Thoughts on Progress Made and Challenges Ahead in Few-Shot Learning

Hugo Larochelle Google Brain

Human-level concept learning through probabilistic program induction

Brenden M. Lake,¹* Ruslan Salakhutdinov,² Joshua B. Tenenbaum³

RELATED WORK: ONE-SHOT LEARNING

- One-shot learning has been studied before
 - One-Shot learning of object categories (2006) Fei-Fei Li, Rob Fergus and Pietro Perona
 - Knowledge transfer in learning to recognize visual objects classes (2004) Fei-Fei Li
 - Object classification from a single example utilizing class relevance pseudo-metrics (2004) Michael Fink
 - Cross-generalization: learning novel classes from a single example by feature replacement (2005)Evgeniy Bart and Shimon Ullman
- These largely relied on hand-engineered features and algorithms
 - with recent progress in end-to-end deep learning, we hope to jointly learn a **representation** and **algorithm** better suited for few-shot learning

If you don't evaluate on never-seen problems/datasets...

If you don't evaluate on never-seen problems/datasets...

... it's not meta-learning!

LEARNING PROBLEM STATEMENT

 \bullet Assuming a probabilistic model M over labels, the cost per episode can written as

$$C(D_{train}, D_{test}) = \frac{1}{|D_{test}|} \sum_{\substack{(\mathbf{x}_t, y_t) \\ \in D_{test}}} - \mathbf{l}_{\mathbf{x}_t, \mathbf{x}_t}$$

• Here $p(y|\mathbf{x}, D_{train})$ jointly represents the meta-learner A (which processes D_{train}) and the learner M (which processes \mathbf{x})

$\log p(y_t | \mathbf{x}_t, D_{train})$

CHOOSING A META-LEARNER

• How to parametrize learning algorithms (meta-learners $p(y|\mathbf{x}, D_{train})$)?

- Two approaches to defining a meta-learner
 - Take inspiration from a known learning algorithm
 - kNN/kernel machine: Matching networks (Vinyals et al. 2016) -
 - Gaussian classifier: Prototypical Networks (Snell et al. 2017) -
 - Gradient Descent: Meta-Learner LSTM (Ravi & Larochelle, 2017), MAML (Finn et al. 2017) —
 - Derive it from a black box neural network
 - SNAIL (Mishra et al. 2018) —

CHOOSING A META-LEARNER

• How to parametrize learning algorithms (meta-learners $p(y|\mathbf{x}, D_{train})$)?

• Two approaches to defining a meta-learner

Take inspiration from a known learning algorithm

- kNN/kernel machine: Matching networks (Vinyals et al. 2016) -
- Gaussian classifier: Prototypical Networks (Snell et al. 2017) -
- Gradient Descent: Meta-Learner LSTM (Ravi & Larochelle, 2017), MAML (Finn et al. 2017) -
- Derive it from a black box neural network
 - SNAIL (Mishra et al. 2018) -

MATCHING NETWORKS

• Training a "**pattern matcher**" (kNN/kernel machine)

$$\hat{y} = \sum_{i=1}^{k} a(\hat{x}, x_i) y_i$$

$$a(\hat{x}, x_i) = \frac{e^{c(f(\hat{x}), g(x_i))}}{\sum_{j=1}^k e^{c(f(\hat{x}), g(x_j))}}$$

 Matching networks for one shot learning (2016) Oriol Vinyals, Charles Blundell, Timothy P. Lillicrap, Koray Kavukcuoglu, and Daan Wierstra

|4

$$p_{\phi}(y = k \,|\, \mathbf{x}) = \frac{\exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_k))}{\sum_{k'} \exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_{k'}))}$$

$$\mathbf{c}_k = \frac{1}{|S_k|} \sum_{(\mathbf{x}_i, y_i) \in S_k} f_{\boldsymbol{\phi}}(\mathbf{x}_i)$$

 $S_k = \{(\mathbf{x}_i, y_i) | y_i = k, (\mathbf{x}_i, y_i) \in D_{train}\}$

$$\phi \equiv \Theta$$

• Prototypical Networks for Few-shot Learning (2017) Jake Snell, Kevin Swersky and Richard Zemel

