
Learning to Design RNA

Frederic Runge∗, Danny Stoll∗, Stefan Falkner & Frank Hutter
Department of Computer Science, University of Freiburg

{runget,stolld,sfalkner,fh}@cs.uni-freiburg.de

Abstract

Designing RNA molecules has garnered recent interest in medicine and biotechnol-
ogy since many functional RNA molecules were shown to be involved in regulatory
processes for transcription, epigenetics and translation. Here, we propose a new
algorithm for the RNA Design problem, dubbed LEARNA, which uses deep rein-
forcement learning to train a policy network to sequentially design an entire RNA
molecule. By meta-learning across 8000 different RNA Design tasks, our exten-
sion Meta-LEARNA constructs an RNA Design policy that can be applied out of
the box to quickly solve novel RNA Design tasks. Finally, we use an AutoML
approach to jointly optimize over a rich space of neural architectures for the policy
network, the hyperparameters of the training procedure and the formulation of the
decision process. In a comprehensive empirical evaluation we transfer the found
architectures and parameter settings to three qualitatively different benchmark sets
of RNA Design tasks and show that our approach achieves new state-of-the-art
performance on all benchmarks while also being orders of magnitudes faster in
reaching the previous state-of-the-art performance.

1 Introduction

At its most basic form, RNA is a sequence of the four nucleotides Adenine (A), Guanine (G), Cytosine
(C) and Uracile (U). While the RNA sequence serves as the blueprint, the functional structure of
the RNA molecule is determined by the folding translating the RNA sequence into its 3D tertiary
structure. The hydrogen bonds formed between two corresponding nucleotides constitute one of the
driving forces during this process; the structure that encompasses these hydrogen bonds is commonly
referred to as the secondary structure of RNA.

The problem of finding an RNA sequence that folds into a desired secondary structure is known as
the RNA Design problem or RNA inverse folding [Hofacker et al., 1994]. Most algorithms for RNA
Design focus on search strategies that start with an initial nucleotide sequence and modify it to find a
solution for the given secondary structure [Hofacker et al., 1994, Andronescu et al., 2004, Taneda,
2011, Esmaili-Taheri et al., 2014, Eastman et al., 2018]. In contrast, in this paper we describe a novel
deep reinforcement learning (RL) approach to this problem. Our contributions are as follows:

• We describe LEARNA, a deep RL algorithm for RNA design. LEARNA trains a policy
network that, given a target secondary structure, can be rolled out to sequentially predict the
entire RNA sequence. After generating an RNA sequence, our approach folds this sequence,
locally adapts it, and uses the distance of the resulting structure to the target structure as an
error signal for the RL agent.

• We describe Meta-LEARNA, a meta-learning version of LEARNA that learns a single pol-
icy across many RNA Design problems directly applicable to new RNA Design problems.
Specifically, it learns a conditional generative model from which we can sample candidate
RNA sequences for a given target structure that solves many problems with the first sample.

∗Frederic Runge and Danny Stoll contributed equally to this work; order determined by coinflip.

2nd Workshop on Meta-Learning at NeurIPS 2018, Montréal, Canada.

• We introduce a new benchmark dataset, which we used to develop and tune our algorithm.

• We apply an AutoML approach [Hutter et al., 2018] to jointly optimize the architecture of
the policy network together with the training hyperparameters, and the state representation.
To the best of our knowledge, this is the first application of a variant of neural architecture
search to improve the performance of RL and meta-learning.

• A comprehensive empirical analysis shows that our approach achieves new state-of-the-art
performance on the two most commonly used RNA design benchmark datasets: Rfam-
Taneda (following Taneda [2011]) and Eterna100 (following Anderson-Lee et al. [2016]),
as well as on the test split of our new benchmark. Furthermore, Meta-LEARNA achieves the
results of the previous state-of-the-art approaches 26×, 450× and 4× faster.

