
THOUGHTS ON PROGRESS MADE AND  
CHALLENGES AHEAD IN FEW-SHOT LEARNING

Hugo Larochelle
Google Brain

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

 3

RESEARCH ARTICLES
◥

COGNITIVE SCIENCE

Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of

RESEARCH

1332 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

1Center for Data Science, New York University, 726
Broadway, New York, NY 10003, USA. 2Department of
Computer Science and Department of Statistics, University
of Toronto, 6 King’s College Road, Toronto, ON M5S 3G4,
Canada. 3Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, MA 02139, USA.
*Corresponding author. E-mail: brenden@nyu.edu

Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]

 o
n

D
ec

em
be

r 1
0,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
D

ec
em

be
r 1

0,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

D
ec

em
be

r 1
0,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
D

ec
em

be
r 1

0,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

D
ec

em
be

r 1
0,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
D

ec
em

be
r 1

0,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

D
ec

em
be

r 1
0,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

RESEARCH ARTICLES
◥

COGNITIVE SCIENCE

Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of

RESEARCH

1332 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

1Center for Data Science, New York University, 726
Broadway, New York, NY 10003, USA. 2Department of
Computer Science and Department of Statistics, University
of Toronto, 6 King’s College Road, Toronto, ON M5S 3G4,
Canada. 3Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, MA 02139, USA.
*Corresponding author. E-mail: brenden@nyu.edu

Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]

 o
n

D
ec

em
be

r 1
0,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
D

ec
em

be
r 1

0,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

D
ec

em
be

r 1
0,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
D

ec
em

be
r 1

0,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

D
ec

em
be

r 1
0,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
D

ec
em

be
r 1

0,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

D
ec

em
be

r 1
0,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

RESEARCH ARTICLES
◥

COGNITIVE SCIENCE

Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of

RESEARCH

1332 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

1Center for Data Science, New York University, 726
Broadway, New York, NY 10003, USA. 2Department of
Computer Science and Department of Statistics, University
of Toronto, 6 King’s College Road, Toronto, ON M5S 3G4,
Canada. 3Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, MA 02139, USA.
*Corresponding author. E-mail: brenden@nyu.edu

Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]

 o
n

D
ec

em
be

r 1
0,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
D

ec
em

be
r 1

0,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

D
ec

em
be

r 1
0,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
D

ec
em

be
r 1

0,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

D
ec

em
be

r 1
0,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

 o

n
D

ec
em

be
r 1

0,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

 o
n

D
ec

em
be

r 1
0,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

People are  
good at it

Machines are
getting

better at it

RELATED WORK: ONE-SHOT LEARNING
• One-shot learning has been studied before
‣ One-Shot learning of object categories (2006)  

Fei-Fei Li, Rob Fergus and Pietro Perona

‣ Knowledge transfer in learning to recognize visual objects classes (2004) 
Fei-Fei Li

‣ Object classification from a single example utilizing class relevance pseudo-metrics (2004) 
Michael Fink

‣ Cross-generalization: learning novel classes from a single example by feature replacement
(2005)  
Evgeniy Bart and Shimon Ullman

• These largely relied on hand-engineered features and algorithms
‣ with recent progress in end-to-end deep learning, we hope to jointly learn a

representation and algorithm better suited for few-shot learning

 5

META-LEARNING
 6

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

META-LEARNING
 7

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Dtrain Dtest

episode

=

META-LEARNING
 8

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Dtrain Dtest

episode

=

META-LEARNING
 8

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Meta-learner (A)

Dtrain Dtest

episode

=

META-LEARNING
 8

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Learner (M)Meta-learner (A)

Dtrain Dtest

episode

=

META-LEARNING
 8

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Learner (M)Meta-learner (A)

Loss

Dtrain Dtest

episode

=

META-LEARNING
 9

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Learner (M)Meta-learner (A)

Loss

Dtrain Dtest

episode

=

META-LEARNING
 9

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)

if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let

it = �
�
WI ·

⇥
r✓t�1Lt,Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt,Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Learner (M)Meta-learner (A)

Loss

Dtrain Dtest

episode

=

If you don’t evaluate on never-seen problems/datasets…

If you don’t evaluate on never-seen problems/datasets…

… it’s not meta-learning!

LEARNING PROBLEM STATEMENT
 11

• Assuming a probabilistic model M over labels, the cost per episode can written as

• Here jointly represents the meta-learner A (which processes
Dtrain) and the learner M (which processes x)

C(Dtrain, Dtest) =
1

|Dtest|
X

(xt,yt)
2Dtest

� log p(yt|xt, Dtrain)

p(y|x, Dtrain)

CHOOSING A META-LEARNER
• How to parametrize learning algorithms (meta-learners)?

• Two approaches to defining a meta-learner
‣ Take inspiration from a known learning algorithm

- kNN/kernel machine: Matching networks (Vinyals et al. 2016)
- Gaussian classifier : Prototypical Networks (Snell et al. 2017)
- Gradient Descent: Meta-Learner LSTM (Ravi & Larochelle, 2017) , MAML (Finn et al. 2017)

‣ Derive it from a black box neural network
- SNAIL (Mishra et al. 2018)

 12

p(y|x, Dtrain)

CHOOSING A META-LEARNER
• How to parametrize learning algorithms (meta-learners)?

• Two approaches to defining a meta-learner
‣ Take inspiration from a known learning algorithm

- kNN/kernel machine: Matching networks (Vinyals et al. 2016)
- Gaussian classifier : Prototypical Networks (Snell et al. 2017)
- Gradient Descent: Meta-Learner LSTM (Ravi & Larochelle, 2017) , MAML (Finn et al. 2017)

‣ Derive it from a black box neural network
- SNAIL (Mishra et al. 2018)

 13

p(y|x, Dtrain)

MATCHING NETWORKS
• Training a “pattern matcher” (kNN/kernel machine)

 14

Figure 1: Matching Networks architecture

train it by showing only a few examples per class, switching the task from minibatch to minibatch,
much like how it will be tested when presented with a few examples of a new task.

Besides our contributions in defining a model and training criterion amenable for one-shot learning,
we contribute by the definition of tasks that can be used to benchmark other approaches on both
ImageNet and small scale language modeling. We hope that our results will encourage others to work
on this challenging problem.

We organized the paper by first defining and explaining our model whilst linking its several compo-
nents to related work. Then in the following section we briefly elaborate on some of the related work
to the task and our model. In Section 4 we describe both our general setup and the experiments we
performed, demonstrating strong results on one-shot learning on a variety of tasks and setups.

2 Model

Our non-parametric approach to solving one-shot learning is based on two components which we
describe in the following subsections. First, our model architecture follows recent advances in neural
networks augmented with memory (as discussed in Section 3). Given a (small) support set S, our
model defines a function cS (or classifier) for each S, i.e. a mapping S ! cS(.). Second, we employ
a training strategy which is tailored for one-shot learning from the support set S.

2.1 Model Architecture

In recent years, many groups have investigated ways to augment neural network architectures with
external memories and other components that make them more “computer-like”. We draw inspiration
from models such as sequence to sequence (seq2seq) with attention [2], memory networks [29] and
pointer networks [27].

In all these models, a neural attention mechanism, often fully differentiable, is defined to access (or
read) a memory matrix which stores useful information to solve the task at hand. Typical uses of
this include machine translation, speech recognition, or question answering. More generally, these
architectures model P (B|A) where A and/or B can be a sequence (like in seq2seq models), or, more
interestingly for us, a set [26].

Our contribution is to cast the problem of one-shot learning within the set-to-set framework [26].
The key point is that when trained, Matching Networks are able to produce sensible test labels for
unobserved classes without any changes to the network. More precisely, we wish to map from a
(small) support set of k examples of image-label pairs S = {(xi, yi)}ki=1 to a classifier cS(x̂) which,
given a test example x̂, defines a probability distribution over outputs ŷ. We define the mapping
S ! cS(x̂) to be P (ŷ|x̂, S) where P is parameterised by a neural network. Thus, when given a

2

new support set of examples S0 from which to one-shot learn, we simply use the parametric neural
network defined by P to make predictions about the appropriate label ŷ for each test example x̂:
P (ŷ|x̂, S0). In general, our predicted output class for a given input unseen example x̂ and a support
set S becomes argmaxy P (y|x̂, S).
Our model in its simplest form computes ŷ as follows:

ŷ =
kX

i=1

a(x̂, xi)yi (1)

where xi, yi are the samples and labels from the support set S = {(xi, yi)}ki=1, and a is an attention
mechanism which we discuss below. Note that eq. 1 essentially describes the output for a new class as
a linear combination of the labels in the support set. Where the attention mechanism a is a kernel on
X ⇥X , then (1) is akin to a kernel density estimator. Where the attention mechanism is zero for the
b furthest xi from x̂ according to some distance metric and an appropriate constant otherwise, then
(1) is equivalent to ‘k � b’-nearest neighbours (although this requires an extension to the attention
mechanism that we describe in Section 2.1.2). Thus (1) subsumes both KDE and kNN methods.
Another view of (1) is where a acts as an attention mechanism and the yi act as memories bound to
the corresponding xi. In this case we can understand this as a particular kind of associative memory
where, given an input, we “point” to the corresponding example in the support set, retrieving its label.
However, unlike other attentional memory mechanisms [2], (1) is non-parametric in nature: as the
support set size grows, so does the memory used. Hence the functional form defined by the classifier
cS(x̂) is very flexible and can adapt easily to any new support set.

