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Abstract

In this work we propose to use meta-learning to learn sets of symbolic default
hyperparameter configurations that work well across many data sets. A well known
example for such a symbolic default is the logarithmic relation between the number
of features of a dataset and the available features per split of a Random Forest, as
observed by Breiman (2001). Symbolic functions allow for a more rich vocabulary
to define defaults on. In the past, symbolic and static default values have been
obtained either from hand-crafted heuristics or empirical evaluations of specific
algorithms. We propose to automatically learn such symbolic configurations, i.e.,
formulas containing meta-features, from a large set of prior evaluations of numeric
hyperparameters on multiple data sets via symbolic regression and optimization.

1 Introduction

The performance of most machine learning algorithms is greatly influenced by their hyperparameter
settings. Various methods exist to automatically optimize hyperparameters, including random
search (Bergstra and Bengio, 2012), Bayesian optimization (Snoek et al., 2012; Hutter et al., 2011),
meta-learning (Brazdil et al., 2008) and bandit-based methods (Li et al., 2017). Depending on the
algorithm, proper tuning of hyperparameters can yield considerable performance gains (Lavesson and
Davidsson, 2006). Despite the acknowledged importance of tuning hyperparameters, the additional
run time, code complexity and experimental design questions cause many practitioners to leave
many hyperparameters to their default values, especially in real-world machine learning pipelines
containing many hyperparameters. Moreover, it seems less than ideal to optimize all hyperparameters
from scratch with every new dataset. If the optimal values of an hyperparameter are functionally
dependent on properties of the data, we could learn this functional relationship and express them
as symbolic default configurations that work well across many data sets. That way we can transfer
information from previous optimization runs to obtain better data set dependent defaults and good
starting configurations for further tuning.

Some of these functional relationships are reported in the literature, such as is the logarithmic
relation between the number of features of a dataset and the available features per split of a Random
Forest Breiman (2001). Other examples are the interaction between the RBF kernel bandwidth
parameter (gamma) in SVM’s and the number of features (Vanschoren et al., 2012) or the median
distance between observations (Caputo et al., 2002). Some of these are also implemented in machine-
learning workbenches such as sklearn (Pedregosa et al., 2011), weka (Hall et al., 2009) or mlr
(Bischl et al., 2016). It is often not clear and rarely reported how such relationships were discovered,
nor does there seem to be a clear consensus between workbenches on which symbolic defaults to
implement. Also, they are typically limited to a single hyperparameter, and don’t take into account
how multiple hyperparameters may interact.
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Meta-learning approaches have been proposed to learn static defaults (Pfisterer et al., 2018; Probst
et al., 2018; Weerts et al., 2018; Wistuba et al., 2015), to find which hyperparameters are most
important to optimize (van Rijn and Hutter, 2018; Probst et al., 2018; Weerts et al., 2018), or to build
meta-models to select the kernel or kernel width in SVMs (Soares et al., 2004; Valerio and Vilalta,
2014; Strang et al., 2018).

This paper addresses a new meta-learning challenge: “Can we learn sets of symbolic configurations
for hyperparameters of state-of-the-art machine learning algorithms?”. Contrary to static defaults,
symbolic defaults should be a function of the meta-features of the data set at hand. Ideally, these meta-
features are easily computed, so that the symbolic default configurations can be easily implemented
into software frameworks with little to no computational overhead. We show that such symbolic
defaults outperform the best overall static defaults, and propose techniques to learn such symbolic
defaults via symbolic regression and optimization.

2 Problem definition

2.1 Preliminaries

Consider a target variable y, a feature vector X , and an unknown joint distribution P on (X, y),
from which we have sampled a dataset D containing |D| observations. A machine learning (ML)
algorithm tries to approximate the functional relationship between X and y by producing a prediction
model f̂θ(X), controlled by a multi-dimensional hyperparameter configuration θ ∈ Θ of length p:
θ = {φ1, . . . , φp}. In order to measure prediction performance pointwise between a true label y and
its prediction f̂(X), we define a loss function L(y, f̂(X)).
We are naturally interested in estimating the expected risk of the inducing algorithm, w.r.t. θ on
new data, also sampled from P: RP(θ) = E(L(y, f̂(X))|P). Thus, RP(θ) quantifies the expected
predictive performance associated with a hyperparameter configuration θ for a given data distribu-
tion, learning algorithm and performance measure. Given a data distribution, a learning algorithm
and a performance measure, this mapping encodes the numerical quality for any hyperparameter
configuration θ.