2 Background and Related Work

The RNA Design problem aims to find an inverse mapping for a given RNA folding algorithm F ,
which maps from an RNA sequence φ to a representation of its secondary structure: Given a folding
algorithm F and a target RNA secondary structure ω, the RNA Design problem is to find an RNA
sequence φ that satisfies ω = F(φ). This is illustrated in Figure 1 in Appendix B.

Most algorithms targeting the RNA Design problem are either (1) local approaches that operate on
a single sequence and try to find a solution by changing a small number of nucleotides at a time
with the loss function guiding the search (RNA-SSD [Andronescu et al., 2004], INFO-RNA [Busch
and Backofen, 2006], NUPACK [Dirks and Pierce, 2004, Zadeh et al., 2010], ERD [Esmaili-Taheri
et al., 2014] and the approach by Eastman et al. [2018]) or (2) global methods, either having a large
number of candidates being manipulated, or modeling a global distribution from which samples are
sampled (MODENA [Taneda, 2011], AntaRNA [Kleinkauf et al., 2015] and MCTS-RNA [Yang et al.,
2017]). A more detailed review can be found in Churkin et al. [2017].

Other than ours, the only existing algorithm that uses RL is the one by Eastman et al. [2018]; this
has been developed in parallel to our work and, in contrast to our end-to-end approach only uses
RL to guide a local search, making it far less sample-efficient. In the remainder of the paper, we
refer to this approach as RL-LS and compare to it, as well as the recent state-of-the-art algorithms
MCTS-RNA, AntaRNA, and RNAinverse.

The work by Bello et al. [2016] heavily influenced our work. In it, the authors apply RL to combi-
natorial problems, namely the Traveling Salesman Problem. Inspired by this work, we propose to
frame the RNA Design problem as a RL problem where the agent predicts which nucleotide to place
next into the sequence, learning to design RNA end-to-end.

3 A Decision Process Modelling RNA Design

We propose to model the RNA Design problem with respect to a given target structure ω as the
undiscounted Decision Process Dω := (S,A,Rω,Pω). In our experiments, we used the popular
Zuker algorithm [Zuker and Stiegler, 1981, Zuker and Sankoff, 1984] for folding, but our approach
would directly be applicable to any other folding algorithm.

Action space In each episode an agent has the task to design an RNA sequence that folds into the
given target structure ω. To design a candidate solution φ the agent places nucleotides by choosing
an action at at each time step t. For unpaired sites, action at corresponds to selecting one of the
four RNA nucleotides (G, C, A or U), while for paired sites, at corresponds to selecting one of the
Watson-Crick base pairs (GC, CG, AU, or UA). This is illustrated in Figure 2 in Appendix B.

State space and Transition Function The agent chooses an action at based on the state st pro-
vided by the environment. We set st to the (2κ+ 1)-gram centered around the t-th site of the target
structure ω, where κ is a hyperparameter we dub the state radius. To be able to construct this centered
n-gram at all sites we introduced κ padding characters at the start and the end of the target structure.
Since at each time step t the state st is set to a fixed (2κ + 1)-gram, the transition function Pω is
deterministic and defined accordingly.

2

Reward At the terminal time step T the agent has assigned nucleotides to all sites and the environ-
ment generates the (only non-zero) reward rT :

rT = −
(

dH(fold(φ), ω)

|ω|

)α
, (1)

where dH(·, ·) is the Hamming distance, fold(·) denotes the Zuker folding algorithm and α > 1 is
a hyperparameter to shape the reward. If the distance between the fold of the proposed sequence
and the target structure becomes small enough, i.e., dH(fold(φ), ω) < ξ (we set ξ = 5 based on
preliminary experiments), we employ a local improvement step before computing the reward: this
tries all nucleotide combinations for the sites at which the fold of our designed sequence fold(φ)
differs from the target structure ω.

4 Obtaining Policies for RNA Design

We propose several strategies to learn the parameters θ of a given policy network πθ:

LEARNA The LEARNA strategy learns to design a sequence for the target structure ω in an online
fashion, from scratch. The parameters θ of the policy network πθ are randomly initialized before the
agent episodically interacts with the decision process Dω. For updating the parameters we use the
policy gradient method PPO [Schulman et al., 2017].