2.1.1 The Attention Kernel

Equation 1 relies on choosing a(., .), the attention mechanism, which fully specifies the classi-
fier. The simplest form that this takes (and which has very tight relationships with common
attention models and kernel functions) is to use the softmax over the cosine distance c, i.e.,
a(x̂, xi) = ec(f(x̂),g(xi))/

Pk
j=1 e

c(f(x̂),g(xj)) with embedding functions f and g being appropri-
ate neural networks (potentially with f = g) to embed x̂ and xi. In our experiments we shall see
examples where f and g are parameterised variously as deep convolutional networks for image
tasks (as in VGG[22] or Inception[24]) or a simple form word embedding for language tasks (see
Section 4).

We note that, though related to metric learning, the classifier defined by Equation 1 is discriminative.
For a given support set S and sample to classify x̂, it is enough for x̂ to be sufficiently aligned with
pairs (x0, y0) 2 S such that y0 = y and misaligned with the rest. This kind of loss is also related to
methods such as Neighborhood Component Analysis (NCA) [18], triplet loss [9] or large margin
nearest neighbor [28].

However, the objective that we are trying to optimize is precisely aligned with multi-way, one-shot
classification, and thus we expect it to perform better than its counterparts. Additionally, the loss is
simple and differentiable so that one can find the optimal parameters in an “end-to-end” fashion.

2.1.2 Full Context Embeddings

The main novelty of our model lies in reinterpreting a well studied framework (neural networks with
external memories) to do one-shot learning. Closely related to metric learning, the embedding func-
tions f and g act as a lift to feature space X to achieve maximum accuracy through the classification
function described in eq. 1.

Despite the fact that the classification strategy is fully conditioned on the whole support set through
P (.|x̂, S), the embeddings on which we apply the cosine similarity to “attend”, “point” or simply
compute the nearest neighbor are myopic in the sense that each element xi gets embedded by g(xi)
independently of other elements in the support set S. Furthermore, S should be able to modify how
we embed the test image x̂ through f .

We propose embedding the elements of the set through a function which takes as input the full set
S in addition to xi, i.e. g becomes g(xi, S). Thus, as a function of the whole support set S, g can
modify how to embed xi. This could be useful when some element xj is very close to xi, in which

3

new support set of examples S0 from which to one-shot learn, we simply use the parametric neural
network defined by P to make predictions about the appropriate label ŷ for each test example x̂:
P (ŷ|x̂, S0). In general, our predicted output class for a given input unseen example x̂ and a support
set S becomes argmaxy P (y|x̂, S).
Our model in its simplest form computes ŷ as follows:

ŷ =
kX

i=1

a(x̂, xi)yi (1)

where xi, yi are the samples and labels from the support set S = {(xi, yi)}ki=1, and a is an attention
mechanism which we discuss below. Note that eq. 1 essentially describes the output for a new class as
a linear combination of the labels in the support set. Where the attention mechanism a is a kernel on
X ⇥X , then (1) is akin to a kernel density estimator. Where the attention mechanism is zero for the
b furthest xi from x̂ according to some distance metric and an appropriate constant otherwise, then
(1) is equivalent to ‘k � b’-nearest neighbours (although this requires an extension to the attention
mechanism that we describe in Section 2.1.2). Thus (1) subsumes both KDE and kNN methods.
Another view of (1) is where a acts as an attention mechanism and the yi act as memories bound to
the corresponding xi. In this case we can understand this as a particular kind of associative memory
where, given an input, we “point” to the corresponding example in the support set, retrieving its label.
However, unlike other attentional memory mechanisms [2], (1) is non-parametric in nature: as the
support set size grows, so does the memory used. Hence the functional form defined by the classifier
cS(x̂) is very flexible and can adapt easily to any new support set.

2.1.1 The Attention Kernel

Equation 1 relies on choosing a(., .), the attention mechanism, which fully specifies the classi-
fier. The simplest form that this takes (and which has very tight relationships with common
attention models and kernel functions) is to use the softmax over the cosine distance c, i.e.,
a(x̂, xi) = ec(f(x̂),g(xi))/

Pk
j=1 e

c(f(x̂),g(xj)) with embedding functions f and g being appropri-
ate neural networks (potentially with f = g) to embed x̂ and xi. In our experiments we shall see
examples where f and g are parameterised variously as deep convolutional networks for image
tasks (as in VGG[22] or Inception[24]) or a simple form word embedding for language tasks (see
Section 4).

We note that, though related to metric learning, the classifier defined by Equation 1 is discriminative.
For a given support set S and sample to classify x̂, it is enough for x̂ to be sufficiently aligned with
pairs (x0, y0) 2 S such that y0 = y and misaligned with the rest. This kind of loss is also related to
methods such as Neighborhood Component Analysis (NCA) [18], triplet loss [9] or large margin
nearest neighbor [28].

However, the objective that we are trying to optimize is precisely aligned with multi-way, one-shot
classification, and thus we expect it to perform better than its counterparts. Additionally, the loss is
simple and differentiable so that one can find the optimal parameters in an “end-to-end” fashion.

2.1.2 Full Context Embeddings

The main novelty of our model lies in reinterpreting a well studied framework (neural networks with
external memories) to do one-shot learning. Closely related to metric learning, the embedding func-
tions f and g act as a lift to feature space X to achieve maximum accuracy through the classification
function described in eq. 1.

Despite the fact that the classification strategy is fully conditioned on the whole support set through
P (.|x̂, S), the embeddings on which we apply the cosine similarity to “attend”, “point” or simply
compute the nearest neighbor are myopic in the sense that each element xi gets embedded by g(xi)
independently of other elements in the support set S. Furthermore, S should be able to modify how
we embed the test image x̂ through f .

We propose embedding the elements of the set through a function which takes as input the full set
S in addition to xi, i.e. g becomes g(xi, S). Thus, as a function of the whole support set S, g can
modify how to embed xi. This could be useful when some element xj is very close to xi, in which

3

• Matching networks for one shot learning (2016)  
Oriol Vinyals, Charles Blundell, Timothy P. Lillicrap, Koray Kavukcuoglu, and Daan Wierstra

PROTOTYPICAL NETWORKS
• Training a “prototype extractor” (Gaussian classifier)

 15

c1

c2

c3

x

(a) Few-shot

v1

v2

v3

c2

c3

x

(b) Zero-shot

Figure 1: Prototypical networks in the few-shot and zero-shot scenarios. Left: Few-shot prototypes
ck are computed as the mean of embedded support examples for each class. Right: Zero-shot
prototypes ck are produced by embedding class meta-data vk. In either case, embedded query points
are classified via a softmax over distances to class prototypes: p�(y = k|x) / exp(�d(f�(x), ck)).

Classification is performed, as in the few-shot scenario, by finding the nearest class prototype for an
embedded query point.

In this paper, we formulate prototypical networks for both the few-shot and zero-shot settings. We
draw connections to matching networks in the one-shot setting, and analyze the underlying distance
function used in the model. In particular, we relate prototypical networks to clustering [4] in order to
justify the use of class means as prototypes when distances are computed with a Bregman divergence,
such as squared Euclidean distance. We find empirically that the choice of distance is vital, as
Euclidean distance greatly outperforms the more commonly used cosine similarity. On several
benchmark tasks, we achieve state-of-the-art performance. Prototypical networks are simpler and
more efficient than recent meta-learning algorithms, making them an appealing approach to few-shot
and zero-shot learning.

2 Prototypical Networks

2.1 Notation

In few-shot classification we are given a small support set of N labeled examples S =
{(x1, y1), . . . , (xN , yN)} where each xi 2 RD is the D-dimensional feature vector of an example
and yi 2 {1, . . . ,K} is the corresponding label. Sk denotes the set of examples labeled with class k.

2.2 Model

Prototypical networks compute an M -dimensional representation ck 2 RM , or prototype, of each
class through an embedding function f� : RD ! RM with learnable parameters �. Each prototype
is the mean vector of the embedded support points belonging to its class:

ck =
1

|Sk|
X

(xi,yi)2Sk

f�(xi) (1)

Given a distance function d : RM ⇥ RM ! [0,+1), prototypical networks produce a distribution
over classes for a query point x based on a softmax over distances to the prototypes in the embedding
space:

p�(y = k |x) = exp(�d(f�(x), ck))P
k0 exp(�d(f�(x), ck0))

(2)

Learning proceeds by minimizing the negative log-probability J(�) = � log p�(y = k |x) of the
true class k via SGD. Training episodes are formed by randomly selecting a subset of classes from
the training set, then choosing a subset of examples within each class to act as the support set and a
subset of the remainder to serve as query points. Pseudocode to compute the loss J(�) for a training
episode is provided in Algorithm 1.

