* The linear transformer carries out
= The projection space M is constructed to

Meta-Learner with Linear Nulling

= An embedding network is combined with a linear transformer.
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null-space projection on an alternative classification space.
match the network output with a special set of reference vectors.

Support set images

M < null({vy, v1,v,,v3})
Vi = ¢ — gy: error vector
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OBOE: Collaborative Filtering for AutoML Initialization
Chengrun Yang, Yuji Akimoto, Dae Won Kim, Madeleine Udell

Cornell University

Goal: Select models for a new dataset within time budget.
Given: Model performance and runtime on previous datasets.

Approach:

v

low rank dataset-by-model collaborative filtering matrix

v

predict model runtime using polynomials

v

classical experiment design for cold-start

> missing entry imputation for model performance prediction
Performance:

» cold-start: high accuracy

» model selection: fast and perform well



Backpropamine: meta-learning with neuromodulated Hebbian plasticity

Differentiable plasticity: meta-learning with Hebbian plastic connections

o Meta-train both the baseline weight and plasticity of each connection to support efficient
learning in any episode

In nature, plasticity is under real-time control through neuromodulators

o The brain can decide when and where to be plastic

Backpropamine = Differentiable plasticity + neuromodulation
o Make the rate of plasticity a real-time output of the network
o  During each episode, the network effectively learns by self-modification

Results:

o Solves tasks that non-modulated networks cannot

o Improves LSTM performance on PTB language modeling task

\
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Hyperparameter Learning via Distributional Transfer

Ho Chung Leon Law!, Peilin Zhao?, Junzhou Huang® and Dino Sejdinovic!
1Umver5|ty of Oxford and “Tencent Al Lab

Goal (hyperparameter selection):
Optimise f'"9¢" (target objective) w.r.t 0:

* target
etarget — argmaXHEOf <9>
Scenario:

e \We have n potentially related tasks f*, i =1,...n
o For these tasks, we have {#:, f/(6.)}.", from past runs

Method:
e Assume training data D; comes from distribution P,
e Transfer information using embeddings of inXY

e Jointly model #, Pxy and sample size s



Toward Multimodal Model-Agnostic Meta-Learning
Risto Vuorio!, Shao-Hua Sun2, Hexiang Hu2 & Joseph J. Lim?2

UNIVERSITY OF
MICHIGAN

University of Michigan? University of Southern CaliforniaZ
The limitation of the MAML family f®\ Samples @
» One Initialization can be suboptimal for | « > % K [
multimodal task distributions. LA, @000000 04
Multi-Modal MAML R S Lo,
. Model-based meta-learner computes kTaSkNEerthboeridmg) | 0080000 6
task embeddings ! > S
2. Task embeddings are used to rask ' '

. Embedding 5 :
modulate gradient-based meta-learner | ; @OQOQO@—éen
l r-» T,

3. Gradient-based meta-learner adapts : l

Vvia gradient steps Modulation | ||- -} - ;
Network J
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Fast Neural Architecture
Construction using EnvelopeNets

EnvelopeNet

Add dense

layers and

dense skip

connections

Train and
evaluate

Prune nodes
and skip
connections
(L,-norm)

Calculate

utility of

individual
nodes

Finds architecture for CNNs in
~0.25 days

Based on the idea of utility of
individual nodes.

Closely aligns with a theory of
human brain ontogenesis.



Meta-Dataset: A Dataset of Datasets for Learning
to Learn from Few Examples

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle

New benchmark for few-shot classification
Two-fold approach:

Change the data

Large-scale

Diverse

Change the task creation

Introduce imbalance

Utilize class hierarchy for ImageNet
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(f) Quick Draw (h) VGG Flower (i) Traffic Signs (j) MSCOCO

(g) Fungi

Preliminary results on: baselines, Prototypical Networks, Matching Networks, and MAML.
Leveraging data of multiple sources remains an open and interesting research direction!



