What's Wrong with Meta-Learning
(and how we might fix it)
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Training Phase

Four robots collectively train a single door opening policy. 1x speed

Yahya, Li, Kalakrishnan, Chebotar, Levine, ‘16



Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-Based Robotic Manipulation Skills
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Visual Distractdrs
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about four hours about four weeks, nonstop

people can learn new skills

. can we transfer past
extremely quickly

experience in order to
p

how: learn how to learn?

we hever learn from scratch!
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Few-shot learning: problem formulation in pictures

training data test set

meta-training

meta-testing

image credit: Ravi & Larochelle ‘17



Few-shot learning: problem formulation in equations

training data test set
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supervised learning: f(z) — y
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supervised meta-learning: f(Dirain, ) — Y
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* How to read in training set?
* Many options, RNNs can work



Some examples of representations

External Memory External Memory
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Bind and Encode Retrieve Bound Information
Santoro et al. “Meta-Learning with Memory- Vinyals et al. “Matching Networks for One- Snell et al. “Prototyping Networks for Few-
Augmented Neural Networks.” Shot Learning” Shot Learning”

...and many many many others!



What kind of algorithm is learned?

RNN-based meta-learning

Ytest — test label
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this implements the
“learned learning algorithm”

* Does it converge?

* What does it converge to?
* Who knows...

* What to do if it’s not good enough?
* Nothing...
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A simpler, model-agnostic, meta-learning method



Let’s step back a bit...
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is pretraining a type of meta-learning?
better features = faster learning of new task!



Model-agnostic meta-learning

a general recipe:

training data test set — meta-learning
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Finn et al., “Model-Agnostic Meta-Learning”



What did we just do?

supervised learning: f(z) — y
supervised meta-learning: f(Dirain, ) — Y

model-agnostic meta-learning: fyamr(Divain, ©) — ¥

fuamL (Dirains ) = for (2) Just another computation graph...

Y —b-a S VeLlf(e).y) Can implement with any autodiff
(2.4) EDyean package (e.g., TensorFlow)



Why does it work?

RNN-based meta-learning

Ytest — test label
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* Does it converge?

* What does it converge to?
* Who knows...

* What to do if it’s not good enough?
* Nothing...

* Does it converge?

* What does it converge to?

 What to do if it’s not good enough?



Universality

Did we lose anything?

Universality: meta-learning can learn any “algorithm”

more precisely, can represent any function f(Dirain, )
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Finn & Levine. “Meta-Learning and Universality”




Model-agnostic meta-learning: forward/backward locomotion

after 1 gradient step after 1 gradient step

after MAML training  (forward reward)  (backward reward)
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Related work

Maclaurin et al. “Gradient-based
hyperparameter optimization”

Gradient
Descent
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g oscillating...
( whatdoldo?

Learned
Optimizer

Aha! I've seen
this before...

Li & Malik. “Learning to optimize”

Qa‘ameter upgy s

optimizer optimizee
error signa\

Figure 1: The optimizer (left) is provided with
performance of the optimizee (right) and proposes

updates to increase the optimizee’s performance.

[photos: Bobolas, 2009, Maley, 2011]

Andrychowicz et al. “Learning to learn by
gradient descent by gradient descent.”

...and many many many others!

Meta-learner

Ravi & Larochelle. “Optimization as
a model for few-shot learning”



Follow-up work

Program Synthesis

Question:
(How many CFL teams are from York College? ]

Learnlnq to Learn Dlstrlbutlons

SQL:

[SELECT COUNT CFL Team FROM J
CFLDraft WHERE College = “York”

Result:

Huang, Wang, Singh,
Yih, He NAACL "18

Reed, Chen, Paine, van den Oord, Eslami,
Rezende, Vinyals, de Freitas ICLR 18

Learning the learning rate Masked Transformatlons
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Li, Zhou, Chen, Li arXiv ‘17