2

c2

c3

x

(a) Few-shot

v1

v2

v3

c2

c3

x

(b) Zero-shot

Figure 1: Prototypical Networks in the few-shot and zero-shot scenarios. Left: Few-shot prototypes
ck are computed as the mean of embedded support examples for each class. Right: Zero-shot
prototypes ck are produced by embedding class meta-data vk. In either case, embedded query points
are classified via a softmax over distances to class prototypes: p�(y = k|x) / exp(�d(f�(x), ck)).

follow the same approach to tackle zero-shot learning; here each class comes with meta-data giving
a high-level description of the class rather than a small number of labeled examples. We therefore
learn an embedding of the meta-data into a shared space to serve as the prototype for each class.
Classification is performed, as in the few-shot scenario, by finding the nearest class prototype for an
embedded query point.

In this paper, we formulate Prototypical Networks for both the few-shot and zero-shot settings.
We draw connections to Matching Networks in the one-shot setting, and analyze the underlying
distance function used in the model. In particular, we relate Prototypical Networks to clustering [4]
in order to justify the use of class means as prototypes when distances are computed with a Bregman
divergence, such as squared Euclidean distance. We find empirically that the choice of distance
is vital, as Euclidean distance greatly outperforms the more commonly used cosine similarity. On
several benchmark tasks, we achieve state-of-the-art performance. Prototypical Networks are simpler
and more efficient than recent meta-learning algorithms, making them an appealing approach to
few-shot and zero-shot learning.

2 Prototypical Networks

2.1 Notation

In few-shot classification we are given a small support set of N labeled examples S =
{(x1, y1), . . . , (xN , yN)} where each xi 2 RD is the D-dimensional feature vector of an example
and yi 2 {1, . . . ,K} is the corresponding label. Sk denotes the set of examples labeled with class k.

2.2 Model

Prototypical Networks compute an M -dimensional representation ck 2 RM , or prototype, of each
class through an embedding function f� : RD ! RM with learnable parameters �. Each prototype
is the mean vector of the embedded support points belonging to its class:

ck =
1

|Sk|
X

(xi,yi)2Sk

f�(xi) (1)

Given a distance function d : RM ⇥ RM ! [0,+1), Prototypical Networks produce a distribution
over classes for a query point x based on a softmax over distances to the prototypes in the embedding
space:

p�(y = k |x) = exp(�d(f�(x), ck))P
k0 exp(�d(f�(x), ck0))

(2)

Learning proceeds by minimizing the negative log-probability J(�) = � log p�(y = k |x) of the
true class k via SGD. Training episodes are formed by randomly selecting a subset of classes from
the training set, then choosing a subset of examples within each class to act as the support set and a

2

c2

c3

x

(a) Few-shot

v1

v2

v3

c2

c3

x

(b) Zero-shot

Figure 1: Prototypical Networks in the few-shot and zero-shot scenarios. Left: Few-shot prototypes
ck are computed as the mean of embedded support examples for each class. Right: Zero-shot
prototypes ck are produced by embedding class meta-data vk. In either case, embedded query points
are classified via a softmax over distances to class prototypes: p�(y = k|x) / exp(�d(f�(x), ck)).

follow the same approach to tackle zero-shot learning; here each class comes with meta-data giving
a high-level description of the class rather than a small number of labeled examples. We therefore
learn an embedding of the meta-data into a shared space to serve as the prototype for each class.
Classification is performed, as in the few-shot scenario, by finding the nearest class prototype for an
embedded query point.

In this paper, we formulate Prototypical Networks for both the few-shot and zero-shot settings.
We draw connections to Matching Networks in the one-shot setting, and analyze the underlying
distance function used in the model. In particular, we relate Prototypical Networks to clustering [4]
in order to justify the use of class means as prototypes when distances are computed with a Bregman
divergence, such as squared Euclidean distance. We find empirically that the choice of distance
is vital, as Euclidean distance greatly outperforms the more commonly used cosine similarity. On
several benchmark tasks, we achieve state-of-the-art performance. Prototypical Networks are simpler
and more efficient than recent meta-learning algorithms, making them an appealing approach to
few-shot and zero-shot learning.

2 Prototypical Networks

2.1 Notation

In few-shot classification we are given a small support set of N labeled examples S =
{(x1, y1), . . . , (xN , yN)} where each xi 2 RD is the D-dimensional feature vector of an example
and yi 2 {1, . . . ,K} is the corresponding label. Sk denotes the set of examples labeled with class k.

2.2 Model

Prototypical Networks compute an M -dimensional representation ck 2 RM , or prototype, of each
class through an embedding function f� : RD ! RM with learnable parameters �. Each prototype
is the mean vector of the embedded support points belonging to its class:

ck =
1

|Sk|
X

(xi,yi)2Sk

f�(xi) (1)

Given a distance function d : RM ⇥ RM ! [0,+1), Prototypical Networks produce a distribution
over classes for a query point x based on a softmax over distances to the prototypes in the embedding
space:

p�(y = k |x) = exp(�d(f�(x), ck))P
k0 exp(�d(f�(x), ck0))

(2)

Learning proceeds by minimizing the negative log-probability J(�) = � log p�(y = k |x) of the
true class k via SGD. Training episodes are formed by randomly selecting a subset of classes from
the training set, then choosing a subset of examples within each class to act as the support set and a

2

Sk = {(xi, yi)|yi = k, (xi, yi) 2 Dtrain}

• Prototypical Networks for Few-shot Learning (2017) 
Jake Snell, Kevin Swersky and Richard Zemel

� ⌘ ⇥

META-LEARNER LSTM
• Training an “initialize and gradient descent procedure” applied on

some learner M

 16

Under review as a conference paper at ICLR 2017

Figure 1: Computational graph for the forward pass of the meta-learner. The dashed line divides
examples from the training set Dtrain and test set Dtest. Each (Xi,Yi) is the ith batch from the
training set whereas (X,Y) is all the elements from the test set. The dashed arrows indicate that we
do not back-propagate through that step when training the meta-learner. We refer to the learner as
M , where M(X; ✓) is the output of learner M using parameters ✓ for inputs X. We also use rt as
a shorthand for r✓t�1Lt.

to have training conditions match those of test time. During evaluation of the meta-learning, for
each dataset D = (Dtrain, Dtest) 2 Dmeta�test, a good meta-learner model will, given a series of
learner gradients and losses on the training set Dtrain, suggest a series of updates for the learner
model that trains it towards good performance on the test set Dtest.

Thus to match test time, when considering each dataset D 2 Dmeta�train, the training objective we
use is the loss Ltest of the final learner model on D’s test set Dtest. While iterating over the examples
in D’s training set Dtrain, at each time step t the LSTM meta-learner receives (r✓t�1Lt,Lt) from
the learner and proposes the new set of parameters ✓t. The process repeats for T steps, after which
the learner and its final parameters are evaluated on the test set to produce the loss that is then used
to train the meta-learner. The training algorithm is described in Algorithm 1 and the corresponding
computational graph is shown in Figure 1.

3.3.1 GRADIENT INDEPENDENCE ASSUMPTION

Notice that our formulation would imply that the losses Lt and gradients r✓t�1Lt of the learner are
dependent on the parameters of the meta-learner. Gradients on the meta-learner’s parameters should
normally take this dependency into account. However, as discussed by Andrychowicz et al. (2016),
this complicates the computation of the meta-learner’s gradients. Thus, following Andrychowicz
et al. (2016), we make the simplifying assumption that these contributions to the gradients aren’t
important and can be ignored, which allows us to avoid taking second derivatives, a considerably
expensive operation. We were still able to train the meta-learner effectively in spite of this simplify-
ing assumption.

3.3.2 INITIALIZATION OF META-LEARNER LSTM

When training LSTMs, it is advised to initialize the LSTM with small random weights and to set the
forget gate bias to a large value so that the forget gate is initialized to be close to 1, thus enabling
gradient flow (Zaremba, 2015). In addition to the forget gate bias setting, we found that we needed
to initialize the input gate bias to be small so that the input gate value (and thus the learning rate)
used by the meta-learner LSTM starts out being small. With this combined initialization, the meta-
learner starts close to normal gradient descent with a small learning rate, which helps initial stability
of training.

