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Learning new tasks quickly

e Want diverse range of skills
® Cost of supervision can be high

e Want to learn new things with as little supervision as possible



Meta-RL

Leverage prior experience to quickly learn new tasks
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Problem with reward design

Hard to design Hard to provide Hard to learn from
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More natural way to provide supervision

Human feedback
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Human-in-the-loop supervision

Replace reward with human feedback
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Why current methods are insufficient?

Very few bits of information per intervention
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Language Corrections
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Problem Setting

Agent provided with ambiguous/incomplete instruction

Quickly incorporate language corrections in the loop

0 .\ ) ; O /

& &9 ()

Rollout Rollout Rollout

n Fo-----------=-=-==- L > T

t f f

L L L

T s T
Desired Target N\ Correction 1: Correction 2:
A C ) Move closer to Move left towards red
< green triangle @ circle

{ |

| =] : L

: ) l w w
|

| 00

N S

Ambiguous Instruction (L): Move blue cylinder in between
red circle and green triangle



Language Guided Policy Model
Model improves based on previous trajectories and corrections.

3 modules — corrections, policy and instruction modules
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Algorithm Overview

Meta-Training
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Ground corrections

Meta-Testing

Task 2
expert

wl

{w

)

Tazsk N
expert

fLabeler

Correction,

l

1

-

t

1

Trajectory;,

a




Meta-Training

Data Collection
(Task 1)
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Meta-Training

Data Collection
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Experimental Setup
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Instruction: Move green triangle to yellow goal. Instruction: Move red square to yellow goal.




Experimental Setup

Block pushing domain

Instruction: Move red block above magenta block. Instruction: Move cyan block left of blue block.



Quick Learning of New Tasks

Instruction: Move blue triangle to green goal.

Correction 1: Enter the Correction 2: Enter the Correction 3: Exit the
blue room. red room. blue room.

Correction 4: Pick up the
blue triangle.



Quick Learning of New Tasks

Instruction: Move cyan block below magenta block.

Correction 1: Touch Correction 2: Move closer Correction 3: Move a lot
cyan block. to magenta block. up.

Correction 4: Move a little up. Solved



Quantitative Evaluation

Success Rates on New Tasks

Env | Instruction Full Info MIVOA (Instr) MIVOA (Full Info) | Co Ci Co Ca C4 Cs
Multi-room 0.075 0.73 0.067 0.63 0.066 046 065 073 0.77 0.82
Obj Relocation 0.64 0.96 0.65 - 065 080 084 085 0.88 0.90

Much quicker learning than using rewards
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Summary

* Avoid demos/reward functions using human-in-the-loop
* Language provides more information per intervention

* Ground language in multi-task setup; learn new tasks
quickly with corrections
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