ)),

(4)

where qθ
(
φi|D(S)

i

)
= q

(
φi;SGDK

(
D(S)
i , θ, θ

))
. Note that the objective in this optimization

problem still serves as a lower bound to the likelihood; conditioning on less information potentially
gives us a weaker lower bound for all the training datasets, but we found empirically that the
performance during evaluation was better using this type of conditioning since there is no mismatch
between training vs evaluation.

4 Evaluation

We evaluate our proposed model on experiments involving contextual bandits and involving measuring
uncertainty in few-shot learning benchmarks (see supplementary material for these results). We
compare our method primarily against MAML, where MAML is trained by maximum likelihood
estimation of the query set given a fixed number of updates on the support set, causing it to often
display overconfidence in the settings we consider. For the contextual bandit task, we consider the
wheel bandit problem introduced in [11]. The wheel bandit problem is a synthetic contextual bandit
problem with a scalar hyperparameter that allows us to control the amount of exploration required
to be successful at the problem. We refer the reader to [11] for an exact description of the problem.
Thompson Sampling [12] is a classic approach to tackling the exploration-exploitation trade-off

3

δ 0.5 0.7 0.9 0.95 0.99
n = 80,000
Uniform 100 ± 0.08 100 ± 0.09 100 ± 0.25 100 ± 0.37 100 ± 0.78

NeuralLinear 0.95 ± 0.02 1.60 ± 0.03 4.65 ± 0.18 9.56 ± 0.36 49.63 ± 2.41

MAML 0.20 ± 0.002 0.34 ± 0.004 1.02 ± 0.01 2.10 ± 0.03 9.81 ± 0.27

Our Model 0.22 ± 0.002 0.29 ± 0.003 0.66 ± 0.008 1.03 ± 0.01 4.66 ± 0.10

n = 2,000
Uniform 100 ± 0.25 100 ± 0.42 100 ± 0.79 100 ± 1.15 100 ± 1.88

MAML 1.79 ± 0.04 2.10 ± 0.04 6.08 ± 0.47 16.80 ± 1.30 55.53 ± 2.18

Our Model 1.36 ± 0.03 1.59 ± 0.04 3.51 ± 0.17 7.21 ± 0.41 35.04 ± 1.93

Table 1: Cumulative regret results on the wheel bandit problem with varying δ values. Results are
normalized with the performance of the uniform agent (as was done in [11]) and results shown are
mean and standard error for cumulative regret calculated across 50 trials

(a)

(b)

Figure 2: Visualization of arm
rewards according to prior distri-
bution of our model. (a) expecta-
tion and standard-deviation of low-
reward arm (computed by sampling
weights from the prior) evaluated
on points on unit circle. (b) expecta-
tion and standard-deviation of one
of the high-reward arms computed
in same way as for low-reward arm.

involved in bandit problems that requires a posterior distribution over reward functions. At each time
step an action is chosen by sampling a model from the posterior and acting optimally with respect
to the sampled reward function. The posterior distribution over reward functions is then updated
based on the observed reward for the action. When the posterior initially has high variance because
of lack of data, Thompson Sampling explores more and turns to exploitation only when the posterior
distribution becomes more certain about the rewards.

We use the setup described in [13] to apply meta-learning methods to the wheel bandit problem. For
meta-learning methods, there is a pre-training phase in which training episodes consist of randomly
generated data across δ values from wheel bandit task. Then, these methods are evaluated using
Thompson sampling on problems defined by specific values of δ. Unlike the models in [11], our
model and MAML have a chance to develop some sort of prior that they can utilize to get a head start.
We can straightforwardly apply Thompson sampling in our model using the approximate posterior at
each time step whereas for MAML we just take a greedy action at each time step given the current
model parameters. The results of evaluating the meta-learning methods after the pre-training phase
are shown in Table 1. We vary the number of contexts and consider n = 80, 000 (which was used
in [11]) and n = 2, 000 (to see how the models perform under fewer time steps). We can see that
as δ increases and more exploration is required to be successful at the problem, our model has a
increasingly better cumulative regret when compared to MAML. Lastly, we visualize the learned
prior p(φ | θ) in Figure 2. We can see that the standard deviation of the central low-reward arm is
small everywhere, as there is little reward variability in this arm across δ values. For the high-reward
arm in the upper-right corner, we see that the standard deviation is high at the edges of the area in
which this arm can give high reward. This variation in the posterior indicates the region in which we
would like to target our exploration to figure out what δ value we are currently facing.