Meta-LEARNA Meta-LEARNA uses a meta-learning approach [Lemke et al., 2015] that views the
RNA design of the target structures in the training set Ωtrain as tasks and learns to transfer knowledge
across them. Each of the target structures ωi ∈ Ωtrain defines a different decision process Dωi

, and
we train a single policy network on all of them, also using PPO. Once the training is finished, the
parameters θ are fixed and πθ can be applied to the decision process Dω defined by a new target
structure ω by sampling from the learned generative model.

Meta-LEARNA-Adapt Meta-LEARNA-Adapt combines the previous two strategies: First, we
run Meta-LEARNA to train parameters θ in an offline training phase on Ωtrain. However, to work
on target structure ω, the policy is not fixed but is only used to initialize LEARNA running on the
Decision Process Dω .

The precise architectures of the policy networks we used were determined using neural architecture
search as described in the next section; they are listed in Table 5 in Appendix E.

5 Joint Architecture Search and Hyperparameter Optimization

To automatically select the best neural architecture based on data, we define a search space that
includes both elements of convolutional neural networks (CNNs) and recurrent neural networks
(RNNs). We construct our architectures as follows: (1) the dot bracket representation of the state
is either binary encoded (distinguishing between paired and unpaired sites) or processed by an em-
bedding layer that converts the symbol-based representation into a learnable numerical one for each
site. Then, (2) an optional CNN with at most two layers can be applied to the state, followed by
(3) an optional LSTM with at most two layers. As the final stage, we always add (4) a shallow
fully-connected network with one or two layers, which outputs the distribution over actions. Jointly
with these architectural choices, we optimized three hyperparameters of PPO (learning rate, batch
size, and strength of the entropy regularization), and since we want to use the best decision process
for solving our problem, also two hyperparameters of the decision process described in Section 3:
the exponent α used for reward shaping and the state space radius κ. In total, these choices yield a
14-dimensional space comprising mostly integer variables; for full details see Appendix E.

We used the efficient Bayesian optimization method BOHB [Falkner et al., 2018] to address the
problems of neural architecture search (NAS) [Zoph and Le, 2017, Elsken et al., 2018] and hyperpa-
rameter optimization as a joint optimization problem. BOHB supports optimization in mixed inte-
ger/continuous search spaces, can utilize parallel resources and additionally allows to exploit cheap
approximations of expensive-to-evaluate objective functions to speed up the optimization. To avoid
overfitting on our target RNA benchmarks, we further introduce a new training set (Rfam-LEARN-
Train), validation set (Rfam-LEARN-Validation) and test set (Rfam-Learn-Test) described in detail

3

Table 1: Summary of results for RNAInverse, MCTS-RNA, RL-LS, antaRNA, LEARNA, and Meta-
LEARNA regarding the total fraction of solved target structures on the three benchmarks. A target
structure counts as solved if a solution was found in any of the evaluation runs on the specific dataset.

M E T H O D E T E R N A 1 0 0 R F A M - TA N E D A R F A M - L E A R N - T E S T

M C T S - R NA 5 7 % 7 9 % 9 7 %
A N TA R NA 5 8 % 6 6 % 1 0 0 %
R L - L S 5 9 % 6 2 % 6 2 %
R NA I N V E R S E 6 0 % 5 9 % 9 5 %

L E A R NA - 1 0 M I N - 7 9 % 9 5 %
L E A R NA - 3 0 M I N 6 3 % - 9 7 %
M E TA - L E A R NA - A D A P T 6 4 % 8 3 % 9 8 %
M E TA - L E A R NA 6 5 % 7 9 % 1 0 0 %

in Appendix C. We created two versions of LEARNA: (1) LEARNA-10min, which is optimized for
achieving strong performance in 10 minutes (on one core per sequence) and (2) LEARNA-30min,
which is optimized for achieving strong performance within 30 minutes (on one core per sequence).
LEARNA-10min is used on the Rfam-Taneda dataset and LEARNA-30min is applied to the other
two datasets. Finally, our meta learning approach Meta-LEARNA is optimized to achieve strong
performance when run for one hour on twenty cores (with an internal budget of 1 minute on one core
per sequence). Based on preliminary experiments, we used the sum of mean distances as the loss.