META-LEARNER LSTM ialize and gradient descent procedure'' applied on

- Training an "initialize and gradient descent procedure" applied on some learner ${\cal M}$

META-LEARNER LSTM ialize and gradient descent procedure'' applied on

- Training an "initialize and gradient descent procedure" applied on some learner ${\cal M}$

• Optimization as a Model for Few-Shot Learning (2017) Sachin Ravi and Hugo Larochelle

META-LEARNER LSTM ialize and gradient descent procedure" applied on

- Training an "initialize and gradient descent procedure" applied on some learner ${\cal M}$

 Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (2017) Chelsea Finn, Pieter Abbeel and Sergey Levine

CHOOSING A META-LEARNER

• How to parametrize learning algorithms (meta-learners $p(y|\mathbf{x}, D_{train})$)?

- Two approaches to defining a meta-learner
 - Take inspiration from a known learning algorithm
 - kNN/kernel machine: Matching networks (Vinyals et al. 2016) -
 - Gaussian classifier: Prototypical Networks (Snell et al. 2017) -
 - Gradient Descent: Meta-Learner LSTM (Ravi & Larochelle, 2017), MAML (Finn et al. 2017) -

Derive it from a black box neural network

SNAIL (Mishra et al. 2018) —

SIMPLE NEURAL ATTENTIVE LEARNER

- Using a **convolutional/attentional network** to represent $p(y|\mathbf{x}, D_{train})$
 - Iternates between dilated convolutional layers and attentional layers
 - when inputs are images, an convolutional embedding network is used to map to a vector space

• A Simple Neural Attentive Meta-Learner (2018) Nikhil Mishra, Mostafa Rohaninejad, Xi Chen and Pieter Abbeel

AND SO MUCH MORE!!!

Hugo Larochelle - Few-shot Learning with Meta-Learning: Progress Made and Challenges Ahead

bit.ly/2PikS82

EXPERIMENT

- Mini-ImageNet (split used in Ravi & Larochelle, 2017)
 - random subset of 100 classes (64 training, 16 validation, 20 testing)
 - random sets D_{train} are generated by randomly picking 5 classes from class subset

	5-	
Iviodei	1-shot	
Baseline-finetune	$28.86 \pm 0.54\%$	
Baseline-nearest-neighbor	$41.08 \pm 0.70\%$	
Matching Network	$ig \ 43.40 \pm 0.78\%$	
Matching Network FCE	$43.56\% \pm 0.84\%$	
Meta-Learner LSTM (OURS)	$43.44\% \pm 0.77\%$	

class

5-shot $49.79 \pm 0.79\%$ $51.04 \pm 0.65\%$ $51.09 \pm 0.71\%$ $\% 55.31\% \pm 0.73\%$

 $\% 60.60\% \pm 0.71\%$

EXPERIMENT

- Mini-ImageNet (split used in Ravi & Larochelle, 2017)
 - random subset of 100 classes (64 training, 16 validation, 20 testing)
 - random sets D_{train} are generated by randomly picking 5 classes from class subset

Model	5- 1-shot
Prototypical Nets (Snell et al.)	$49.42\% \pm 0.78\%$
MAML (Finn et al.)	$48.70\% \pm 1.84\%$
SNAIL (Mishra et al.)	55.71% ± 0.99%
Matching Network FCE	$43.56\% \pm 0.84\%$
Meta-Learner LSTM (OURS)	$43.44\% \pm 0.77\%$

class

5-shot

- $68.20\% \pm 0.66\%$
- $63.10\% \pm 0.92\%$ $\hat{\mathbf{n}}$
- $\% 68.88\% \pm 0.98\%$
- $55.31\% \pm 0.73\%$ $\hat{\mathbf{n}}$
- $60.60\% \pm 0.71\%$ \mathbf{O}

REMAINING CHALLENGES

- Going beyond supervised classification
 - unsupervised learning, structured output, interactive learning
- Going beyond Mini-ImageNet
 - coming up with a realistic definition of distributions over problems/datasets

Meta-Dataset: A **Dataset of Datasets for Learning to Learn from Few Examples**

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, **Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle**

• To learn across many tasks requires learning over **many datasets**

Quick Draw (h) VGG Flower (g) Fungi (f)(i)