Lee & Choi arXiv ‘18

(4) algorithm update

uy
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u
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(2) mode training \

(3) test feedback upload

Federated Learning

(1) algorithm download

Multi-Agent Competitions

Al-Shedivat, Bansal, Burda, Sutskever

Chen, Dong, Li, He arXiv 18

Domain Generalization
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Target Domains

Li, Yang, Song, Hospedales AAAI '18

Mordatch, Abbeel ICLR 18

Semi-Supervised
Few-%hot Learning

Boney & llin ICLR
workshop track ‘18

Minilmagenet few-shot benchmark: 5-shot 5-way
Finn etal. “17: 63.11%

Lietal. ‘17: 64.03%
Kim et al. ‘18 (AutoMeta): 76.29%

...and the results keep getting better



training data test set

o
S

meta-training

meta-testing

— meta-learning
---- |earning/adaptation

VL
VL, .
V»Cl """""" 9‘%

,’ \\
HTO/ h% 0;

Unsupervised meta-learning




Let’s Talk about Meta-Overfitting

* Meta learning requires task
distributions

* When there are too few meta-

training tasks, we can meta- after MAML training after 1 gradient step
overfit

* Specifying task distributions is
hard, especially for meta-RL!

* Can we propose tasks S S
automatically?



A General Recipe for Unsupervised Meta-RL

environment

Unsupervised
Task Acquisition

Meta-RL

Unsupervised Meta-RL

Fast

—P environment-specific

Meta-learned

RL algorithm

reward

function

Gupta, Eysenbach, Finn, Levine. Unsupervised Meta-Learning for Reinforcement Learning.

Adaptation
_

reward-maximizing
policy

Abhishek Gupta Ben Eysenbach Chelsea Finn
- LA




Random Task Proposals

s Use randomly initialize discriminators for reward functions

R(s,z) = logpp(z|s)

D - randomly initialized network

= Important: Random functions over state space, not random
policies




Diversity-Driven Proposals

{ Environment }

Action State —‘ﬁ[ Discriminator(D) ]
4 Policy(Agent) L
0 \
Skill (z) <> Predict Skil

Policy = visit states which are
discriminable

Discriminator = predict skill
from state

Task Reward for UML: ~ R(s, 2) = log pp(z|s)

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.




Examples of Acquired Tasks

Cheetah Ant

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.



Does it work?

2D Navigation
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Meta-test performance with rewards

Gupta, Eysenbach, Finn, Levine. Unsupervised Meta-Learning for Reinforcement Learning.



What about supervised learning?

training data test set
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Can we meta-train on only unlabeled images?

unsupervised learning | >

Class 1

| Class 2
b

each image: point in R"

n
>

t... does it outperform unsupervised learning?

Hsu, Levine, Finn. Unsupervised Learning via Meta-Learning.
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Results: unsupervised meta-learning

unsupervised learning | > task proposals > meta-learning

a few choices: Clustering to minilmageNet: 5 shot, 5 way
BiGAN — Donahue et al. ’17 Automatically Construct

Meta-Learning (CACTUs)

training data test set
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at all!
D
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meta-training

Same story across:
* 3 different embedding methods
* 4 datasets (Omniglot, minilmageNet, CelebA, MNIST)

Hsu, Levine, Finn. Unsupervised Learning via Meta-Learning.
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PLATIPUS, K=5

multiple hypotheses

Finn*, Xu*, Levine. Probabilistic Model-Agnostic Meta-Learning. 2018.

and natural language
Yu*, Finn*, Xie, Dasari, Abbeel, Levine. One-Shot Imitation from Observing

Humans via Domain-Adaptive Meta-Learning. 2018.
Co-Reyes, Gupta, Sanjeey, Altieri, DeNero, Abbeel, Levine. Meta-Learning

Correction 1: Enter  Correction 2: Enter the Language-Guided Policy Learning. 2018.
the blue room. red room.
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