6 Experiments

We report results on two established benchmarks from the literature, the Rfam benchmark as de-
scribed at Taneda [2011] and the Eterna100 benchmark [Anderson-Lee et al., 2016], as well as on
our proposed benchmark Rfam-Learn, reporting the accumulated number of solved targets across
all runs. Details on the benchmarks we used are listed in Appendix D. We used the same hardware
for all approaches and experiments as listed in detail in Appendix A. The final performance of all
algorithms of our comparison for the three benchmarks is summarized in Table 1. The corresponding
plots for all benchmarks are shown in Appendix F. On the Eterna100 benchmark all variants of
LEARNA achieve new state-of-the-art results. Remarkably, Meta-LEARNA achieves previous state-
of-the-art performance in about 90 seconds, new state-of-the-art performance in less than 3 minutes
and also achieves new state-of-the-art performance in each single run (solving at least 64 % of the
target structures). Concerning the Rfam-Taneda benchmark, Meta-LEARNA and LEARNA are on
par with the current state-of-the-art results of MCTS-RNA. Remarkably, Meta-LEARNA needs less
than 10 seconds to achieve this performance. Meta-LEARNA-Adapt achieves new state-of-the-art
results after 1 minute, solving 83% of the target structures. On our proposed Rfam-Learn benchmark,
only Meta-LEARNA and antaRNA were able to solve all of the target structures in 1 hour; 5 minutes
and 20 minutes respectively. Except for RL-LS, all algorithms could solve at least 95% of the target
structures within the 1h time limit. The results of our ablation study are illustrated in the Appendix G.
We observed that the local improvement step boosts performance for all variants of our approach. The
performance loss of Meta-LEARNA-Adapt compared to Meta-LEARNA is caused by the overhead
associated with the weight updates, which result in Meta-LEARNA-Adapt only being able to perform
7-10 times fewer evaluations than Meta-LEARNA performs in the same time.

7 Conclusion

We proposed the deep reinforcement learning algorithm LEARNA for the RNA Design problem to
sequentially construct candidate solutions in an end-to-end fashion. By pre-training on a large corpus
of biological sequences, a local improvement step to aid the agent, and extensive architecture and
hyperparameter optimization, we arrived at Meta-LEARNA, a ready-to-use agent that achieves state-
of-the-art results on the Eterna100 benchmark. By continuing training, dubbed Meta-LEARNA-Adapt,
we can also improve over all previous results on the Rfam benchmark2.

2Code and data for reproducing our results is available at https://github.com/automl/learna

4

https://github.com/automl/learna

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Jeff Anderson-Lee, Eli Fisker, Vineet Kosaraju, Michelle Wu, Justin Kong, Jeehyung Lee, Minjae
Lee, Mathew Zada, Adrien Treuille, and Rhiju Das. Principles for predicting RNA secondary
structure design difficulty. Journal of molecular biology, 428(5):748–757, 2016.

Mirela Andronescu, Anthony P. Fejes, Frank Hutter, Holger H. Hoos, and Anne Condon. A
New Algorithm for RNA Secondary Structure Design. Journal of Molecular Biology, 336(3):
607–624, 2004. ISSN 0022-2836. doi: https://doi.org/10.1016/j.jmb.2003.12.041. URL http:
//www.sciencedirect.com/science/article/pii/S0022283603015596.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Anke Busch and Rolf Backofen. INFO-RNA—a fast approach to inverse RNA folding. Bioin-
formatics, 22(15):1823–1831, 2006. doi: 10.1093/bioinformatics/btl194. URL http:
//dx.doi.org/10.1093/bioinformatics/btl194.

Alexander Churkin, Matan Drory Retwitzer, Vladimir Reinharz, Yann Ponty, Jérôme Waldispühl,
and Danny Barash. Design of rnas: comparing programs for inverse rna folding. Briefings in
bioinformatics, 19(2):350–358, 2017.