(d) Birds

(e) DTD

Traffic Signs

• To learn across many tasks requires learning over many datasets

• Meta-training only on ImageNet

Test Source	Method: Accuracy \pm confidence				
Test Source	k-NN	Finetune	MatchingNet	ProtoNet	MAML
ILSVRC	$34.70 {\pm} 0.95$	$38.34{\pm}1.12$	40.89 ± 1.08	$43.37{\pm}1.17$	$38.10{\pm}1.13$
Omniglot	$59.84 {\pm} 0.96$	$59.19{\pm}1.18$	61.85 ± 1.00	$66.18{\pm}1.12$	$54.00{\pm}1.47$
Aircraft	$36.47 {\pm} 0.93$	$41.18{\pm}1.07$	$41.91{\pm}0.96$	$42.14{\pm}0.97$	$42.52{\pm}1.16$
Birds	40.38 ± 1.09	45.82 ± 1.25	54.26 ± 1.16	$57.85{\pm}1.23$	50.78 ± 1.32
Textures	$56.45 {\pm} 0.78$	$58.06 {\pm} 0.88$	$61.70{\pm}0.84$	$60.95{\pm}0.80$	$61.26{\pm}0.93$
Quick Draw	$36.09 {\pm} 1.19$	38.43 ± 1.39	38.52 ± 1.12	$44.02{\pm}1.35$	$30.71{\pm}1.51$
Fungi	$23.70 {\pm} 0.97$	$22.20{\pm}0.92$	$27.21 {\pm} 0.97$	$31.18{\pm}1.15$	$20.35 {\pm} 0.87$
VGG Flower	$66.16 {\pm} 0.99$	$69.32{\pm}1.13$	$75.05 {\pm} 0.91$	$79.89{\pm}0.90$	65.12 ± 1.15
Traffic Signs	$44.81{\pm}1.47$	$39.36{\pm}1.28$	$45.36{\pm}1.31$	$44.04{\pm}1.24$	$31.10{\pm}1.20$
MSCOCO	29.69 ± 1.00	30.25 ± 1.17	$32.32{\pm}1.08$	$3\overline{6.44}{\pm}1.2\overline{3}$	25.17 ± 1.15
Avg. rank	4	3.4	2.2	1.35	4.05

• Meta-training on all training datasets

Test Source	Method: Accuracy \pm confidence				
	k-NN	Finetune	MatchingNet	ProtoNet	MAML
ILSVRC	$25.88 {\pm} 0.83$	$25.84{\pm}0.83$	$35.88{\pm}0.98$	$38.51{\pm}1.01$	30.56 ± 1.00
Omniglot	$92.45{\pm}0.41$	85.20 ± 0.73	$90.21 {\pm} 0.46$	91.32 ± 0.50	$78.05 {\pm} 0.98$
Aircraft	$54.60 {\pm} 0.97$	58.22 ± 1.02	$70.71{\pm}0.78$	$71.54{\pm}0.84$	$68.62 {\pm} 0.90$
Birds	$36.74{\pm}1.01$	$38.56{\pm}1.08$	$59.28 {\pm} 1.06$	$61.81{\pm}1.13$	54.59 ± 1.24
Textures	$50.06 {\pm} 0.77$	48.37 ± 0.82	$60.61{\pm}0.82$	$59.31{\pm}0.75$	$59.25{\pm}0.80$
Quick Draw	$\boldsymbol{59.54 {\pm} 1.08}$	54.05 ± 1.30	$57.44{\pm}1.17$	$60.99{\pm}1.21$	44.48 ± 1.41
Fungi	$24.60 {\pm} 0.95$	$22.90{\pm}0.95$	$31.10{\pm}1.04$	$35.96{\pm}1.25$	21.12 ± 0.88
VGG Flower	$62.49 {\pm} 0.91$	59.72 ± 1.17	$76.72{\pm}0.83$	$81.06{\pm}0.87$	66.05 ± 1.09
Traffic Signs	$41.68{\pm}1.46$	$30.02{\pm}1.13$	$43.20{\pm}1.33$	39.95 ± 1.18	30.23 ± 1.24
MSCOCO	$23.55 {\pm} 0.99$	23.01 ± 0.96	$26.87{\pm}1.00$	$30.81{\pm}1.13$	21.13 ± 1.06
Avg. rank	3.4	4.3	2.15	1.4	3.75