4

Dtrain Dtest

C(Dtrain, Dtest)

META-LEARNER LSTM
• Training an “initialize and gradient descent procedure” applied on

some learner M

 16

Under review as a conference paper at ICLR 2017

Figure 1: Computational graph for the forward pass of the meta-learner. The dashed line divides
examples from the training set Dtrain and test set Dtest. Each (Xi,Yi) is the ith batch from the
training set whereas (X,Y) is all the elements from the test set. The dashed arrows indicate that we
do not back-propagate through that step when training the meta-learner. We refer to the learner as
M , where M(X; ✓) is the output of learner M using parameters ✓ for inputs X. We also use rt as
a shorthand for r✓t�1Lt.

to have training conditions match those of test time. During evaluation of the meta-learning, for
each dataset D = (Dtrain, Dtest) 2 Dmeta�test, a good meta-learner model will, given a series of
learner gradients and losses on the training set Dtrain, suggest a series of updates for the learner
model that trains it towards good performance on the test set Dtest.

Thus to match test time, when considering each dataset D 2 Dmeta�train, the training objective we
use is the loss Ltest of the final learner model on D’s test set Dtest. While iterating over the examples
in D’s training set Dtrain, at each time step t the LSTM meta-learner receives (r✓t�1Lt,Lt) from
the learner and proposes the new set of parameters ✓t. The process repeats for T steps, after which
the learner and its final parameters are evaluated on the test set to produce the loss that is then used
to train the meta-learner. The training algorithm is described in Algorithm 1 and the corresponding
computational graph is shown in Figure 1.

3.3.1 GRADIENT INDEPENDENCE ASSUMPTION

Notice that our formulation would imply that the losses Lt and gradients r✓t�1Lt of the learner are
dependent on the parameters of the meta-learner. Gradients on the meta-learner’s parameters should
normally take this dependency into account. However, as discussed by Andrychowicz et al. (2016),
this complicates the computation of the meta-learner’s gradients. Thus, following Andrychowicz
et al. (2016), we make the simplifying assumption that these contributions to the gradients aren’t
important and can be ignored, which allows us to avoid taking second derivatives, a considerably
expensive operation. We were still able to train the meta-learner effectively in spite of this simplify-
ing assumption.

3.3.2 INITIALIZATION OF META-LEARNER LSTM

When training LSTMs, it is advised to initialize the LSTM with small random weights and to set the
forget gate bias to a large value so that the forget gate is initialized to be close to 1, thus enabling
gradient flow (Zaremba, 2015). In addition to the forget gate bias setting, we found that we needed
to initialize the input gate bias to be small so that the input gate value (and thus the learning rate)
used by the meta-learner LSTM starts out being small. With this combined initialization, the meta-
learner starts close to normal gradient descent with a small learning rate, which helps initial stability
of training.

4

Dtrain Dtest

C(Dtrain, Dtest)

• Optimization as a Model for Few-Shot Learning (2017) 
Sachin Ravi and Hugo Larochelle

META-LEARNER LSTM
• Training an “initialize and gradient descent procedure” applied on

some learner M

 16

Under review as a conference paper at ICLR 2017

Figure 1: Computational graph for the forward pass of the meta-learner. The dashed line divides
examples from the training set Dtrain and test set Dtest. Each (Xi,Yi) is the ith batch from the
training set whereas (X,Y) is all the elements from the test set. The dashed arrows indicate that we
do not back-propagate through that step when training the meta-learner. We refer to the learner as
M , where M(X; ✓) is the output of learner M using parameters ✓ for inputs X. We also use rt as
a shorthand for r✓t�1Lt.

to have training conditions match those of test time. During evaluation of the meta-learning, for
each dataset D = (Dtrain, Dtest) 2 Dmeta�test, a good meta-learner model will, given a series of
learner gradients and losses on the training set Dtrain, suggest a series of updates for the learner
model that trains it towards good performance on the test set Dtest.

Thus to match test time, when considering each dataset D 2 Dmeta�train, the training objective we
use is the loss Ltest of the final learner model on D’s test set Dtest. While iterating over the examples
in D’s training set Dtrain, at each time step t the LSTM meta-learner receives (r✓t�1Lt,Lt) from
the learner and proposes the new set of parameters ✓t. The process repeats for T steps, after which
the learner and its final parameters are evaluated on the test set to produce the loss that is then used
to train the meta-learner. The training algorithm is described in Algorithm 1 and the corresponding
computational graph is shown in Figure 1.

3.3.1 GRADIENT INDEPENDENCE ASSUMPTION

Notice that our formulation would imply that the losses Lt and gradients r✓t�1Lt of the learner are
dependent on the parameters of the meta-learner. Gradients on the meta-learner’s parameters should
normally take this dependency into account. However, as discussed by Andrychowicz et al. (2016),
this complicates the computation of the meta-learner’s gradients. Thus, following Andrychowicz
et al. (2016), we make the simplifying assumption that these contributions to the gradients aren’t
important and can be ignored, which allows us to avoid taking second derivatives, a considerably
expensive operation. We were still able to train the meta-learner effectively in spite of this simplify-
ing assumption.

3.3.2 INITIALIZATION OF META-LEARNER LSTM

When training LSTMs, it is advised to initialize the LSTM with small random weights and to set the
forget gate bias to a large value so that the forget gate is initialized to be close to 1, thus enabling
gradient flow (Zaremba, 2015). In addition to the forget gate bias setting, we found that we needed
to initialize the input gate bias to be small so that the input gate value (and thus the learning rate)
used by the meta-learner LSTM starts out being small. With this combined initialization, the meta-
learner starts close to normal gradient descent with a small learning rate, which helps initial stability
of training.

4

Dtrain Dtest

C(Dtrain, Dtest)

• Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (2017) 
Chelsea Finn, Pieter Abbeel and Sergey Levine

CHOOSING A META-LEARNER
• How to parametrize learning algorithms (meta-learners)?

• Two approaches to defining a meta-learner
‣ Take inspiration from a known learning algorithm

- kNN/kernel machine: Matching networks (Vinyals et al. 2016)
- Gaussian classifier : Prototypical Networks (Snell et al. 2017)
- Gradient Descent: Meta-Learner LSTM (Ravi & Larochelle, 2017) , MAML (Finn et al. 2017)

‣ Derive it from a black box neural network
- SNAIL (Mishra et al. 2018)

 17

p(y|x, Dtrain)

SIMPLE NEURAL ATTENTIVE LEARNER
• Using a convolutional/attentional network  

to represent
‣ alternates between dilated convolutional layers and attentional layers

‣ when inputs are images, an convolutional embedding network is used 
to map to a vector space

 18

Accepted as a conference paper at ICLR 2018

Supervised Learning Reinforcement Learning

(Examples,
 Labels)

xt-1

yt-1

xt-2

yt-2

xt

--
xt-3

yt-3

Predicted Label t

(Observations,
Actions,

Rewards)

ot
at-1
rt-1

ot-3
--
--

ot-2
at-3
rt-3

ot-1
at-2
rt-2

Actionsat-3 atat-2 at-1

Figure 1: Overview of our simple neural attentive learner (SNAIL); in this example, two blocks of
TC layers (orange) are interleaved with two causal attention layers (green). The same class of model
architectures can be applied to both supervised and reinforcement learning.

In supervised settings, SNAIL receives as input a sequence of example-label pairs
(x1, y1), . . . , (xt�1, yt�1) for timesteps 1, . . . , t � 1, followed by an unlabeled example (xt,�).
It then outputs its prediction for xt based on the previous labeled examples it has seen.

In reinforcement-learning settings, it receives a sequence of observation-action-reward tuples
(o1,�,�), . . . , (ot, at�1, rt�1). At each time t, it outputs a distribution over actions at based on the
current observation ot as well as previous observations, actions, and rewards. Crucially, following
existing work in meta-RL (Duan et al., 2016; Wang et al., 2016), we preserve the internal state of a
SNAIL across episode boundaries, which allows it to have memory that spans multiple episodes. The
observations also contain a binary input that indicates episode termination.

3.1 MODULAR BUILDING BLOCKS

We compose SNAIL architectures using a few primary building blocks. Below, we provide pseu-
docode for applying each block to a matrix ("inputs" in the pseudocode) of size (sequence length) ⇥
(input dimensionality). Note that, if any of the inputs are images, we employ an additional (spatial)
convolutional network that converts the image into a feature vector before it is passed into the SNAIL.
Figure 2 illustrates the different blocks visually.

Many techniques have been proposed to increase the capacity or accelerate the training of deep convo-
lutional architectures, including batch normalization (Ioffe & Szegedy (2015)), residual connections
(He et al. (2016)), and dense connections (Huang et al. (2016)). We found that these techniques
greatly improved the expressive capacity and training speed of SNAILs, but that no particular choice
of residual/dense configurations was essential for good performance (we explore the robustness of
SNAILs to architectural choices in Appendix B).

A dense block applies a single causal 1D-convolution with dilation rate R and D filters (we used
kernel size 2 in all experiments), and then concatenates the result with its input. We used the gated
activation function (line 3) introduced by van den Oord et al. (2016a;b).