Robert M. Dirks and Niles A. Pierce. An Algorithm for Computing Nucleic Acid Base-Pairing
Probabilities Including Pseudoknots. Journal of Computational Chemistry, 25(10):295—-1304,
2004. doi: 10.1002/jcc.20057.

Peter Eastman, Jade Shi, Bharath Ramsundar, and Vijay S Pande. Solving the RNA design problem
with reinforcement learning. PLoS computational biology, 14(6):e1006176, 2018.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural Architecture Search: A Survey.
ArXiv e-prints, August 2018.

Ali Esmaili-Taheri, Mohammad Ganjtabesh, and Morteza Mohammad-Noori. Evolutionary so-
lution for the RNA design problem. Bioinformatics, 30(9):1250–1258, 2014. doi: 10.
1093/bioinformatics/btu001. URL http://dx.doi.org/10.1093/bioinformatics/
btu001.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter
optimization at scale. In Proceedings of the 35th International Conference on Machine Learning
(ICML 2018), pages 1436–1445, July 2018.

Ivo Hofacker, Walter Fontana, Peter Stadler, Sebastian Bonhoeffer, Manfred Tacker, and Peter
Schuster. Fast Folding and Comparison of RNA Secondary Structures. Monatshefte fuer
Chemie/Chemical Monthly, 125:167–188, 02 1994.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automatic Machine Learning: Meth-
ods, Systems, Challenges. Springer, 2018. In press, available at http://automl.org/book.

Ioanna Kalvari, Joanna Argasinska, Natalia Quinones-Olvera, Eric P Nawrocki, Elena Rivas, Sean R
Eddy, Alex Bateman, Robert D Finn, and Anton I Petrov. Rfam 13.0: shifting to a genome-centric
resource for non-coding RNA families. Nucleic acids research, 46(D1):D335–D342, 2017.

5

https://www.tensorflow.org/
http://www.sciencedirect.com/science/article/pii/S0022283603015596
http://www.sciencedirect.com/science/article/pii/S0022283603015596
http://dx.doi.org/10.1093/bioinformatics/btl194
http://dx.doi.org/10.1093/bioinformatics/btl194
http://dx.doi.org/10.1093/bioinformatics/btu001
http://dx.doi.org/10.1093/bioinformatics/btu001

Robert Kleinkauf, Torsten Houwaart, Rolf Backofen, and Martin Mann. antaRNA–Multi-objective
inverse folding of pseudoknot RNA using ant-colony optimization. BMC bioinformatics, 16(1):
389, 2015.

Christiane Lemke, Marcin Budka, and Bogdan Gabrys. Metalearning: a survey of trends and
technologies. 44(1):117–130, Jun 2015.

Ronny Lorenz, Stephan H. Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph
Flamm, Peter F. Stadler, and Ivo L. Hofacker. Viennarna package 2.0. Algorithms for Molecular
Biology, 6(1):26, Nov 2011a. ISSN 1748-7188. doi: 10.1186/1748-7188-6-26. URL https:
//doi.org/10.1186/1748-7188-6-26.

Ronny Lorenz, Stephan H Bernhart, Christian Hoener Zu Siederdissen, Hakim Tafer, Christoph
Flamm, Peter F Stadler, and Ivo L Hofacker. Viennarna package 2.0. Algorithms for Molecular
Biology, 6(1):26, 2011b.

Michael Schaarschmidt, Alexander Kuhnle, and Kai Fricke. Tensorforce: A tensorflow library
for applied reinforcement learning. Web page, 2017. URL https://github.com/
reinforceio/tensorforce.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Akito Taneda. MODENA: a multi-objective RNA inverse folding. Advances and applications in
bioinformatics and chemistry: AABC, 4:1, 2011.

Xiufeng Yang, Kazuki Yoshizoe, Akito Taneda, and Koji Tsuda. RNA inverse folding using Monte
Carlo tree search. BMC bioinformatics, 18(1):468, 2017.