• Difference in performance when meta-training on all datasets

Tast Course	Method: Accuracy \pm confidence				
Test Source	k-NN	Finetune	MatchingNet	ProtoNet	MAML
ILSVRC	-8.82 ± 1.26	-12.5 ± 1.39	-5.01±1.46	-4.86 ± 1.55	-7.54 ± 1.51
Omniglot	32.61 ± 1.04	26.01 ± 1.39	28.36 ± 1.1	25.14 ± 1.23	24.05 ± 1.77
Aircraft	18.13 ± 1.34	17.04 ± 1.48	28.8 ± 1.24	$29.4{\pm}1.28$	26.1±1.47
Birds	-3.64 ± 1.49	-7.26 ± 1.65	5.02 ± 1.57	3.96 ± 1.67	3.81±1.81
Textures	-6.39 ± 1.1	-9.69 ± 1.2	-1.09 ± 1.17	-1.64 ± 1.1	-2.01 ± 1.23
Quick Draw	23.45 ± 1.61	15.62 ± 1.9	18.92 ± 1.62	16.97 ± 1.81	13.77 ± 2.07
Fungi	0.9 ± 1.36	0.7 ± 1.32	3.89±1.42	4.78 ± 1.7	0.77 ± 1.24
VGG Flower	-3.67 ± 1.34	-9.6 ± 1.63	1.67 ± 1.23	1.17 ± 1.25	0.93 ± 1.58
Traffic Signs	-3.13 ± 2.07	$-9.34{\pm}1.71$	-2.16 ± 1.87	-4.09 ± 1.71	-0.87 ± 1.73
MSCOCO	-6.14 ± 1.41	-7.24 ± 1.51	-5.45 ± 1.47	-5.63 ± 1.67	-4.04 ± 1.56

• Difference in performance when meta-training on all datasets

Test Source	Method: Accuracy \pm confidence				
Test Source	k-NN	Finetune	MatchingNet	ProtoNet	MAML
ILSVRC	-8.82 ± 1.26	-12.5 ± 1.39	-5.01±1.46	-4.86 ± 1.55	-7.54 ± 1.51
Omniglot	32.61±1.04	26.01±1.39	28.36 ± 1.1	25.14 ± 1.23	24.05 ± 1.77
Aircraft	18.13 ± 1.34	17.04 ± 1.48	28.8 ± 1.24	$29.4{\pm}1.28$	26.1±1.47
Birds	-3.64 ± 1.49	-7.26 ± 1.65	5.02 ± 1.57	3.96 ± 1.67	3.81±1.81
Textures	-6.39 ± 1.1	-9.69 ± 1.2	-1.09 ± 1.17	$-1.64{\pm}1.1$	-2.01 ± 1.23
Quick Draw	23.45 ± 1.61	15.62 ± 1.9	18.92 ± 1.62	16.97 ± 1.81	13.77 ± 2.07
Fungi	0.9 ± 1.36	0.7 ± 1.32	3.89 ± 1.42	4.78 ± 1.7	0.77 ± 1.24
VGG Flower	-3.67 ± 1.34	-9.6 ± 1.63	1.67 ± 1.23	1.17 ± 1.25	0.93 ± 1.58
Traffic Signs	-3.13 ± 2.07	$-9.34{\pm}1.71$	-2.16 ± 1.87	-4.09 ± 1.71	-0.87 ± 1.73
MSCOCO	-6.14 ± 1.41	-7.24 ± 1.51	-5.45 ± 1.47	-5.63 ± 1.67	-4.04 ± 1.56

• Varying the number of shots and ways

TAKE AWAYS (SO FAR)

• Meta-training distribution of episodes can make a big difference (at least for current methods)

• Using "regular training" as initialization makes a big difference

• MAML needs to be adjusted to be more robust

DISCUSSION

Now is time to move beyond our current simple benchmarks

• What is the "right" meta-training distribution?

• How should we be increasing the size of the benchmark (what should be V2)?

• What are the properties of the optimization landscape of the episodic framework?

• What fairness-relate questions does meta-learning pose?

MERCI !