5 Conclusion

We described a method to efficiently use hierarchical variational inference to learn a meta-learning
model that is scalable across many training episodes and large networks. The method corresponds
to learning a prior distribution over the network weights so that a few gradient steps will produce a
good approximate posterior. Through various experiments we show that our model is able to reason
effectively about uncertainty in contextual bandit and few-shot learning tasks.

4

References
[1] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex

Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[2] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2261–2269. IEEE, 2017.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[4] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. Nature, 550(7676):354, 2017.

[5] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40, 2017.

[6] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In International conference on machine learning, pages
1050–1059, 2016.

[7] Christos Louizos and Max Welling. Multiplicative normalizing flows for variational bayesian
neural networks. In International Conference on Machine Learning, pages 2218–2227, 2017.

[8] Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended PAC-Bayes
theory. In Proceedings of the 35th International Conference on Machine Learning, pages
205–214, 2018.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, pages 1126–1135,
2017.

[10] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[11] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An
empirical comparison of bayesian deep networks for thompson sampling. arXiv preprint
arXiv:1802.09127, 2018.

[12] William R Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[13] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami,
and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

[14] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting
gradient-based meta-learning as hierarchical bayes. In International Conference on Learning
Representations, 2018.

[15] Taesup Kim, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. arXiv preprint arXiv:1806.03836, 2018.

[16] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. arXiv
preprint arXiv:1806.02817, 2018.

[17] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning-Volume 37, pages 1613–1622. JMLR. org, 2015.

5

[18] Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick. In Advances in Neural Information Processing Systems, pages 2575–
2583, 2015.

[19] Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout: Efficient
pseudo-independent weight perturbations on mini-batches. arXiv preprint arXiv:1803.04386,
2018.

[20] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.

[21] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning, pages 1321–1330, 2017.

[22] Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In Proceedings of the... AAAI Conference on Artificial
Intelligence. AAAI Conference on Artificial Intelligence, volume 2015, page 2901. NIH Public
Access, 2015.

6

6 Supplementary Material

6.1 Related Work

Our method is very closely related to [9] and recent work proposing Bayesian variants of MAML.
[14] provided the first Bayesian variant of MAML using the Laplace approximation. In concurrent
work to this paper, [15] and [16] propose Bayesian variants of MAML with different approximate
posteriors. [16] approximates MAP inference of the task-specific weights φi, and maintain uncertainty
only in the global model θ. Our paper, however, considers tasks in which it is important to quantify
uncertainty in task-specific weights - such as contextual bandits and few-shot learning. [15] focuses
on uncertainty in task-specific weights, as we do. They use a point estimate for all layers except
the final layer of a deep neural network, and use Stein Variational Gradient Descent to approximate
the posterior over the weights in the final layer with an ensemble. This avoids placing Gaussian
restrictions on the approximate posterior; however, the posterior’s expressiveness is dependant on the
number of particles in the ensemble, and memory and computation requirements scale linearly and
quadratically in the size of the ensemble, respectively.

6.2 Application Details

With the objective (4) in mind, we give more details on how we implement the specific model.
We begin with the distributional forms of the priors and posteriors. The formulation given above
is flexible but we consider fully factorized Gaussian distributions for ease of implementation and
experimentation. We let θ = {µθ,σ2

θ}, where µθ ∈ RD and σ2
θ ∈ RD represent the mean and

variance for each neural network weight, respectively. Then, p(φi|θ) is:

p(φi|θ) = N (φi;µθ,σ
2
θI)

Then, qθ
(
φi|D(S)

i

)
is the following:

{µ(K)
λ ,σ2(K)

λ } = SGDK(D(S)
i , θ, θ)

qθ

(
φi|D(S)

i

)
= N

(
φi;µ

(K)
λ ,σ2(K)

λ

)
.

We let the prior p(θ) be:

p(θ) = N (µ;0, I) ·
D∏
l=1

Gamma(τl; a0, b0),

where τl = 1
σ2

l
is the precision and a0 and b0 are the alpha and beta parameters for the gamma

distribution. Note that with the defined distributions, the SGD process here corresponds to performing
Bayes by Backprop [17] with the learned prior p(φi|θ).
Optimization of (4) is done via mini-batch gradient descent, where we average gradients over multiple
episodes at a time. The pseudo-code for training and evaluation are given in Algorithms 1 and 2
in the appendix. The KL-divergence terms are calculated analytically whereas the expectations are
approximated by averaging over a number of samples from the approximate posterior, as has been
done in previous work [10, 17]. The gradient computed for this approximation naively can have high
variance, which can significantly harm the convergence of gradient descent [18]. Previous work has
explored reducing the variance of gradients involving stochastic neural networks and we found this
crucial to training the networks we use. Specifically, we use the Local Reparametrization Trick [18]
for fully-connected layers and Flipout [19] for convolutional layers. Variance reduction is particularly
important to the performance of our model as we perform stochastic optimization to obtain the
posterior q

(
φ|D(S)

)
at evaluation-time also. Lastly, note that we can easily generate multiple weight

samples in the few-shot learning setting simply by replicating the data in each episode since we only
have a few examples per class making up each episode.