Joseph N. Zadeh, Conrad D. Steenberg, Justin S. Bois, Brian R. Wolfe, Marshall B. Pierce, Asif R.
Khan, Robert M. Dirks, and Niles A. Pierce. Nupack: Analysis and design of nucleic acid
systems. Journal of Computational Chemistry, 32(1):170–173, 2010. doi: 10.1002/jcc.21596.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21596.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In Proceedings of
the International Conference on Learning Representations (ICLR’17), 2017. Published online:
iclr.cc.

M Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using thermodynamics
and auxiliary information. Nucleic Acids Research, 9(1):133–148, 1981.

Michael Zuker and David Sankoff. RNA secondary structures and their prediction. Bulletin
of Mathematical Biology, 46(4):591 – 621, 1984. ISSN 0092-8240. doi: https://doi.org/
10.1016/S0092-8240(84)80062-2. URL http://www.sciencedirect.com/science/
article/pii/S0092824084800622.

6

https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1186/1748-7188-6-26
https://github.com/reinforceio/tensorforce
https://github.com/reinforceio/tensorforce
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21596
iclr.cc
http://www.sciencedirect.com/science/article/pii/S0092824084800622
http://www.sciencedirect.com/science/article/pii/S0092824084800622

A Technical Details

We used the implementation of the Zuker algorithm provided by ViennaRNA [Lorenz et al., 2011b]
versions 2.4.8 (MCTS-RNA, RL-LS and LEARNA), 2.1.9 (AntaRNA) and 2.4.9 (RNAInverse). Our
implementation uses the Reinforcement Learning library tensorforce, version 0.3.3 [Schaarschmidt
et al., 2017] working with TensorFlow version 1.4.0 [Abadi et al., 2015]. All computations were
done on Broadwell E5-2630v4 2.2 GHz CPUs with 5 GByte RAM. For the training phase of Meta-
LEARNA, we used all 20 cores of these machines, but at evaluation time, all methods were only
allowed a single core (using core binding).

B Illustration

(

(

.

. .

.

)

)

(a) Target structure ω

G C G A U A G C

(b) RNA sequence φ ∈ N∗

G

C

G

A U

A

G

C

(c) Fold F(φ)

Figure 1: Illustration of the RNA Design problem using a folding algorithm F . RNA secondary
structures are often represented using the dot-bracket notation, where dots stand for unbound sites
and nucleotides connected by a hydrogen bond are marked by opening and closing brackets. Given
the desired RNA secondary structure and its dot-bracket notation (a), the task is to design an RNA
sequence (b) that folds into the desired secondary structure (c).

att Sequence

((. . . .))

G (. . . .) CGC0

G C G CCG1

G C G . . . G CGC2

Figure 2: Illustration of the design of a candidate solution. Starting at time point 0 the candidate
solution is sequentially built by placing nucleotides from the action sequence (at)t∈{0, ..., T−1}.

7

C Rfam-Learn Dataset

To ensure a large enough and interesting dataset, we downloaded all families of the Rfam database
version 13.0 [Kalvari et al., 2017] and folded them using the ViennaRNA package [Lorenz et al.,
2011a]. We removed all secondary structure with multiple known solutions, and only kept structures
with lengths between 50 and 450 to match the existing datasets. To focus on the harder sequences,
we only kept the ones that a single run of MCTS-RNA could not solve within 30 seconds. We chose
MCTS-RNA for filtering as it was the fastest algorithm from the literature. The remaining secondary
structures were split into a training set of 65000, a validation set of 100, and a test set of 100 secondary
structures.

D Benchmarks

Table 2: Overview on the three benchmarks Eterna100 [Anderson-Lee et al., 2016], Rfam-Taneda
[Taneda, 2011] and Rfam-Learn we used for our experiments. The table displays the timeout, the
number of evaluations for each target structure, the number of sequences and the range of sequence
lengths for the corresponding benchmark.

