EXPLOITING STRUCTURE FOR META-LEARNING

NeurIPS Metalearning Workshop | December 8, 2018

Lise Getoor | UC Santa Cruz

STRUCTURE

STRUCTURE IN INPUTS

STRUCTURE IN OUTPUTS

STRUCTURE IN META-LEARNING MODEL

THIS TALK Structure & Meta-learning

STATISTICAL RELATIONAL LEARNING

Make use of logical structure

2

3

- Handle uncertainty
- Perform collective inference

PROBABILISTIC SOFT LOGIC (PSL)

A probabilistic programming language for collective inference problems

- Predicate = relationship or property
- Ground Atom = (continuous) random variable
- Weighted Rules = capture **dependency** or **constraint**

PSL Program = Rules + Input DB

psl.linqs.org

KEY REFERENCE: Hinge-Loss Markov Random Fields and Probabilistic Soft Logic, Stephen Bach, Matthias Broecheler, Bert Huang, Lise Getoor, JMLR 2017

COLLECTIVE Reasoning

outputs depend on each other

COLLECTIVE Classification Pattern

local-predictor(x,1) → label(x,1)
label(x,1) & link(x,y) → label(y,1)

COLLECTIVE Classification Pattern

local-predictor(x,1) → label(x,1)
label(x,1) & link(x,y) → label(y,1)

Local rules:

- "If X donates to party P, X votes for P"
- "If X tweets party P slogans, X votes for P"

Relational rules:

 "If X is linked to Y, and X votes for P, Y votes for P"

Local rules:

- "If X donates to party P, X votes for P"
- "If X tweets party P slogans, X votes for P"

Relational rules:

 "If X is linked to Y, and X votes for P, Y votes for P"

Donates(X,P) \rightarrow Votes(X,P)

COLLECTIVE Activity Recognition

inferring activities in video sequence

ACTIVITY RECOGNITION

COLLECTIVE Pattern

local-predictor(x,l,f) \rightarrow activity(x,l,f)
activity(x,l,f) & same-frame(x,y,f) \rightarrow activity(y,l,f)
activity(x,l,f) & next-frame(f,f') \rightarrow activity(x,l,f')

EMPIRICAL HIGHLIGHTS

Improved activity recognition in video:

	5 Activities		6 Activities	
HOG	47.4%	.481 F1	59.6%	.582 F1
HOG + PSL	59.8%	.603 F1	79.3%	.789 F1
ACD	67.5%	.678 F1	83.5%	.835 F1
ACD + PSL	69.2%	.693 F1	86.0%	.860 F1

London et al., Collective Activity Detection using Hinge-loss Markov Random Fields, CVPR WS 13

COLLECTIVE Stance Prediction

Inferring users' stance in online debates

DEBATE STANCE CLASSIFICATION

TASK:

Jointly infer users' attitude on topics and interaction polarity

Sridhar, Foulds, Huang, Getoor & Walker, Joint Models of Disagreement and Stance, ACL 2015

PSL FOR STANCE CLASSIFICATION

bitbucket.org/linqs/psl-joint-stance

PREDICTING STANCE IN ONLINE FORUMS

Task: Predict post and user stance from two online debate forums

- 4Forums.com: ~300 users,~6000 posts
- CreateDebate.org: ~300 users, ~1200 posts

4FORUMS.COM

CREATEDEBATE.ORG

	ACCURACY		ACCURACY
Text-only Baseline	69.0	Text-only Baseline	62.7
PSL	80.3	PSL	72.7

Sridhar, Foulds, Huang, Getoor & Walker, Joint Models of Disagreement and Stance, ACL 2015

LINK Prediction Pattern

link(x,y) & similar(y,z) →
 link(x,z)

CLUSTERING Pattern

 $link(x,y) \& link(y,z) \rightarrow link(x,z)$

MATCHING Pattern

$link(x,y) \& !same(y,z) \rightarrow !link(x,z)$

THIS TALK Structure & Meta-learning

SRL <-> META-LEARN

SRL Concepts

Templated Models Weight Learning Structure Learning Latent Variables Logical rules

Meta-learning Concepts

Tied Hyperparameters Hyperparameter Optimization Feature & Algorithm Selection Landmarks Few/Zero-shot learning

TEMPLATING

Probabilistic programming language for defining distributions

/* Relational rules */
w_a: Votes(A,P) & Spouse(B,A) -> Votes(B,P)
w₄: Votes(A,P) & Friend(B,A) -> Votes(B,P)
w₄: Votes(A,P) & Colleague(B,A) -> Votes(B,P)

/* Range constraint */
Votes(A, "Republican") + Votes(A, "Democrat")
= 1.0 .

When structural patterns hold across many instantiations

STRUCTURE LEARNING

- Large subfield of statistical relational learning
 - Friedman et al. IJCAI 99, Getoor et al. JMLR 02, Kok & Domingos ICML05, Mihalkova & Mooney ICML07, DeRaedt et al. MLJ 2008, Khosravi et al AAAI10, Khot et al. ICDM 11, Van Haaren et al. MLJ15, among others
 - NIPS Relational Representation Learning Workshop
- Basic Idea
 - Search model space
 - Model space is very rich
 - Optimize parameters
 - Information theoretic criteria, likelihood-based, and Bayesian approaches

Rules express:

- "If configuration C works well for task T1, and task T2 is similar to T1, C will work well for T2"
- "If configuration C1 works well for task T, and configuration C2 similar to C1, C2 will work well for T"

Rules express:

- "If configuration C works well for task T1, and task T2 is similar to T1, C will work well for T2"
- "If configuration C1 works well for task T, and configuration C2 similar to C1, C2 will work well for T"

Works(C,T1) & SimilarTask(T1,T2) → Works(C,T2)

Rules express:

- "If configuration C works well for task T1, and task T2 is similar to T1, C will work well for T2"
- "If configuration C1 works well for task T, and configuration C2 similar to C1, C2 will work well for T"

Works(C1,T) & SimilarConfig(C1,C2) → Works(C2,T)

- Challenge: defining similarity
- Advantages:
 - can make use of multiple similarity measures
 - can use domain knowledge for defining task and configuration similarity
- Research questions:
 - Are there benefits from using this approach?
 - What are opportunities for collective reasoning?

LANDMARKING

- Can be described using latent variables
- E.g., Task-Area and Learner-Expertise as latent variables
- Research questions:
 - Are there benefits from using SRL approach?
 - What are opportunities for collective reasoning?

ALGORITHM & MODEL SELECTION

- Can be described using (probabilistic/soft) logical rules
- Research questions:
 - Are there benefits from using SRL approach?
 - What are opportunities for collective reasoning?

PIPELINE CONSTRUCTION

- Can be described using logical rules and constraints
- Research questions:
 - Are there benefits from using SRL approach?
 - What are opportunities for collective reasoning?

CLOSING

STRUCTURE AND META-LEARNING

CLOSING THE LOOP

CLOSING COMMENTS

Provided some examples of structure and collective reasoning

Opportunity for Meta-Learning methods that can mix:

- probabilistic & logical inference
- data-driven & knowledge-driven modeling
- Meta-modeling for meta-modeling

Compelling applications abound!

THANK YOU!

psl.linqs.org

Contact information:

getoor@ucsc.edu

🈏 | @lgetoor

PSL SUMMARY IN A SLIDE

- MAP Inference in PSL translates into convex optimization problem → inference is really fast
- Inference further enhanced with state-of-the-art optimization and distributed graph processing paradigms →inference even faster
- Learning methods for rule weights & latent variables
- PSL is **open-source**, code, data, tutorials available online

psl.linqs.org