6.3 Pseudocode

In algorithms 1 and 2 we give the pseudocode for meta-training and meta-evaluation, respectively.
Note that in practice, we do not directly parameterize variance parameters but instead parameterize

7

the standard deviation as the output of softplus function as was done in [17] so that it is always
non-negative.

Algorithm 1 BBB: Meta-training
Input: Number of update steps K
Number of total episodes M
Inner learning rate α
Outer learning rate β

1: Initialize θ = {µθ,σ2
θ}

2: p(θ) = N (µ;0, I) ·
∏D
l=1 Gamma(τl; a0, b0)

3: for t = 0, . . . ,M do
4: Di = {D(S)

i ,D(Q)
i } ← sample random episode

5: µ
(0)
λ ← µθ; σ2(0)

λ ← σ2
θ

6: for k = 0, . . . ,K do
7: λ(k) ← {µ(k)

λ ,σ
(k)
λ }

8: µ
(k+1)
λ ← µ

(k)
λ − α∇

µ
(k)
λ

LD(S)
i

(λ(k), θ)

9: σ2(k+1)
λ ← σ2(k)

λ − α∇
σ2(k)
λ

LD(S)
i

(λ(k), θ)

10: end for
11:
12: λ(K) ← {µ(K)

λ ,σ2(K)
λ }

13: q(θ) = 1{µ = µθ} · 1{σ2 = σ2
θ}

14: µθ ← µθ − β∇µθ
[
LDi(λ(K), θ) + 1

M KL(q(θ)‖p(θ))
]

15: σ2
θ ← σ2

θ − β∇σ2
θ

[
LDi(λ(K), θ) + 1

M KL(q(θ)‖p(θ))
]

16: end for

Algorithm 2 BBB: Meta-evaluation

Input: Dataset D = {D(S),D(Q)}
Parameters θ = {µθ,σ2

θ}
Inner learning rate α

1: µ
(0)
λ ← µθ; σ2(0)

λ ← σ2
θ

2: for k = 0, . . . ,K do
3: λ(k) ← {µ(k)

λ ,σ
(k)
λ }

4: µ
(k+1)
λ ← µ

(k)
λ − α∇

µ
(k)
λ

LD(S)(λ(k), θ)

5: σ2(k+1)
λ ← σ2(k)

λ − α∇
σ2(k)
λ

LD(S)(λ(k), θ)

6: end for
7:
8: qθ

(
φ |D(S)

)
= N

(
φ;µ

(K)
λ ,σ2(K)

λ

)
9: Evaluate D(Q) using Eqθ(φ |D(S))

[
p(D(Q) |φ)

]

6.4 Additional Results

We describe additional results involving two few-shot learning benchmarks: CIFAR-100 and
miniImageNet, where both datasets consist of 100 classes and 600 images per class and where
CIFAR-100 has images of size 32 × 32 and miniImageNet has images of size 84 × 84. We split
the 100 classes into separate sets of 64 classes for training, 16 classes for validation, and 20 classes
for testing for both of the datasets (using the split from [20] for miniImageNet, while using our
own for CIFAR-100 as a commonly used split does not exist). For both benchmarks, we use the
convolutional architecture used in [9], which consists of 4 convolutional layers, each with 32 filters,
and a fully-connected layer mapping to the number of classes on top. For the few-shot learning

8

CIFAR-100 1-shot
5-class 10-class

MAML (ours) 51.6 ± 0.74 36.2 ± 0.46

Our Model 49.5 ± 0.74 35.7 ± 0.47

miniImageNet 1-shot, 5-class
MAML (ours) 47.0 ± 0.59

Our Model 45.0 ± 0.60

Table 2: Few-shot classification accuracies with 95% confidence intervals on CIFAR-100 and
miniImageNet.

experiments, we found it necessary to downweight the inner KL term for better performance in our
model.

While we focus on predictive uncertainty, we start by comparing classification accuracy of our model
compared to MAML. We consider 1-shot, 5-class and 1-shot, 10-class classification on CIFAR-100
and 1-shot, 5-class classification on miniImageNet, with results given in Table 2. For both datasets,
we compare our model with our own re-implementation of MAML. Note that the accuracy and
confidence interval for our implementation of MAML for miniImageNet are smaller because we use
a bigger query set for test episodes (15 examples per class vs 1 example per class) and average across
more test episodes (1000 vs 600) compared to [9], respectively. Our model achieves comparable to a
little worse accuracy than MAML on the considered benchmarks.