D ATA S E T T I M E O U T E VA L U AT I O N S S E Q U E N C E S L E N G T H

E T E R N A 1 0 0 2 4 H 5 1 0 0 1 2 – 4 0 0
R F A M - TA N E D A 1 0 M I N 5 0 2 9 5 4 – 4 5 1

R F A M - L E A R N - T R A I N – – 6 5 0 0 0 5 0 – 4 5 0
R F A M - L E A R N - VA L – – 1 0 0 5 0 – 4 4 4
R F A M - L E A R N - T E S T 1 H 5 1 0 0 5 0 – 4 4 6

8

E Architecture and Hyperparameter Search Space

Table 3: Search space for the agent’s architecture and the trainings hyperparameter used for training
Meta-Learna

Parameter Name Type Range Prior

filter size in 1st conv layer integer [0, 8] uniform
filter size in 2nd conv layer integer [0, 4] uniform
filters in 1st conv layer integer [1, 32] uniform
filters in 2nd conv layer integer [1, 32] uniform
fully connected layers integer [1, 2] uniform
units in fully connected layer(s) integer [8, 64] log-uniform
LSTM layers integer [0, 2] uniform
units in every LSTM layer integer [1, 64] log-uniform
state space radius integer [0, 32] uniform
embedding dimensionality integer [0, 4] uniform
batch size integer [32, 128] log-uniform
entropy regularization float [5 · 10−5, 5 · 10−3] log-uniform
learning rate for PPO float [1 · 10−6, 1 · 10−4] log-uniform
reward exponent float [1, 10] uniform

Table 4: Search space for the agent’s architecture and the trainings hyperparameter used for training
LEARNA for both the 10 and 30 minutes budget

Parameter Name Type Range Prior

filter size in 1st conv layer integer [0, 8] uniform
filter size in 2nd conv layer integer [0, 4] uniform
filter in 1st conv layer integer [1, 32] log-uniform
filter in 2nd conv layer integer [1, 32] log-uniform
fully connected layers integer [1, 2] uniform
units in fully connected layer(s) integer [8, 64] log-uniform
LSTM layers integer [0, 2] uniform
units in every LSTM layer integer [1, 64] log-uniform
state space radius integer [1, 32] uniform
embedding dimensionality integer [0, 4] uniform
batch size integer [32, 128] log-uniform
entropy regularization float [1 · 10−5, 1 · 10−2] log-uniform
learning rate for PPO float [1 · 10−5, 1 · 10−3] log-uniform
reward exponent float [1, 10] uniform

9

Table 5: The selected configurations for each scenario and budget.
Parameter Name LEARNA-10min LEARNA-30min Meta-LEARNA

filter size in 1st conv layer 5 0 5
filter size in 2nd conv layer 3 3 7
filters in 1st conv layer 8 10 32
filters in 2nd conv layer 1 3 14
fully connected layers 1 1 1
units in fully connected layer(s) 52 32 9
LSTM layers 2 2 0
units in every LSTM layer 4 7 53
state space radius 16 2 26
embedding dimensionality 0 0 1
batch size 32 79 80
entropy regularization 4.44 · 10−4 1.63 · 10−4 1.98 · 10−4

learning rate for PPO 5.49 · 10−4 3.38 · 10−4 6.37 · 10−5

reward exponent 5.72 9.43 9.22

103 104 105

wall clock time [s]

10 2

10 1

100

101

102

lo
ss

b=400.000000
b=3600.000000
b=1200.000000

Figure 3: Observed validation loss during the BOHB run for Meta-LEARNA. The different budgets
b correspond to the training time on 20 CPUs in parallel. The results seem to suggest that one can
achieve a very similar performance with only 20 minutes of training, which could imply that much
longer training of the agent might be required for substantially better performance.

10 2 10 1 100 101 102

validation loss

0

20

40

60

80

100

fra
ct

io
n

of
 so

lv
ed

 se
qu

en
ce

s o
n

va
lid

at
io

n
[%

]

Figure 4: Relationship between the observed loss and the number of solved sequences. The plot
suggests that our loss metric correlates strongly with the number of successfully found primary
sequences.

