
Incremental Few-Shot Learning with Attention Attractor Networks

• Testing on only new classes in “few-shot” is not natural.
• Incremental few-shot learning: learn new classes on top of old classes. No access to the old data.
• At each test episode, learn a linear classifier until convergence.
• Attention over base classes to form attractor regularizers.
• At the end of the episode, test on a query set of both base and novel.
• Use recurrent backprop (RBP) instead of truncated BPTT for learning more stable loss functions.
• Learned regularizers significantly reduce class interference.
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Transferring Knowledge  
across Learning Processes

• We propose a framework for meta-learning across task geometries by learning from 
gradient trajectories


• We present Leap, a light-weight meta-learner that scales beyond few-shot learning 
to tasks requiring millions of gradient steps

TRANSFERRING KNOWLEDGE ACROSS LEARNING PROCESSES
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aThe Alan Turing Institute, bAmazon

SUMMARY

• In complex transfer learning scenarios, information contained
only in the final parameters of a source model may be insufficient;
a higher-level of abstraction is needed.

• We present a framework based on the idea that transfer learning
can be achieved by leveraging information across similar learning
processes, encoded in the geometry of the loss surface.

• We propose Leap, a lightweight meta-learner that scales beyond
few-shot learning. Leap outperforms competing methods from
meta-learning and transfer learning across a variety complex
transfer learning scenarios.

SETUP: GRADIENT PATHS ON TASK MANIFOLDS

Given a learning objective f that consumes and input x and a target
y and maps a parameterization ✓ to a scalar loss value, we define a
learning process by the gradient update rule

✓

i+1 = ✓

i � ↵rf(✓i). (1)

This process defines a curve � on a task-specific manifold:

Length(�) =

Z 1

0

p
h�̇(t), �̇(t)i dt. (2)

• The choice of manifold determines how we view length. For
simplicity, we define it as the loss surface: �(t) = (✓(t), f(✓(t))).

• A discrete approximation can be computed at negligible cost:

Length(�) ⇡
K�1X

i=0

k�i+1 � �ik = d(✓0). (3)

Because the length of � summarizes a learning process, we transfer
knowledge by minimizing the expected gradient path length in Eq. 3
across a distribution p(⌧) of tasks with unique paths  ⌧ :
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META LEARNING ACROSS TASK MANIFOLDS

• We focus on meta-learning a shared initialization ✓0.

• Gradient paths cannot differentiate between good and bad local
minima: we need a feasibility constraint.

• Given a second-best initialization  0, we aim to solve
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LEAP

The feasibility constraint is costly to evaluate. Instead, we can use  0

to generate baselines �̄i = ( i
, f( i)) that guide ✓0:

d̄(✓0, 0) =
K�1X

i=0

k�̄i+1 � �k. (5)

Leap uses F̄ (✓0, 0) = E⌧⇠p(⌧)

⇥
d̄⌧ (✓0, 0)

⇤
to obtain a sequence of incre-

mentally demanding baselines that minimizes Eq. 4:

Theorem 1 (Pull-forward). Define a sequence of initializations { 0
s}s2N by
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For �s > 0 sufficiently small, there exist learning rates schedules {↵i
⌧}

K⌧
i=1 for

all tasks such that  

0
k!1 is a limit point in ⇥.

Crucially, the meta gradient can (approximately) be computed on the
fly at negligible cost:
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Leap pulls the initialization forward along known gradient paths to
find an initialization with minimal expected gradient path length that
is guaranteed to perform as well as the baseline:
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ALGORITHM 1: LEAP

Require: �s, p(⌧), ⌧ = (f⌧ , u⌧ , p⌧ ): distribution over tasks
1: randomly initialize ✓0
2: while not done do
3: rF̄  0: initialize meta gradient
4: sample task batch B from p(⌧)
5: for all ⌧ 2 B do
6:  

0
⌧  ✓

0: initialize task baseline
7: for all i 2 {0, . . . ,K⌧�1} do
8:  

i+1
⌧  u⌧ ( i

⌧ ): update baseline
9: ✓

i
⌧   

i
⌧ : follow baseline (recall  0

⌧ = ✓

0)
10: increment rF̄ using the pull-forward gradient (Eq. 7)
11: end for
12: end for
13: ✓

0  ✓

0 � �
| B |rF̄ : update initialization

14: end while

EXPERIMENTS

• Omniglot: each alphabet is a task, error AUC on test tasks:

• Multi-CV: a dataset is a task; mean normalized improvement:

Leap Finetuning Progressive Nets [3] HAT [4]

AUC 0.74 0.90 1.06 1.09
Test Error 0.89 1.20 0.97 1.15

• Atari: each game is a task; examples of Leap vs. random init:
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Few-shot Learning For Free by Modelling Global Class Structure
Xuechen Li*, Will Grathwohl*, Eleni Triantafillou*, David Duvenaud, Richard Zemel

● Most approaches to few-shot classification use episodic 
training.

● We advocate for a simpler approach: a generative model over 
all classes: a VAE with a mixture of Gaussians prior.

● Few-shot learning is done by variational inference.
● Our model solves 3 tasks: 

○ Few-shot classification
○ Few-shot generation
○ More realistic: Few-shot integration.

● Omniglot experiments:
○ On par with state-of-the-art on few-shot classification.
○ Largely outperform our baseline on few-shot integration.