1: function DENSEBLOCK(inputs, dilation rate R, number of filters D):
2: xf, xg = CausalConv(inputs, R, D), CausalConv(inputs, R, D)
3: activations = tanh(xf) * sigmoid(xg)
4: return concat(inputs, activations)

3

• A Simple Neural Attentive Meta-Learner (2018) 
Nikhil Mishra, Mostafa Rohaninejad, Xi Chen and Pieter Abbeel

Accepted as a conference paper at ICLR 2018

A TC block consists of a series of dense blocks whose dilation rates increase exponentially until their
receptive field exceeds the desired sequence length:

1: function TCBLOCK(inputs, sequence length T , number of filters D):
2: for i in 1, . . . , dlog2 T e do
3: inputs = DenseBlock(inputs, 2i, D)
4: return inputs

A attention block performs a single key-value lookup; we style this operation after the self-attention
mechanism proposed by Vaswani et al. (2017a):

1: function ATTENTIONBLOCK(inputs, key size K, value size V):
2: keys, query = affine(inputs, K), affine(inputs, K)
3: logits = matmul(query, transpose(keys))
4: probs = CausallyMaskedSoftmax(logits /

p
K)

5: values = affine(inputs, V)
6: read = matmul(probs, values)
7: return concat(inputs, read)

where CausallyMaskedSoftmax(·) zeros out the appropriate probabilities before normalization, so
that a particular timestep’s query cannot have access to future keys/values.

(a) Dense Block (dilation rate R, D lters)

concatenate

inputs, shape [T, C]

outputs, shape [T, C + D]

causal conv, kernel 2
dilation R, D lters

(b) Attention Block (key size K, value size V)

concatenate

inputs, shape [T, C]

outputs, shape [T, C + V]

a ne, output size K
(query)

a ne, output size K
(keys)

a ne, output size V
(values) matmul, masked softmax

matmul

Figure 2: Two of the building blocks that compose SNAIL architectures. (a) A dense block applies
a causal 1D-convolution, and then concatenates the output to its input. A TC block (not pictured)
applies a series of dense blocks with exponentially-increasing dilation rates. (b) A attention block
performs a (causal) key-value lookup, and also concatenates the output to the input.

4 RELATED WORK

Pioneered by Schmidhuber (1987); Naik & Mammone (1992); Thrun & Pratt (1998), meta-learning
is not a new idea. A key tradeoff central to many recent meta-learning approaches is between
performance and generality; we discuss several notable methods and how they fit into this paradigm.

Graves et al. (2014) investigated the use of recurrent neural networks (RNNs) to solve algorithmic
tasks. They experimented with a meta-learner implemented by an LSTM, but their results suggested
that LSTM architectures are ill-equipped for these kinds of tasks. They then designed a more
sophisticated RNN architecture, where an LSTM controller was coupled to an external memory bank
from which it can read and write, and demonstrated that these memory-augmented neural networks
(MANNs) achieved substantially better performance than LSTMs. Santoro et al. (2016) evaluated
both LSTM and MANN meta-learners on few-shot image classification, and confirm the inadequacy

4

Accepted as a conference paper at ICLR 2018

A TC block consists of a series of dense blocks whose dilation rates increase exponentially until their
receptive field exceeds the desired sequence length:

1: function TCBLOCK(inputs, sequence length T , number of filters D):
2: for i in 1, . . . , dlog2 T e do
3: inputs = DenseBlock(inputs, 2i, D)
4: return inputs

A attention block performs a single key-value lookup; we style this operation after the self-attention
mechanism proposed by Vaswani et al. (2017a):

1: function ATTENTIONBLOCK(inputs, key size K, value size V):
2: keys, query = affine(inputs, K), affine(inputs, K)
3: logits = matmul(query, transpose(keys))
4: probs = CausallyMaskedSoftmax(logits /

p
K)

5: values = affine(inputs, V)
6: read = matmul(probs, values)
7: return concat(inputs, read)

where CausallyMaskedSoftmax(·) zeros out the appropriate probabilities before normalization, so
that a particular timestep’s query cannot have access to future keys/values.

(a) Dense Block (dilation rate R, D lters)

concatenate

inputs, shape [T, C]

outputs, shape [T, C + D]

causal conv, kernel 2
dilation R, D lters

(b) Attention Block (key size K, value size V)

concatenate

inputs, shape [T, C]

outputs, shape [T, C + V]

a ne, output size K
(query)

a ne, output size K
(keys)

a ne, output size V
(values) matmul, masked softmax

matmul

Figure 2: Two of the building blocks that compose SNAIL architectures. (a) A dense block applies
a causal 1D-convolution, and then concatenates the output to its input. A TC block (not pictured)
applies a series of dense blocks with exponentially-increasing dilation rates. (b) A attention block
performs a (causal) key-value lookup, and also concatenates the output to the input.

4 RELATED WORK

Pioneered by Schmidhuber (1987); Naik & Mammone (1992); Thrun & Pratt (1998), meta-learning
is not a new idea. A key tradeoff central to many recent meta-learning approaches is between
performance and generality; we discuss several notable methods and how they fit into this paradigm.

Graves et al. (2014) investigated the use of recurrent neural networks (RNNs) to solve algorithmic
tasks. They experimented with a meta-learner implemented by an LSTM, but their results suggested
that LSTM architectures are ill-equipped for these kinds of tasks. They then designed a more
sophisticated RNN architecture, where an LSTM controller was coupled to an external memory bank
from which it can read and write, and demonstrated that these memory-augmented neural networks
(MANNs) achieved substantially better performance than LSTMs. Santoro et al. (2016) evaluated
both LSTM and MANN meta-learners on few-shot image classification, and confirm the inadequacy

4

p(y|x, Dtrain)

AND SO MUCH MORE!!!
 19

bit.ly/2PikS82

https://mediaspace.gatech.edu/media/Hugo+Larochelle+-+Few-shot+Learning+with+Meta-LearningA+Progress+Made+and+Challenges+Ahead/1_kdq616rc
http://bit.ly/2PikS82

EXPERIMENT
• Mini-ImageNet (split used in Ravi & Larochelle, 2017)

‣ random subset of 100 classes (64 training, 16 validation, 20 testing)

‣ random sets Dtrain are generated by randomly picking 5 classes from class subset

 20

Under review as a conference paper at ICLR 2017

Model 5-class
1-shot 5-shot

Baseline-finetune 28.86± 0.54% 49.79± 0.79%
Baseline-nearest-neighbor 41.08± 0.70% 51.04± 0.65%

Matching Network 43.40± 0.78% 51.09± 0.71%
Matching Network FCE 43.56± 0.84% 55.31± 0.73%

Meta-Learner LSTM (OURS) 43.44± 0.77% 60.60± 0.71%

Table 1: Average classification accuracies on Mini-ImageNet with 95% confidence intervals.
Marked in bold are the best results for each scenario, as well as other results with an overlapping
confidence interval.

5 classes. We use 15 examples per class for evaluation in each test set. We compare against two
baselines and a recent metric-learning technique, Matching Networks (Vinyals et al., 2016), which
has achieved state-of-the-art results in few-shot learning. The results are shown in Table 1.

The first baseline we use is a nearest-neighbor baseline (Baseline-nearest-neighbor), where we first
train a network to classify between all the classes jointly in the original meta-training set. At meta-
test time, for each dataset D, we embed all the items in the training set using our trained network
and then use nearest-neighbor matching among the embedded training examples to classify each test
example. The second baseline we use (Baseline-finetune) represents a coarser version of our meta-
learner model. As in the first baseline, we start by training a network to classify jointly between all
classes in the meta-training set. We then use the meta-validation set to search over SGD hyperpa-
rameters, where each training set is used to fine-tune the pre-trained network before evaluating on
the test set. We use a fixed number of updates for fine tuning and search over the learning rate and
learning rate decay used during the course of these updates.

For Matching Networks, we implemented our own version of both the basic and the fully-conditional
embedding (FCE) versions. In the basic version, a convolutional network is trained to learn indepen-
dent embeddings for examples in the training and test set. In the FCE version, a bidirectional-LSTM
is used to learn an embedding for the training set such that each training example’s embedding is
also a function of all the other training examples. Additionally, an attention-LSTM is used so that
a test example embedding is also a function of all the embeddings of the training set. We do not
consider fine-tuning the network using the train set during meta-testing to improve performance as
mentioned in Vinyals et al. (2016), but do note that our meta-learner could also be fine-tuned using
this data. Note that to remain consistent with Vinyals et al. (2016), our baseline and matching net
convolutional networks have 4 layers each with 64 filters. We also added dropout to each convolu-
tional block in matching nets to prevent overfitting.

For our meta-learner, we train different models for the 1-shot and 5-shot tasks, that make 12 and
5 updates, respectively. We noticed that better performance for each task was attained if the meta-
learner is explicitly trained to do the set number of updates during meta-training that will be used
during meta-testing.