10

F Comparison Plots

Here, we show the performance of all methods tested on all three benchmarks. In particular, we
present the fraction of solved sequences for Eterna100, Rfam-Taneda, and Rfam-Learn-Test accumu-
lated and averaged over independent evaluation runs.

100 101 102 103 104 105
0

20

40

60

80

100

Time [seconds]

So
lv

ed
Se

qu
en

ce
s

[%
]

100 101 102 103 104 105
0

20

40

60

80

100

Time [seconds]

Meta-LEARNA-Adapt

Meta-LEARNA

LEARNA-30min

RNAInverse

MCTS-RNA

AntaRNA

RL-LS

100 101 102 103
0

20

40

60

80

100

Time [seconds]

So
lv

ed
Se

qu
en

ce
s

[%
]

100 101 102 103
0

20

40

60

80

100

Time [seconds]

Meta-LEARNA-Adapt

Meta-LEARNA

LEARNA-10min

RNAInverse

MCTS-RNA

AntaRNA

RL-LS

100 101 102 103 104
0

20

40

60

80

100

Time [seconds]

So
lv

ed
Se

qu
en

ce
s

[%
]

100 101 102 103 104
0

20

40

60

80

100

Time [seconds]

Meta-LEARNA-Adapt

Meta-LEARNA

LEARNA-30min

RNAInverse

MCTS-RNA

AntaRNA

RL-LS

Figure 5: Comparison of all methods on the Eterna100 (top) Rfam-Taneda (middle) and Rfam-Learn-
Test (bottom) benchmark. The left side shows the fraction of solved target structures accumulated
over independent evaluation runs, while the right side shows the mean of that fraction with confident
intervals using 5, 50, and 5 independent evaluation runs respectively. On all three benchmarks,
Meta-LEARNA outperforms all other methods in terms of number of solved sequences and/or time
to achieve this performance. For Eterna100, all three strategies of our novel approach achieve new
state-of-the-art results, while being orders of magnitudes faster. On our benchmark, all algorithms
except RL-LS solve at least 95 % of the target structures, but Meta-LEARNA performs best (after a
short lag due to computational overhead).

11

G Ablation

Here, we study the contribution of different components of our approaches with an ablation. By
removing one component at a time, we can see the impact it has on the final performance.

100 101 102 103 104
0

20

40

60

80

100

Time [seconds]

So
lv

ed
Se

qu
en

ce
s

[%
]

100 101 102 103 104
0

20

40

60

80

100

Time [seconds]

Meta-LEARNA-Adapt

no adaptation

no local improvement

100 101 102 103 104
0

20

40

60

80

100

Time [seconds]

So
lv

ed
Se

qu
en

ce
s

[%
]

100 101 102 103 104
0

20

40

60

80

100

Time [seconds]

Meta-LEARNA

no local improvement

100 101 102 103 104
0

20

40

60

80

100

Time [seconds]

So
lv

ed
Se

qu
en

ce
s

[%
]

100 101 102 103 104
0

20

40

60

80

100

Time [seconds]

LEARNA-30min

no local improvement

100 101 102 103 104
0

20

40

60

80

100

Time [seconds]

So
lv

ed
Se

qu
en

ce
s

[%
]

100 101 102 103 104
0

20

40

60

80

100

Time [seconds]

LEARNA-10min

no local improvement

Figure 6: Ablation study of Meta-LEARNA-Adapt (first row), Meta-LEARNA (second row), LEARNA-
30min (third row) and LEARNA-10min (fourth row) on Rfam-Learn-Test. The left side shows the
accumulated number of solved target structures over 5 independent runs, while the right side shows
the mean with confident interval.

12

	Introduction
	Background and Related Work
	A Decision Process Modelling RNA Design
	Obtaining Policies for RNA Design
	Joint Architecture Search and Hyperparameter Optimization
	Experiments
	Conclusion
	Technical Details
	Illustration
	Rfam-Learn Dataset
	Benchmarks
	Architecture and Hyperparameter Search Space
	Comparison Plots
	Ablation