Macro Neural Architecture Search Revisited

Hanzhang Hu?, John Langford?, Rich Caruana?, Eric Horvitz?, Debadeepta Dey?
1Carnegie Mellon University, 2Microsoft Research

Cell Search: the predefined
skeleton ensures the simplest cell
search can achieve 4.6% error
with 0.4M params on CIFAR 10.

Key take-away: macro search can be
competitive against cell search, even with
simple random growing strategies, if the initial
model is the same as cell search.

Cell Search: applies Macro Search: learns Microsoft-

o
the found template on all connections and Resea I"Ch » ¢
ROBOTICS

predefined skeleton. layer types. INSTITUTE



AutoDL 2019

Help Automating Deep Learning

Google
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= Join the AutoDL challenge!
https://autodl.chalearn.org

AutoDL challenge design and beta tests

Zhengying Liu™, Olivier Bousquet, André Elisseeff, Sergio Escalera, Isabelle Guyon,
Julio Jacques Jr., Albert Clapés, Adrien Pavao, Michele Sebag, Danny Silver,
Lisheng Sun-Hosoya, Sébastien Tréguer, Wei1-Wei Tu, Yiqi Hu, Jingsong Wang, Quanming Yao
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Modular meta-learning in abstract graph networks I I I e
for combinatorial generalization

Ferran Alet, Maria Bauza, A. Rodriguez, T. Lozano-Perez, L. Kaelbling code&pdf:alet-etal.com

Combinatorial generalization: generalizing by reusing neural modules

Graph Neural Networks Modular meta-learning
Nodes tied to entities training Meta-train Meta-test
°® /ﬂ\ Obijects test i% 2B '//" \
/ Specialized E]
Untrained modules modules Search .

Q)0 Y o0 graph

OO vy O. = \ ll / Evaluate

Nodes Edges

@ Particles

We introduce: Abstract Graph Networks Graph Element Networks

nodes are not tied to concrete entities

- o
OmniPush dataset | @ !




Cross-Modulation
Networks For
Few-Shot Learning

Hugo Prol', Vincent Dumoulin’,

and Luis Herranz'

' Computer Vision Center, Univ. Autdnoma de Barcelona
t Google Brain

Key idea: allow support and
query examples to interact
. at each level of abstraction.

Extending the feature extraction pipeline of Matching Networks:

¥¢ Channel-wise affine transformations: FiLM(x) = (1+7) ®©x+ f

v Subnetwork G predicts the affine parameters v and 3

4x
A

Support II, Conv —| BN ﬁ_ RelLU | Max
set Pool
G]
Quel'y o Conv —— BN ﬁ- ReLU — Max
set II Pool

~
4x
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Large Margin Meta-Learning for Few-Shot Classification
The University of Hong Kong!, The Hong Kong Polytechnic University?

&

Yong Wang!, Xiao-Ming Wu?, Qimai Li?, Jiatao Gu!, Wangmeng Xiang?, Lei Zhang?, Victor O.K. Li!

Large Margin Principle

L= [Isoftmax +Ax Elarge-margin
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Fig. 1: Large margin meta-learning. (a) Classifier trained without
the large margin constraint. (b) Classifier trained with the large
margin constraint. (¢) Gradient of the triplet loss.

One Implementation: Triplet Loss

Ny
1
Liarge-margin = ﬁz Z [H f@(X?) - f¢(xf) H% — || fo(x$) — qu(XZ;’) ”3 +"”]+-
i=1

Case study

- Graph Neural Network (GNN)
- Prototypical Network (PN)

Analysis

After rearrangement:

Liarge-margin = Nit ( Do I felxi) = falx) 15 = D I folxi) = folxa) 3) + const.

