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THIS TALK 
Structure & Meta-learning 
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STATISTICAL RELATIONAL LEARNING 
 

Make use of logical structure 

Handle uncertainty 

Perform collective inference 
[GETOOR & TASKAR ’07] 
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Title and Content 

  A probabilistic programming language for collective inference 
problems 
• Predicate = relationship or property 
• Ground Atom = (continuous) random variable 
• Weighted Rules = capture dependency or constraint 

  PSL Program = Rules + Input DB 

PROBABILISTIC SOFT LOGIC (PSL) 

psl.linqs.org 
 

KEY REFERENCE: Hinge-Loss Markov Random Fields and Probabilistic Soft Logic, 
Stephen Bach, Matthias Broecheler, Bert Huang, Lise Getoor, JMLR 2017 



Blank 

COLLECTIVE 
Reasoning 
outputs depend  
on each other 
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COLLECTIVE 
Classification 

Pattern 
local-predictor(x,l)	à	label(x,l)	
label(x,l)	&	link(x,y)	à	label(y,l)	
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COLLECTIVE CLASSIFICATION 
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COLLECTIVE CLASSIFICATION 

SPOUSE 

SPOUSE 

COLLEAGUE 

COLLEAGUE 
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FRIEND FRIEND FRIEND 

   Local rules: 
•  “If X donates to party P, X votes for P” 
•  “If X tweets party P slogans, X votes for P” 

   Relational rules: 
•  “If X is linked to Y, and X votes for P, Y 

votes for P” 
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COLLECTIVE CLASSIFICATION 
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   Local rules: 
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COLLECTIVE CLASSIFICATION 
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Tweets(X,“Affordable	Health”)	
!	Votes(X,“Democrat”)	
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COLLECTIVE CLASSIFICATION 

SPOUSE 

SPOUSE 

COLLEAGUE 

COLLEAGUE 

SPOUSE FRIEND 

FRIEND FRIEND FRIEND 

Votes(X,P)	&	Friends(X,Y)!	
Votes(Y,P)	 Votes(X,P)	&	Spouse(X,Y)	!	

Votes(Y,P)	

   Local rules: 
•  “If X donates to party P, X votes for P” 
•  “If X tweets party P slogans, X votes for P” 

   Relational rules: 
•  “If X is linked to Y, and X votes for P, Y 

votes for P” 
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COLLECTIVE 
Activity Recognition 

inferring activities  
in video sequence 
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ACTIVITY RECOGNITION 

crossing waiting queueing walking talking dancing jogging
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COLLECTIVE 
Pattern 

local-predictor(x,l,f)	à	activity(x,l,f)	
activity(x,l,f)	&	same-frame(x,y,f)	à	activity(y,l,f)	
activity(x,l,f)	&	next-frame(f,f’)	à	activity(x,l,f’)	
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   Improved activity recognition in video: 

EMPIRICAL HIGHLIGHTS 

5 Activities 6 Activities 
HOG 47.4% .481 F1 59.6% .582 F1 

HOG + PSL  59.8% .603 F1 79.3% .789 F1 
ACD 67.5% .678 F1 83.5% .835 F1 

ACD + PSL  69.2% .693 F1 86.0% .860 F1 

London et al., Collective Activity Detection using Hinge-loss Markov Random Fields, CVPR WS 13  
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COLLECTIVE 
Stance Prediction 
Inferring users’ stance in 

online debates 
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DEBATE STANCE  
CLASSIFICATION  

TASK: 
Jointly infer users’ 
attitude on topics and 
interaction polarity 

TOPIC: 
Climate Change 

Pro 

Anti 

Anti 

Pro 

Disagree 

Disagree 

Disagree 

Agree 

Sridhar, Foulds, Huang, Getoor & Walker, Joint Models of Disagreement and Stance, ACL 2015 

DHANYA 
SRIDHAR 
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//	local	text	classifiers	
		w1:	LocalPro(U,T)									->		Pro(U,T)	
		w1:	LocalDisagree(U1,U2)		->		Disagrees(U1,U2)		
//Rules	for	stance	
		w2:	Pro(U1,T)	&	Disagrees(U1,U2)		->	!Pro(U2,T)	
		w2:	Pro(U1,T)	&	!Disagrees(U1,U2)	->		Pro(U2,T)		
//Rules	for	disagreement	
		w3:		Pro(U1,T)		&		Pro(U1,T)		->		!Disagrees(U1,U2)	
		w3:	!Pro(U1,T)		&		Pro(U2,T)		->			Disagrees(U1,U2)		

 
PSL FOR STANCE CLASSIFICATION 

 

bitbucket.org/linqs/psl-joint-stance 



Comparison 

4FORUMS.COM   
ACCURACY 

Text-only Baseline 69.0  

PSL 80.3 

CREATEDEBATE.ORG 
ACCURACY 

Text-only Baseline 62.7  

PSL 72.7 

PREDICTING STANCE  
IN ONLINE FORUMS 

Task: Predict post and user stance from two online debate forums 
•  4Forums.com: ~300 users,~6000 posts 
•  CreateDebate.org: ~300 users, ~1200 posts 

Sridhar, Foulds, Huang, Getoor & Walker, Joint Models of Disagreement and Stance, ACL 2015 
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LINK 
Prediction 