To measure the predictive uncertainty of the models, we first compute reliability diagrams [21]
across many different test episodes for both models. Reliability diagrams visually measure how
well calibrated the predictions of a model are by plotting the expected accuracy as a function of the
confidence of the model. A well-calibrated model will have its bars align more closely with the
diagonal line, as it indicates that the probability associated with a predicted class label corresponds
closely with how likely the prediction is to be correct. We also show the Expected Calibration Error
(ECE) and Maximum Calibration Error (MCE) of all models, which are two quantitative ways to
measure model calibration [22, 21]. ECE is a weighted average of each bin’s accuracy-to-confidence
difference whereas MCE is the worst-case bin’s accuracy-to-confidence difference. Reliability
diagrams and associated error scores are shown in Figure 3. We see that across different tasks and
datasets, the reliability diagrams and error scores reflect the fact that our model is always better
calibrated on evaluation episodes compared to MAML.

Another way we can measure the quality of the predictive uncertainty of a model is by measuring its
confidence on out-of-distribution examples from unseen classes. This tests the model’s ability to be
uncertain on examples it clearly does not know how to classify. One method to visually measure this
is by plotting the empirical CDF of a model’s entropies on these out-of-distribution examples [7]. A
model represented by a CDF curve that is towards the bottom-right is preferred, as it indicates that the
probability of observing a high confidence prediction from the model is low on an out-of-distribution
example. We can plot the same type of curve in our setting by considering the model’s confidence
on out-of-episode examples for each test episode. Empirical CDF curves for both MAML and our
model are shown in Figure 4. We see that in general our model computes better uncertainty estimates
than MAML, as the probability of a low entropy prediction is always smaller.

Lastly, we visualize the prior distribution p(φ | θ) that has been learned in tasks involving deep
convolutional networks. We show the standard deviations of randomly selected filters from the first
convolutional layer to the last convolutional layer from our CIFAR-100 network trained on 1-shot,
5-class task in Figure 5. Interestingly, the standard deviation of the prior for the filters increases as
we go higher up in the network. This pattern reflects the fact that across the training episodes the
prior can be very confident about the lower-level filters, as they capture general, useful lower-level
features and so do not need to be modified as much on a new episode. The standard deviation for the
higher-level filters is higher, reflecting that fact that these filters need to be fine-tuned to the labels
present in the new episode. This variation in the standard deviation represents different learning
speeds across the network on a new episode, indicating which type of weights are general and which
type of weights need to be quickly modified to capture the new data.

9

(a)

CIFAR-100: 1-shot, 5-class CIFAR-100: 1-shot, 10-class miniImageNet: 1-shot, 5-class

(b)

Figure 3: Reliability diagrams for MAML and our model on various tasks across datasets. Relibiality
diagrams are computed by gathering predicted probabilities for query set examples across many
episodes, where the same set of evaluation episodes are used for both models (a) MAML reliability
diagrams (b) Reliability diagrams for our model.

CIFAR-100: 1-shot, 5-class CIFAR-100: 1-shot, 10-class

miniImageNet: 1-shot, 5-class

Figure 4: Comparison of empirical CDF of entropy of predictive distributions on out-of-episode
examples on various tasks and datasets. Data for CDF comes from computing the entropy on out-of-
episode examples across many episodes, where out-of-episode examples are generated by randomly
sampling classes not belonging to the episode and randomly sampling examples from those classes.
The same set of evaluation episodes are used for both models.

10

Figure 5: Standard deviation of prior for convolutional kernels across layers of network. For each
image, the x-axis indexes different filters from the specific layer whereas the y-axis indexes across
positions in the 3× 3 kernel.

6.5 Hyperparameters

6.5.1 Contextual Bandits

n = 2, 000 n = 80, 000

Number of NN Layers 2 2
Hidden Units per Layer 100 100
ts (mini-batches per training step) 100 100
tf (frequency of training) 20 100
Optimizer ADAM ADAM
Learning rate 0.001 0.001

Table 3: Hyperparameters for contextual bandit experiments. These hyperparameters were used for
both MAML and our model when comparing them. Hyperparameters tf and ts were used as defined
in [11] .

11

	Introduction
	Meta-Learning via Hierarchical Variational Inference
	Amortized Bayesian Meta-Learning
	Amortized Variational Inference using only support set

	Evaluation
	Conclusion
	Supplementary Material
	Related Work
	Application Details
	Pseudocode
	Additional Results
	Hyperparameters
	Contextual Bandits