Given K different datasets (or data distributions) P1, ...,PK , we arrive at K hyperparameter risk
mappings.

Rk(θ) = E(L(y, f̂(X, θ))|Pk), k = 1, ...,K.

2.2 Meta Data

Evaluations To learn symbolic defaults, we first gather meta-data that evaluates Rk(θ) on all K
datasets. For a given fixed algorithm with hyperparameter space Θ and a performance measure, e.g.,
area under the ROC curve (AUC), a large number of experiments is run on datasets P1, . . . , PK . These
experiments can be generated by a simple random search, i.e., by sampling random hyperparameter
configurations from Θ, and evaluating them via cross-validation.

Surrogate Models In principle, it is possible to estimate Rk(θ) empirically using cross-validation
for every θ ∈ Θ. However, since each cross-validation involves training many models, this is costly if
we want to obtaining results for a large number of configurations. Therefore, we propose to employ
surrogate models that predict the outcome of a given performance measure and algorithm for a
given hyperparameter configuration. We train one model for each dataset (and each algorithm) on a
sufficiently large random sample of evaluations (Eggensperger et al., 2015). For this, we can also
reuse evaluations shared on OpenML (Vanschoren et al., 2014). These surrogate models provides
us with a fast approximate way to evaluate the performance of any given configuration, without the
requirement of costly training and evaluating models for every possible configuration.

Considering the fact that performances on different datasets are usually not commensurable (Demšar,
2006), an appropriate scaling is required before training surrogate models to enable a comparison
between datasets. This is done in literature by resorting to ranking (Bardenet et al., 2013), or
scaling (Yogatama and Mann, 2014) to standard deviations from the mean. We mitigate the problem
of lacking commensurability between datasets by normalizing performance results on a per-dataset
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Table 1: Simple transformation functions, parameterized by a constant α and a meta-feature value x.

transformation function
linear x · α
square root

√
x · α

logaritmic log(x) · α
inverse α/x
exponentiation xα

basis. A drawback to this is that some information regarding the absolute performance of the
algorithm and the spread across different configurations is lost.

Data set characteristics In addition to the performance of random hyperparameter-configurations,
OpenML contains a range of dataset characteristics, i.e, meta-features. A full list of available
characteristics is described by van Rijn (2016). These characteristics include (among many others)
the number of observations, the number of features and information regarding class balance. We
denote the set of characteristics {c1, c2, ..., cL} with C.

2.3 Hypothesis space

Finding an optimal default now corresponds to finding a configuration θ that minimizes the risk
Rk(θ) across K datasets. We define the risk over K datasets R(θ) = 1

K

∑K
1 Rk(θ), i.e., aggregate

over datasets using the mean.

We allow our configurations to be symbolic, i.e., contain formulas instead of static values. For this
reason we define a set of transformations T that are functions of the data set’s meta-features, and
map from the values of these meta-features to a real value for a given numeric hyperparameter θi,
thus t(x) : R→ R. Table 1 shows a list of simple transformations from a single meta-feature x. Note
that although these symbolic function have a parameter (denoted by α), the optimal value for this
will be determined by the search procedure. Of course, many more complex transformations can be
considered as well.

Note that not all possible combinations will map the input to sensible output ranges. For example,
the exponential function may generate unreasonable high values for high values for α. We can either
add additional constraints on the transformed values to map them back into a reasonable range, or
constrain the search method at these functions to not consider them. In this work, we opted for the
latter.

3 Exhaustive search results

To demonstrate the utility of symbolic defaults, we first perform an exhaustive search on the simplified
hypothesis space shown in Table 1. Given these transformation functions, a set of meta-features and
a set of constant values (for parameter α), we enumerate all possible symbolic functions for a given
hyperparameter, evaluate them on a wide set of datasets, and select the optimal one. Also, instead of
jointly learning symbolic defaults for all hyperparameters, we only allow one symbolic default at
a time, and set all other hyperparameters to a static default such that for the configuration the risk
across datasets is minimized.

Setup The experiment is based on datasets from the OpenML100 (Bischl et al., 2017) benchmark
suite. A rbf-SVM is used and only the hyperparameters γ andC are optimized. We generate candidate
transformations according to Table 1, using a numerical constant (α) geometrically increasing with 10
steps from 0.1 to 2, and 80+ meta-features available from OpenML. This allows for 4,000 symbolic
expressions per hyperparameter. The search procedure should select the best among these.