We attain results that are much better than the baselines discussed and competitive with Matching
Networks. For 5-shot, we are able to do much better than Matching Networks, whereas for 1-shot,
the confidence interval for our performance intersects the interval for Matching Networks. Again,
we note that the numbers do not match the ones provided by Vinyals et al. (2016) simply because we
created our version of the dataset and implemented our own versions of their model. It is interesting
to note that the fine-tuned baseline is worse than the nearest-neighbor baseline. Because we are
not regularizing the model, with very few updates the fine-tuning model overfits, especially in the
1-shot case. This propensity to overfit speaks to the benefit of training the initialization of the model
end-to-end as is done in the meta-learning LSTM.

5.2 VISUALIZATION OF META-LEARNER

We also visualize the optimization strategy learned by the meta-learner, in Figure 2. We can look
at the it and ft gate values in Equation 2 at each update step, to try to get an understanding of how

7

43.44% ± 0.77% 60.60% ± 0.71%
43.56% ± 0.84% 55.31% ± 0.73%

EXPERIMENT
• Mini-ImageNet (split used in Ravi & Larochelle, 2017)

‣ random subset of 100 classes (64 training, 16 validation, 20 testing)

‣ random sets Dtrain are generated by randomly picking 5 classes from class subset

 21

Under review as a conference paper at ICLR 2017

Model 5-class
1-shot 5-shot

Baseline-finetune 28.86± 0.54% 49.79± 0.79%
Baseline-nearest-neighbor 41.08± 0.70% 51.04± 0.65%

Matching Network 43.40± 0.78% 51.09± 0.71%
Matching Network FCE 43.56± 0.84% 55.31± 0.73%

Meta-Learner LSTM (OURS) 43.44± 0.77% 60.60± 0.71%

Table 1: Average classification accuracies on Mini-ImageNet with 95% confidence intervals.
Marked in bold are the best results for each scenario, as well as other results with an overlapping
confidence interval.

5 classes. We use 15 examples per class for evaluation in each test set. We compare against two
baselines and a recent metric-learning technique, Matching Networks (Vinyals et al., 2016), which
has achieved state-of-the-art results in few-shot learning. The results are shown in Table 1.

The first baseline we use is a nearest-neighbor baseline (Baseline-nearest-neighbor), where we first
train a network to classify between all the classes jointly in the original meta-training set. At meta-
test time, for each dataset D, we embed all the items in the training set using our trained network
and then use nearest-neighbor matching among the embedded training examples to classify each test
example. The second baseline we use (Baseline-finetune) represents a coarser version of our meta-
learner model. As in the first baseline, we start by training a network to classify jointly between all
classes in the meta-training set. We then use the meta-validation set to search over SGD hyperpa-
rameters, where each training set is used to fine-tune the pre-trained network before evaluating on
the test set. We use a fixed number of updates for fine tuning and search over the learning rate and
learning rate decay used during the course of these updates.

For Matching Networks, we implemented our own version of both the basic and the fully-conditional
embedding (FCE) versions. In the basic version, a convolutional network is trained to learn indepen-
dent embeddings for examples in the training and test set. In the FCE version, a bidirectional-LSTM
is used to learn an embedding for the training set such that each training example’s embedding is
also a function of all the other training examples. Additionally, an attention-LSTM is used so that
a test example embedding is also a function of all the embeddings of the training set. We do not
consider fine-tuning the network using the train set during meta-testing to improve performance as
mentioned in Vinyals et al. (2016), but do note that our meta-learner could also be fine-tuned using
this data. Note that to remain consistent with Vinyals et al. (2016), our baseline and matching net
convolutional networks have 4 layers each with 64 filters. We also added dropout to each convolu-
tional block in matching nets to prevent overfitting.

For our meta-learner, we train different models for the 1-shot and 5-shot tasks, that make 12 and
5 updates, respectively. We noticed that better performance for each task was attained if the meta-
learner is explicitly trained to do the set number of updates during meta-training that will be used
during meta-testing.

We attain results that are much better than the baselines discussed and competitive with Matching
Networks. For 5-shot, we are able to do much better than Matching Networks, whereas for 1-shot,
the confidence interval for our performance intersects the interval for Matching Networks. Again,
we note that the numbers do not match the ones provided by Vinyals et al. (2016) simply because we
created our version of the dataset and implemented our own versions of their model. It is interesting
to note that the fine-tuned baseline is worse than the nearest-neighbor baseline. Because we are
not regularizing the model, with very few updates the fine-tuning model overfits, especially in the
1-shot case. This propensity to overfit speaks to the benefit of training the initialization of the model
end-to-end as is done in the meta-learning LSTM.

5.2 VISUALIZATION OF META-LEARNER

We also visualize the optimization strategy learned by the meta-learner, in Figure 2. We can look
at the it and ft gate values in Equation 2 at each update step, to try to get an understanding of how

7

43.44% ± 0.77% 60.60% ± 0.71%
43.56% ± 0.84% 55.31% ± 0.73%
55.71% ± 0.99% 68.88% ± 0.98%
48.70% ± 1.84% 63.10% ± 0.92%
49.42% ± 0.78% 68.20% ± 0.66%

MAML (Finn et al.)
Prototypical Nets (Snell et al.)

SNAIL (Mishra et al.)

REMAINING CHALLENGES
• Going beyond supervised classification
‣ unsupervised learning, structured output, interactive learning

• Going beyond Mini-ImageNet
‣ coming up with a realistic definition of distributions over problems/datasets

•

 22

Meta-Dataset: A Dataset of Datasets for

Learning to Learn from Few Examples

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu,

Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle

Google

Abstract

Few-shot classification refers to learning a classifier for new classes given only a
few examples of them. While a plethora of models have emerged to tackle this
recently, we find the current procedure and datasets that are used to systematically
assess progress in this task lacking. To address this, we propose META-DATASET:
a new benchmark for training and evaluating few-shot classifiers that is large-scale,
consists of multiple datasets, and presents more natural and realistic tasks. The
aim is to measure the ability of state-of-the-art models to leverage diverse sources
of data to achieve higher generalization, and to evaluate that generalization ability
in a more challenging and realistic setting. We additionally measure robustness to
variations in the number of available examples and the number of classes.

1 Introduction

Few-shot learning refers to learning new concepts from few examples, an ability that humans naturally
possess, but machines desperately lack. Improving on this aspect would lead to more efficient agents
that can flexibly expand their knowledge as necessary without requiring large labeled datasets, that
are usually unavailable. We focus on few-shot classification: classifying unseen examples into one
of N new classes, given only a few reference examples of each new class. The key to success is
efficiently leveraging other training data towards this goal, albeit originating from different classes.
Recent progress in this direction can be naturally described in meta-learning terms: though we are
not interested in learning about any training class in particular, we can exploit the training classes for
the purpose of learning to learn new classes from few examples. The acquired learning procedure can
then be directly applied to few-shot learning problems on new classes.

This intuition has inspired numerous models of increasing complexity for this problem. However, the
manner in which they are evaluated is lacking. Notably, generalization is only examined between
different classes of the same dataset. This setup is very constrained compared to the ultimate goal of
few-shot learning “in the wild” where different distributions are encountered. We also elaborate on
other unrealistic aspects of the previous setup in the following section. Our contribution is therefore
to pinpoint these shortcoming and compose a new benchmark to address them. Through META-
DATASET, we offer a large-scale, diverse environment for training and evaluating meta-learners that
aims to expose and understand their limitations in operating in a realistic setting.

2 Background

Task Formulation The end-goal of few-shot classification is to produce a model which, given a
new learning episode with N classes and a few labeled examples (kc per class, c 2 1, . . . , N), is
able to generalize to unseen examples for that episode. In other words, the model learns from a
training (support) set S = {(x1, y1), (x2, y2), . . . , (xK , yK)} (with K =

P
c kc) and is evaluated on

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

META-DATASET
• To learn across many tasks requires learning over many datasets

 23

Appendix for Meta-Dataset: A Dataset of Datasets for
Learning to Learn from Few Examples

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu,
Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle

Google

Appendix A Datasets

META-DATASET is formed of data originating from 10 different image datasets, all of whose images
we resize to 84 x 84. A complete list of the datasets we use is the following.

(a) ImageNet (b) Omniglot (c) Aircraft (d) Birds (e) DTD

(f) Quick Draw (g) Fungi (h) VGG Flower (i) Traffic Signs (j) MSCOCO

Figure 1: Training examples taken from the various datasets forming META-DATASET.

ILSVRC-2012 (ImageNet) [1] A dataset of natural images from 1000 categories (Figure 1a).

Omniglot [2] A dataset of images of 1623 handwritten characters from 50 different alphabets, with
20 examples per class (Figure 1b). While recently [3] proposed a new split for this dataset, we instead
make use of the original intended split [2] which is more challenging since the split is on the level of
alphabets (30 training alphabets and 20 evaluation alphabets), not characters from those alphabets,
therefore posing a more challenging generalization problem. Out of the 30 training alphabets, we
hold out the 5 smallest ones (i.e. with the least number of character classes) to form our validation
set, and use the remaining 25 for training.