Pattern 
link(x,y)	&	similar(y,z)	à	

link(x,z)	
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CLUSTERING 
Pattern 

link(x,y)	&	link(y,z)	à	link(x,z)	
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MATCHING 
Pattern 

link(x,y)	&	!same(y,z)	à	!link(x,z)	
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THIS TALK 
Structure & Meta-learning 



Comparison 

SRL Concepts 
  Templated Models 
  Weight Learning 
  Structure Learning 
  Latent Variables 
  Logical rules 

Meta-learning Concepts 
  Tied Hyperparameters 
  Hyperparameter Optimization 
  Feature & Algorithm Selection 
  Landmarks 
  Few/Zero-shot learning 

 

SRL <-> META-LEARN 
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Probabilistic programming language for defining distributions 

TEMPLATING 

+ = 
/*	Local	rules	*/	
wd:	Donates(A,	P)	->	Votes(A,	P)	
wt:	Mentions(A,	“Affordable	Health”)	->	
Votes(A,	“Democrat”)	
wt:	Mentions(A,	“Tax	Cuts”)	->	Votes(A,	
“Republican”)	
	
/*	Relational	rules	*/	
ws:	Votes(A,P)	&	Spouse(B,A)	->	Votes(B,P)	
wf:	Votes(A,P)	&	Friend(B,A)	->	Votes(B,P)	
wc:	Votes(A,P)	&	Colleague(B,A)	->	Votes(B,P)	
	
/*	Range	constraint	*/	
Votes(A,	“Republican”)	+	Votes(A,	“Democrat”)	
=	1.0	.	
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LEARN 
when structural patterns hold 
across many instantiations 
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STRUCTURE LEARNING 
•  Large subfield of statistical relational learning 

•  Friedman et al. IJCAI 99, Getoor et al. JMLR 02, Kok & Domingos ICML05, 
Mihalkova & Mooney ICML07, DeRaedt et al. MLJ 2008, Khosravi et al 
AAAI10,  Khot et al. ICDM 11, Van Haaren et al.  MLJ15, among others 

•  NIPS Relational Representation Learning Workshop 
 

•  Basic Idea 
•  Search model space 

•  Model space is very rich 
•  Optimize parameters 

•  Information theoretic criteria, likelihood-based, and Bayesian approaches 
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META 
LEARN 

when structural patterns hold 
across many learning tasks 
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META LEARNING 
Works 

Tasks 
Configurations 
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META LEARNING 
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Similar 

Works 

Similar 
  Rules express:  

•  “If configuration C works well for task 
T1, and task T2 is similar to T1, C will 
work well for T2” 

•  “If configuration C1 works well for task 
T, and configuration C2 similar to C1, 
C2 will work well for T” 
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META LEARNING 

? 

? 

? 

Similar 

Works 

Similar 
  Rules express:  

•  “If configuration C works well for 
task T1, and task T2 is similar to T1, 
C will work well for T2” 

•  “If configuration C1 works well for task 
T, and configuration C2 similar to C1, 
C2 will work well for T” 

 Works(C,T1)	&	SimilarTask(T1,T2)	!	Works(C,T2)		
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META LEARNING 

? 

? 

? 

Similar 

Works 

Similar 
  Rules express:  

•  “If configuration C works well for task 
T1, and task T2 is similar to T1, C will 
work well for T2” 

•  “If configuration C1 works well for 
task T, and configuration C2 similar 
to C1, C2 will work well for T” 

 Works(C1,T)	&	SimilarConfig(C1,C2)	!	Works(C2,T)		
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META-LEARNING 

•  Challenge: defining similarity 

•  Advantages:  
•  can make use of multiple similarity measures 
•  can use domain knowledge for defining task and 

configuration similarity 
 
•  Research questions: 

•  Are there benefits from using this approach? 
•  What are opportunities for collective reasoning? 
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LANDMARKING 

•  Can be described using latent variables 

•  E.g., Task-Area and Learner-Expertise as latent variables 

•  Research questions: 
•  Are there benefits from using SRL approach? 
•  What are opportunities for collective reasoning? 
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ALGORITHM & MODEL SELECTION 

•  Can be described using (probabilistic/soft) logical rules 

•  Research questions: 
•  Are there benefits from using SRL approach? 
•  What are opportunities for collective reasoning? 
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PIPELINE CONSTRUCTION 

•  Can be described using logical rules and constraints 

•  Research questions: 
•  Are there benefits from using SRL approach? 
•  What are opportunities for collective reasoning? 
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STRUCTURE AND META-LEARNING  

CLOSING THE LOOP 
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CLOSING COMMENTS 

  Provided some examples of structure and collective reasoning 

  Opportunity for Meta-Learning methods that can mix:  
• probabilistic & logical inference 
• data-driven & knowledge-driven modeling 
• Meta-modeling for meta-modeling 

  Compelling applications abound!  

OPPORTUNITY! 
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PROBABILISTIC 
SOFT 
LOGIC 

THANK YOU! 

Contact information: 
getoor@ucsc.edu 

psl.linqs.org 

| @lgetoor  
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• MAP Inference in PSL translates into  
convex optimization problem à inference is really fast 

• Inference further enhanced with state-of-the-art optimization and 
distributed graph processing paradigms àinference even faster 

• Learning methods for rule weights & latent variables 
• PSL is open-source, code, data, tutorials available online 

PSL SUMMARY IN A SLIDE 

psl.linqs.org 