The evaluation is based on a leave-one-dataset-out strategy, where the (symbolic) defaults are
computed based on all but one dataset, and compared to the best vanilla default values. The vanilla
defaults were computed by doing a full grid search over the hyperparameter space (with 8 values per
hyperparameter), using the corresponding surrogate model to predict the performance on a specific
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Table 2: Comparison between vanilla defaults and symbolic defaults, on 98 datasets from the
OpenML100 (Bischl et al., 2017). Full results are displayed in Table 3 in the appendix.

strategy wins symbolc default configuration
symbolic 59 γ = 0.189824/NumberOfFeatures, C = 86.13
vanilla 36 γ = 0.001078,C = 4522.35

dataset. The best overall configuration across all datasets is the best vanilla default value. The
meta-data used to train the surrogate models is the same as used by van Rijn and Hutter (2018).

Results The results of the experiment can be seen in Table 2, in the appendix. The OpenML100
consists of 100 datasets; for 2 datasets the meta-data was incomplete. Out of the 98 datasets on which
the defaults were evaluated, the symbolic defaults outperform the vanilla defaults in 59 cases, lose
in 36 and draws in 3 cases. In all cases, the found default configuration was consistent across all
leave-one-out cross-validation folds, for both symbolic and vanilla defaults. The latter indicates that
(i) the set of datasets is large enough to learn meaningful defaults on, and (ii) the learned defaults
generalize over tasks. Moreover. since these results were obtained from a simplified search space, it
is quite possible that even better symbolic defaults can be discovered, as well as configurations in
which multiple hyperparameters have symbolic defaults.

Note that these findings are in line what was reported by Vanschoren et al. (2012), who stated that
they could not find a direct correlation, but that high gamma values are predominantly performing
well on datasets with a low number of features.

4 Outlook

The method detailed in the previous sections demonstrated the feasibility of learning a set of simple
data dependent defaults. In future work we first of all plan to extend the search space: we want to
find formulas not for a single hyperparameter, but instead for all sensible hyperparameters of an
algorithm. The current experiment additionally introduces prior assumptions with regards to the kind
of functions we are able to learn, and we currently limit our approach to transformations that contain
a single meta-feature. In future work, we want to introduce fewer restrictions to the space of possible
transformations. As such, we plan to include combinations of meta-features, as well as introduce
a host of significantly more complex transformations. Allowing for more complex formulas thus
reduces the amount of prior assumptions we have to introduce. This comes with a cost: it is no longer
sensible, or depending on the search space impossible, to exhaustively search through the space of
possible formulas, even when using a surrogate model. One possible approach to solve this is to
represent the space of functions as a grammar in Backus-Naur form and represent generated formulas
as integer vectors where each entry represents which element of the right side of the grammar
rule to follow (O’Neill and Ryan (2001), Noorian et al. (2016)). Using this representation, more
advanced techniques like genetic algorithms can also be used to search larger and more complex sets
of transformation functions in a much more efficient way.

Multiple challenges with this approach still exist. A search across the space of all possible functions
may result in invalid values, or values out of the valid range of the hyperparameter for specific
datasets. This does not necessarily pose a problem for genetic algorithms, as a few valid formulas
already suffice, but hampers the efficiency of the search procedure. Additionally, a concurrent search
for optimal formulas of all hyperparameters of an algorithm is difficult, because obtaining a bad value
for only a single hyperparameter φ out of the full configuration θ can result in a bad performance
overall. We propose to solve this using a round-robin approach, where we repeatedly iterate over all
parameters and only learn a formula for one hyperparameter at a time.

On the other hand, we hope to gain several insights that do not only advance the state of research,
but also improve the performance and robustness of many widely used machine learning algorithms,
and thus widely influence the quality of learned models for users who are not able to tune all model
hyperparameters.