Aircraft [4] A dataset of images of aircrafts spanning 102 model variants, with 100 images per
class (Figure 1c).

CUB-200-2011 (Birds) [5] A dataset for fine-grained classification of 200 different bird species.
(Figure 1d).

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

META-DATASET
• To learn across many tasks requires learning over many datasets

 23

Appendix for Meta-Dataset: A Dataset of Datasets for
Learning to Learn from Few Examples

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu,
Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle

Google

Appendix A Datasets

META-DATASET is formed of data originating from 10 different image datasets, all of whose images
we resize to 84 x 84. A complete list of the datasets we use is the following.

(a) ImageNet (b) Omniglot (c) Aircraft (d) Birds (e) DTD

(f) Quick Draw (g) Fungi (h) VGG Flower (i) Traffic Signs (j) MSCOCO

Figure 1: Training examples taken from the various datasets forming META-DATASET.

ILSVRC-2012 (ImageNet) [1] A dataset of natural images from 1000 categories (Figure 1a).

Omniglot [2] A dataset of images of 1623 handwritten characters from 50 different alphabets, with
20 examples per class (Figure 1b). While recently [3] proposed a new split for this dataset, we instead
make use of the original intended split [2] which is more challenging since the split is on the level of
alphabets (30 training alphabets and 20 evaluation alphabets), not characters from those alphabets,
therefore posing a more challenging generalization problem. Out of the 30 training alphabets, we
hold out the 5 smallest ones (i.e. with the least number of character classes) to form our validation
set, and use the remaining 25 for training.

Aircraft [4] A dataset of images of aircrafts spanning 102 model variants, with 100 images per
class (Figure 1c).

CUB-200-2011 (Birds) [5] A dataset for fine-grained classification of 200 different bird species.
(Figure 1d).

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Held out for testing

META-DATASET
• Meta-training only on ImageNet

 24

Table 1: Results on META-DATASET using models trained on ILSVRC-2012 only.

Test Source Method: Accuracy ± confidence
k-NN Finetune MatchingNet ProtoNet MAML

ILSVRC 34.70±0.95 38.34±1.12 40.89±1.08 43.37±1.17 38.10±1.13

Omniglot 59.84±0.96 59.19±1.18 61.85±1.00 66.18±1.12 54.00±1.47
Aircraft 36.47±0.93 41.18±1.07 41.91±0.96 42.14±0.97 42.52±1.16
Birds 40.38±1.09 45.82±1.25 54.26±1.16 57.85±1.23 50.78±1.32
Textures 56.45±0.78 58.06±0.88 61.70±0.84 60.95±0.80 61.26±0.93
Quick Draw 36.09±1.19 38.43±1.39 38.52±1.12 44.02±1.35 30.71±1.51
Fungi 23.70±0.97 22.20±0.92 27.21±0.97 31.18±1.15 20.35±0.87
VGG Flower 66.16±0.99 69.32±1.13 75.05±0.91 79.89±0.90 65.12±1.15
Traffic Signs 44.81±1.47 39.36±1.28 45.36±1.31 44.04±1.24 31.10±1.20
MSCOCO 29.69±1.00 30.25±1.17 32.32±1.08 36.44±1.23 25.17±1.15

Avg. rank 4 3.4 2.2 1.35 4.05

Table 2: Results on META-DATASET using models trained on All datasets.

Test Source Method: Accuracy ± confidence
k-NN Finetune MatchingNet ProtoNet MAML

ILSVRC 25.88±0.83 25.84±0.83 35.88±0.98 38.51±1.01 30.56±1.00
Omniglot 92.45±0.41 85.20±0.73 90.21±0.46 91.32±0.50 78.05±0.98
Aircraft 54.60±0.97 58.22±1.02 70.71±0.78 71.54±0.84 68.62±0.90
Birds 36.74±1.01 38.56±1.08 59.28±1.06 61.81±1.13 54.59±1.24
Textures 50.06±0.77 48.37±0.82 60.61±0.82 59.31±0.75 59.25±0.80
Quick Draw 59.54±1.08 54.05±1.30 57.44±1.17 60.99±1.21 44.48±1.41
Fungi 24.60±0.95 22.90±0.95 31.10±1.04 35.96±1.25 21.12±0.88
VGG Flower 62.49±0.91 59.72±1.17 76.72±0.83 81.06±0.87 66.05±1.09

Traffic Signs 41.68±1.46 30.02±1.13 43.20±1.33 39.95±1.18 30.23±1.24
MSCOCO 23.55±0.99 23.01±0.96 26.87±1.00 30.81±1.13 21.13±1.06

Avg. rank 3.4 4.3 2.15 1.4 3.75

performs consistently well. To further understand the advantages and weaknesses of the various
models, we analyzed their performance for different “shots” and “ways” (the relevant plots can be
found in Appendix D). In particular, we computed how the classification accuracy changes as a
function of the way, and how a class’ precision (proportion of correctly classified examples of that
class) changes as a function of its shot. Our analysis indicates that, as expected, in general all models’
performance improves when the way decreases and the shot increases. Interestingly, we also found
that Prototypical Networks’ performance plateaus as the shot increases, contrary to the other two
meta-learning models, a fact that we think could be attributed to the representation capacity of the
prototypes. Also, the Finetune baseline and MAML more greatly benefit from the increase of the
shot compared to other models, which is expected since they perform further fine-tuning based on the
support set.

Finally, we examine the model’s ability to leverage data of diverse sources. This can be assessed
by comparing the values between Tables 1 and 2, and from the visualization of the same data in
Appendix E. We do not always observe an improvement from training on all datasets over training on
ILSVRC-2012 only which suggests that this direction requires further research.

6 Conclusion

We have introduced a new large-scale, diverse, and realistic environment for training and testing
meta-learners for the task of few-shot classification. Our preliminary results suggest that popular
meta-learners are indeed performing favorably to baselines for most datasets that we consider. A
direction that evidently requires further research is how to better leverage data from multiple sources
at training time: our preliminary results do not (always) demonstrate a gain from training on all
datasets as opposed to training only on ILSVRC-2012.

4

META-DATASET
• Meta-training on all training datasets

 25

Table 1: Results on META-DATASET using models trained on ILSVRC-2012 only.

Test Source Method: Accuracy ± confidence
k-NN Finetune MatchingNet ProtoNet MAML

ILSVRC 34.70±0.95 38.34±1.12 40.89±1.08 43.37±1.17 38.10±1.13

Omniglot 59.84±0.96 59.19±1.18 61.85±1.00 66.18±1.12 54.00±1.47
Aircraft 36.47±0.93 41.18±1.07 41.91±0.96 42.14±0.97 42.52±1.16
Birds 40.38±1.09 45.82±1.25 54.26±1.16 57.85±1.23 50.78±1.32
Textures 56.45±0.78 58.06±0.88 61.70±0.84 60.95±0.80 61.26±0.93
Quick Draw 36.09±1.19 38.43±1.39 38.52±1.12 44.02±1.35 30.71±1.51
Fungi 23.70±0.97 22.20±0.92 27.21±0.97 31.18±1.15 20.35±0.87
VGG Flower 66.16±0.99 69.32±1.13 75.05±0.91 79.89±0.90 65.12±1.15
Traffic Signs 44.81±1.47 39.36±1.28 45.36±1.31 44.04±1.24 31.10±1.20
MSCOCO 29.69±1.00 30.25±1.17 32.32±1.08 36.44±1.23 25.17±1.15

Avg. rank 4 3.4 2.2 1.35 4.05

Table 2: Results on META-DATASET using models trained on All datasets.

Test Source Method: Accuracy ± confidence
k-NN Finetune MatchingNet ProtoNet MAML

ILSVRC 25.88±0.83 25.84±0.83 35.88±0.98 38.51±1.01 30.56±1.00
Omniglot 92.45±0.41 85.20±0.73 90.21±0.46 91.32±0.50 78.05±0.98
Aircraft 54.60±0.97 58.22±1.02 70.71±0.78 71.54±0.84 68.62±0.90
Birds 36.74±1.01 38.56±1.08 59.28±1.06 61.81±1.13 54.59±1.24
Textures 50.06±0.77 48.37±0.82 60.61±0.82 59.31±0.75 59.25±0.80
Quick Draw 59.54±1.08 54.05±1.30 57.44±1.17 60.99±1.21 44.48±1.41
Fungi 24.60±0.95 22.90±0.95 31.10±1.04 35.96±1.25 21.12±0.88
VGG Flower 62.49±0.91 59.72±1.17 76.72±0.83 81.06±0.87 66.05±1.09

Traffic Signs 41.68±1.46 30.02±1.13 43.20±1.33 39.95±1.18 30.23±1.24
MSCOCO 23.55±0.99 23.01±0.96 26.87±1.00 30.81±1.13 21.13±1.06

Avg. rank 3.4 4.3 2.15 1.4 3.75

performs consistently well. To further understand the advantages and weaknesses of the various
models, we analyzed their performance for different “shots” and “ways” (the relevant plots can be
found in Appendix D). In particular, we computed how the classification accuracy changes as a
function of the way, and how a class’ precision (proportion of correctly classified examples of that
class) changes as a function of its shot. Our analysis indicates that, as expected, in general all models’
performance improves when the way decreases and the shot increases. Interestingly, we also found
that Prototypical Networks’ performance plateaus as the shot increases, contrary to the other two
meta-learning models, a fact that we think could be attributed to the representation capacity of the
prototypes. Also, the Finetune baseline and MAML more greatly benefit from the increase of the
shot compared to other models, which is expected since they perform further fine-tuning based on the
support set.