Xs€Ss X4€Sa

The gradient:

aL" arge-margin
OLrargemargin _ 2. (Z (fo(xi) = fa(xs)) —
€S

Ofs(xi) Z (fo(xi) = f¢(xd))>

X4€Sa

__2I8 2(Sal
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pull towards its own class  push away from other classes

Features

- We implement and compare several of other large margin
methods for few-shot learning.

- Our framework is simple, efficient, and can be applied to
improve existing and new meta-learning methods with very little
overhead.



Amortized Bayesian Meta-Learning

Sachin Ravi & Alex Beatson
Department of Computer Science, Princeton University

Lot of progress in few-shot learning but under controlled settings

In real world, relationship between training and testing tasks can be tenuous

» Task-specific predictive uncertainty is crucial
We present gradient-based meta-learning method for computing task-specific approximate posterior

Show that method displays good predictive uncertainty on contextual-bandit and few-shot learning tasks
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Université
de Montréal

The advantage of meta-learning is well-founded under the assumption

that the adaptation phase does improve the performance of the

model on the task of interest

e Optimization: maximize the performance after adaptation,
performance improvement is not explicitly enforced

. S ! / =
min B 7 [£ (075 Df) 5
'*é o 9(—9—5V9Z[,7;(7T9£) <
| g =
¢ \We show empirically that performance = | -
can decrease after adaptation in MAML. l 0 =0 — aVeL(m)
. = . I
We call this negative adaptation N e Tor
; T
e How to fix this issue? ldeas from Im]lzef 10:_8 E@(;W
= - uatlon
Safe Reinforcement Learning ° | ‘,
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Return

Return

. M. The effects of negative adaptation in ¢
Model-Agnostic Meta-Learning .

Tristan Deleu, Yoshua Bengio
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Mitigating Architectural Mismatch
During the Evolutionary Synthesis

of Deep Neural Networks
Audrey G. Chung, Paul Fieguth, Alexander Wong

* Evolutionary deep intelligence for increasingly efficient networks

Preliminary study into the effects of architectural alignment
_ike-with-like mating policy via gene tagging system

Resulting networks are comparable:
* Restricts search space exploration?

* Compensated with training epochs? N
. 277 <o
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Evolvability ES: Scalable Evolutlonary
Meta-Learning

By Alexander Gajewski, Jeff Clune, Kenneth O. Stanley, and Joel Lehman

e Evolvability ES is a meta-learning algorithm ﬁ

inspired by Evolution Strategies [1]
e Surprisingly, Evolvability ES finds parameters

such that at test time, random perturbations ity 5 on At (o Varince) At Generton 89

result in diverse behaviors il
e In a simulated Ant locomotion domain, adding

Gaussian noise to the parameters results in =

-10 4

Y
Number of Pseudo-Offspring

policies which move in many different directions

[1] Salimans et al., Evolution Strategies as a Scalable Alternative 401
to Reinforcement Learning, 2017. R I O N N

10°




Consolidating the Meta-Learning Zoo

A Unifying Perspective as Posterior Predictive Inference

> Novel: Probabilistic, amortized, multi-task, meta-learning framework.

= Meta-learning: Learns how to learn a classifier or regressor for each new task.

> Unifies: MAML, Meta-LSTM, Prototypical networks, and Conditional Neural Processes are special cases.
= State of the art: Leading classification accuracy on 5 of 6 Omniglot & minilmageNet tasks.

= Efficient: Test-time requires only forward passes, no gradient steps are needed.

» Versatile: Robust classification accuracy as shot and way are varied at test-time.

> High quality 1-shot % FENFFEELLAETEE TN
view reconstruction:  shot R ‘ '\, J 4 RN W
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Deep Online Learning via Meta-Learning:
Continual Adaptation for Model-Based RL

Anusha Nagabandi, Chelsea Finn, Sergey Levine
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Task Probability

i f Fimesteps
gradual terrain change \ Our method can:
motor malfunction - Reason about non-stationary
Can we use meta-learning for effective online learning? stent distributions over tasks.
- Recall past tasks
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