Acknowledgments This material is based upon work supported by the National Science Foundation
under Grant No. 1740305 and by DARPA under Grant No. DARPA-BAA-16-51.
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A Results per dataset

Table 3: The difference between symbolic defaults and vanilla defaults, for 98 datasets
from the OpenML100 (Bischl et al., 2017). The best found symbolic default was ‘γ =
0.189824/NumberOfFeatures, C = 86.13’, consistent across all tasks. The best found vanilla
default was ‘γ = 0.001078,C = 4522.35’, consistent across all tasks.

symbolic vanilla
dataset

kr-vs-kp 0.993986 0.993256
letter 0.962879 0.913438
balance-scale 0.948774 0.915973
mfeat-factors 0.997986 0.998242
mfeat-fourier 0.994684 0.991689
breast-w 0.878953 0.936559
mfeat-karhunen 0.993776 0.989547
mfeat-morphological 0.974419 0.976140
mfeat-pixel 0.993166 0.982842
car 0.972400 0.971796
mfeat-zernike 0.968154 0.976384
cmc 0.740027 0.864494
mushroom 0.999673 0.999885
optdigits 0.998058 0.993982
credit-approval 0.905408 0.951653
credit-g 0.771748 0.682432
pendigits 0.995317 0.989628
segment 0.976898 0.991487
diabetes 0.835865 0.874568
soybean 0.991540 0.987747
spambase 0.993783 0.982050
splice 0.993554 0.976631
tic-tac-toe 0.980773 0.989053
vehicle 0.952675 0.921425
waveform-5000 0.959832 0.922108
electricity 0.499086 0.440656
satimage 0.959691 0.958328
eucalyptus 0.865020 0.950900
sick 0.968849 0.927118
vowel 0.997565 0.967072
isolet 0.996529 0.999196
scene 0.945410 0.923344
monks-problems-1 0.999999 0.978106
monks-problems-2 0.997830 0.888671
monks-problems-3 0.993750 0.997656
JapaneseVowels 0.956405 0.958125
synthetic_control 0.988586 0.986362
irish 0.999619 1.000000
analcatdata_authorship 0.997976 0.998362
analcatdata_dmft 0.689489 0.681528
profb 0.631895 0.931988
collins 1.000000 1.000000
mnist_784 0.869533 0.995322
sylva_agnostic 0.974975 0.958614
gina_agnostic 0.949198 0.994346
ada_agnostic 0.939905 0.915434
mozilla4 0.799870 0.696705
pc4 0.973807 0.939981
pc3 0.987253 0.987021

symbolic vanilla
dataset

jm1 0.519439 0.411916
kc2 0.717854 0.453129
kc1 0.800003 0.477086
pc1 0.411465 0.367177
KDDCup09_upselling 0.988281 0.988281
MagicTelescope 0.947935 0.839991
adult 0.879703 0.960864
wilt 0.998123 0.988539
wdbc 0.986231 0.959469
micro-mass 0.960787 0.837078
phoneme 0.636225 0.422257
one-hundred-plants-margin 0.986408 0.984546
one-hundred-plants-shape 0.935152 0.937328
one-hundred-plants-texture 0.988585 0.982143
qsar-biodeg 0.953944 0.949305
wall-robot-navigation 0.965796 0.918964
semeion 0.986686 0.989221
steel-plates-fault 0.998367 0.999982
tamilnadu-electricity 1.000000 1.000000
hill-valley 0.442016 0.766961
ilpd 0.907537 0.898711
madelon 0.859188 0.908491
nomao 0.998656 0.990892
ozone-level-8hr 0.920647 0.832482
cardiotocography 0.998393 0.999983
climate-model-simulation-crashes 0.917094 0.901476
cnae-9 0.989397 0.930784
eeg-eye-state 0.341995 0.376861
first-order-theorem-proving 0.635427 0.683760
gas-drift 0.998310 0.997685
banknote-authentication 1.000000 0.978950
blood-transfusion-service-center 0.801340 0.734690
artificial-characters 0.562517 0.473162
bank-marketing 0.767096 0.902828
Bioresponse 0.936898 0.882554
cjs 0.970188 0.994433
cylinder-bands 0.943682 0.914568
GesturePhaseSegmentationProcessed 0.748805 0.652932
har 0.996902 0.999590
PhishingWebsites 0.937853 0.914617
MiceProtein 0.788341 0.858647
Amazon_employee_access 0.550310 0.334129
dresses-sales 0.779151 0.788013
LED-display-domain-7digit 0.946904 0.967014
texture 0.998820 0.999320
Australian 0.927873 0.953403
connect-4 0.950426 0.940032
higgs 0.954954 0.844238
SpeedDating 0.736372 0.724337

7


	Introduction
	Problem definition
	Preliminaries
	Meta Data
	Hypothesis space

	Exhaustive search results
	Outlook
	Results per dataset