Finally, we examine the model’s ability to leverage data of diverse sources. This can be assessed
by comparing the values between Tables 1 and 2, and from the visualization of the same data in
Appendix E. We do not always observe an improvement from training on all datasets over training on
ILSVRC-2012 only which suggests that this direction requires further research.

6 Conclusion

We have introduced a new large-scale, diverse, and realistic environment for training and testing
meta-learners for the task of few-shot classification. Our preliminary results suggest that popular
meta-learners are indeed performing favorably to baselines for most datasets that we consider. A
direction that evidently requires further research is how to better leverage data from multiple sources
at training time: our preliminary results do not (always) demonstrate a gain from training on all
datasets as opposed to training only on ILSVRC-2012.

4

META-DATASET
• Difference in performance when meta-training on all datasets

 26

Table 1: The improvement on META-DATASET obtained by training on All Datasets instead of
ILSVRC only.

Test Source Method: Accuracy ± confidence
k-NN Finetune MatchingNet ProtoNet MAML

ILSVRC -8.82±1.26 -12.5±1.39 -5.01±1.46 -4.86±1.55 -7.54±1.51
Omniglot 32.61±1.04 26.01±1.39 28.36±1.1 25.14±1.23 24.05±1.77
Aircraft 18.13±1.34 17.04±1.48 28.8±1.24 29.4±1.28 26.1±1.47
Birds -3.64±1.49 -7.26±1.65 5.02±1.57 3.96±1.67 3.81±1.81
Textures -6.39±1.1 -9.69±1.2 -1.09±1.17 -1.64±1.1 -2.01±1.23
Quick Draw 23.45±1.61 15.62±1.9 18.92±1.62 16.97±1.81 13.77±2.07
Fungi 0.9±1.36 0.7±1.32 3.89±1.42 4.78±1.7 0.77±1.24
VGG Flower -3.67±1.34 -9.6±1.63 1.67±1.23 1.17±1.25 0.93±1.58
Traffic Signs -3.13±2.07 -9.34±1.71 -2.16±1.87 -4.09±1.71 -0.87±1.73
MSCOCO -6.14±1.41 -7.24±1.51 -5.45±1.47 -5.63±1.67 -4.04±1.56

Figure 6: Accuracy on the test datasets, for each model. The difference between the plain-colored
and hacked bars show the effect of training the model on ILSVRC-2012 only, vs. all the datasets.

References
[1] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015.

[2] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[3] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in Neural Information Processing Systems, pages 3630–3638, 2016.

[4] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual classification
of aircraft. Technical report, 2013.

[5] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

[6] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild.
In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

[7] David Ha and Douglas Eck. A neural representation of sketch drawings. arXiv preprint
arXiv:1704.03477, 2017.

5

META-DATASET
• Difference in performance when meta-training on all datasets

 27

Table 1: The improvement on META-DATASET obtained by training on All Datasets instead of
ILSVRC only.

Test Source Method: Accuracy ± confidence
k-NN Finetune MatchingNet ProtoNet MAML

ILSVRC -8.82±1.26 -12.5±1.39 -5.01±1.46 -4.86±1.55 -7.54±1.51
Omniglot 32.61±1.04 26.01±1.39 28.36±1.1 25.14±1.23 24.05±1.77
Aircraft 18.13±1.34 17.04±1.48 28.8±1.24 29.4±1.28 26.1±1.47
Birds -3.64±1.49 -7.26±1.65 5.02±1.57 3.96±1.67 3.81±1.81
Textures -6.39±1.1 -9.69±1.2 -1.09±1.17 -1.64±1.1 -2.01±1.23
Quick Draw 23.45±1.61 15.62±1.9 18.92±1.62 16.97±1.81 13.77±2.07
Fungi 0.9±1.36 0.7±1.32 3.89±1.42 4.78±1.7 0.77±1.24
VGG Flower -3.67±1.34 -9.6±1.63 1.67±1.23 1.17±1.25 0.93±1.58
Traffic Signs -3.13±2.07 -9.34±1.71 -2.16±1.87 -4.09±1.71 -0.87±1.73
MSCOCO -6.14±1.41 -7.24±1.51 -5.45±1.47 -5.63±1.67 -4.04±1.56

Figure 6: Accuracy on the test datasets, for each model. The difference between the plain-colored
and hacked bars show the effect of training the model on ILSVRC-2012 only, vs. all the datasets.

References
[1] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015.

[2] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[3] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in Neural Information Processing Systems, pages 3630–3638, 2016.

[4] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual classification
of aircraft. Technical report, 2013.

[5] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

[6] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild.
In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

[7] David Ha and Douglas Eck. A neural representation of sketch drawings. arXiv preprint
arXiv:1704.03477, 2017.

5

META-DATASET
• Varying the number of shots and ways

 28

where ↵c is sampled uniformly from the closed interval [log(0.5), log(2)]. Intuitively, the un-
normalized proportion of the support set that will be occupied by class c is a noisy version of the
total number of images of that class in the dataset Im(c). This design choice is made in the hopes of
obtaining realistisc class ratios, under the hypothesis that the dataset class statistics are a reasonable
approximation of the real-world statistics of appearances of the corresponding classes.

The shot of a class c is then set to kc = Rc|S|, or as many examples are available of that class at this
point (after having removed q for the query set), if they are less than that. If the shot of a class is
computed to be 0 (which can happen because of the � multiplier above), we set it to 1 instead.

Appendix C The Hierarchy of ImageNet and How we Exploit it

ImageNet is a dataset comprised of 82,115 ‘synsets’. A synset is a concept that belongs to a
larger ontology (ImageNet’s synsets are based on the WordNet ontology). ImageNet provides IS-A
relationships for the synsets it contains, therefore defining a DAG over its synsets. In this benchmark,
we only use the 1000 synsets that were chosen for the ILSVRC 2012 classification challenge as
classes that can appear in our episodes. However, we leverage the ontology DAG for defining a
sampling procedure that determines which of these 1000 classes should co-occur in the each episode.

For this purpose, we consider a sub-graph of the overall DAG that consists of only the 1000 synsets
of ILSVRC-2012 and their ancestors. In particular, these 1000 synsets are all and only the leaves
of the DAG. We then further ‘cut’ this sub-graph into three pieces, for the training, validation, and
test splits, such that there is no overlap between the leaves of any of these pieces. For this, we select
the synset ‘carnivore’ as the root of the validation sub-graph, and the synset ‘device’ as the root
of the test sub-graph. All the leaves that are reachable by ‘carnivore’ and ‘device’ form the sets of
validation and test classes respectively. All remaining leaves constitute the training classes. This
separation leads to training taking place on animals that are not carnivores, validation taking place
on carnivores and testing taking place on inanimate devices, such as various tools and instruments.
These splits were chosen for the objective of splitting the classes into approximately 70 / 15 / 15 (%)
for training / validation / testing, and ensuring that the three groups are comprised of substantially
different semantic classes. This leads to 712 training, 202 validation and 188 test classes.

The procedure for sampling the classes for an episode of a given split is then as follows: sample an
internal node of that split’s sub-graph uniformly at random, and use all leaves spanned by that node as
the classes of the episode. We limit the possible number of classes of an episode to 50, and therefore
any internal nodes that span more than 50 leaves are excluded from the pool that we sample from.
For example, if the sampled internal node is close to the ‘bottom’ of the sub-graph, the resulting
classification task will be finer-grained than if the sampled node is ‘higher’ in the tree and this spans
more general concepts. In future work we plan to investigate the effect of fine versus coarse grained
tasks on performance.

Appendix D Analysis of Performance Across Shots and Ways

Figure 2: Train on ILSVRC-2012 and Evaluate on All Datasets

3

TAKE AWAYS (SO FAR)
• Meta-training distribution of episodes can make a big difference  

(at least for current methods)

• Using “regular training” as initialization makes a big difference

• MAML needs to be adjusted to be more robust

 29

DISCUSSION
• Now is time to move beyond our current simple benchmarks

• What is the “right” meta-training distribution?

• How should we be increasing the size of the benchmark (what should be V2)?

• What are the properties of the optimization landscape of the episodic
framework?

• What fairness-relate questions does meta-learning pose?

 30

MERCI !

 31