Task distribution

Training tasks

Target tasks

TAEML: Task-Adaptive Ensemble of Meta-Learners 

Fig1. Current meta-learning for few-shot classification 

Fig2. Solving to few-shot classify the birds: Training all of 

the tasks won’t be efficient
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Fig3. Target task adaptive ensemble of pre-trained meta-learners 
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A Simple Transfer-Learning Extension of Hyperband
Lazar Valkov, Rodolphe Jenatton, Fela Winkelmolen, Cédric Archambeau
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• Setting: Hyperparameter Optimisation
• Hyperband (HB): 

• Incrementally allocates more resources to the best-performing candidates initially taken
from a pool of randomly sampled candidates.

• Evaluates different number of initial candidates ni for ri
• We enhance HB with model-based sampling, using ABLR (Peronne et al.)

• Benefits:
• Makes use of all data produced by a HB run
• Can use data from past HB runs to learn better basis function
• We don’t use heuristics for low number of data points, nor to encourage exploration



Learned optimizers that outperform SGD on wallclock and test loss

Existing optimizers are hand designed. Can we do 
better with learning?

One popular strategy for training such optimizers is 
to leverage gradients and truncated 
backpropagation through time.

These methods, however, are notoriously unstable!

Careful choice of step length is required:
● Long truncations: exploding gradients
● Short truncations: biased gradients

We use variational optimization to "smooth" the 
loss surface by convolving it with a Gaussian.

We train simple MLP-based learned optimizers that 
are faster in wallclock time and generalize better 
than existing hand-designed methods.

To optimize this objective, we combine multiple 
gradient estimators with difference variances.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, C. Daniel Freeman, Jascha Sohl-Dickstein



Learning to Learn
with Conditional Class Dependencies

Xiang Jiang1,2, Mohammad Havaei1, Farshid Varno1,2, Gabriel Chartrand1, Nicolas Chapados1,  Stan Matwin2

1 Imagia Inc.  2Dalhousie University

Integrates two views of the data
The metric space captures class dependencies
Conditional batchnorm helps class separation



Unsupervised Learning via Meta-Learning
Kyle Hsu1, Sergey Levine2, Chelsea Finn2

1University of Toronto 2UC Berkeley

● Unsupervised learning is commonly used as pre-training for downstream learning.
○ We improve upon this by incorporating knowledge about the downstream task type: image 

classification.
● Unsupervised meta-learning via CACTUs: meta-learning over tasks constructed from unlabeled data.

● Results: better than unsupervised learning, worse than supervised meta-learning



James Harrison*,1, Apoorva Sharma*,1, 
Roberto Calandra2, Marco Pavone1

We develop a Bayesian meta-learning 
model that is capable of fast, efficient 
online updates and is trained for 
multi-step probabilistic predictions.

Using this model, we build a control 
algorithm that captures online model 
uncertainty and automatically trades 
off safety and performance.

{jharrison,apoorva,pavone}@stanford.edu, roberto.calandra@berkeley.edu

CAMeLiD: Control Adaptation 
via Meta-Learning Dynamics

1Stanford University, 2UC Berkeley

CAMeLiD controlling a 
quadrotor with a 
random attached mass. 
By incorporating model 
uncertainty into control, 
we successfully 
stabilize.

Point estimate 
meta-learning-based 
control algorithm 
results in the 
quadrotor crashing.



Learning to Adapt in Dynamic, Real-World Environments Through 
Meta-Reinforcement Learning

Anusha Nagabandi*, Ignasi Clavera*, Simin Liu,
Ron S. Fearing , Pieter Abbeel, Sergey Levine, Chelsea Finn
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Train time: Learning to Adapt

Use recent experiences to quickly adapt to the current situation.

Goal

Test time: Meta-Model-Based RL

Experiments

Meta-learn a dynamics model
Tasks: temporal windows

Objective:
min4,$ 6[8 9:*;<*, %= ] ). @. %= = #$(9:*B, %)

9:*;<* → Future data
9:*B → Past data







Meta-Learning with Latent Embedding Optimization (LEO)
Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, Raia Hadsell

We are in the process of open-sourcing our embeddings and code!

We learn a data-dependent latent generative 
representation of model parameters, and perform 
gradient-based meta-learning in this low 
dimensional latent space. 

The resulting approach, Latent Embedding 
Optimization (LEO), decouples the gradient-based 
adaptation procedure from the underlying 
high-dimensional space of model parameters.

LEO is state-of-the-art on both miniImageNet and 
tieredImageNet 5-way 1-shot and 5-shot 
classification tasks.



Proximal Meta-Policy Optimization: ProMP

Jonas Rothfuss*, Dennis Lee*, Ignasi Clavera*,
Tamim Asfour, and Pieter Abbeel

Goal

Credit Assignent Sampling Distribution Low Variance Curvature Estimator (LVC)

MAML E-MAML
• Meta-gradient with low variance
• Unbiased closed to local optima

Proximal Meta-Policy Optimization: ProMP

Experiments

Exploration – Exploitation  Performance Comparison Variance Comparison

ProMP Objective: Incoporates the benefits of:
• Proximal Policy Optimization
• LVC Estimator

1. Analyze credit assignment in meta-reinforcement learning
2. Develop a new objective that trains for the pre-update sampling distribution 



Attentive Task-Agnostic Meta-Learning
for Few-Shot Text Classification

Xiang Jiang1,2, Mohammad Havaei1, Gabriel Chartrand1, Hassan Chouaib1, Thomas Vincent1, Andrew Jesson,1 Nicolas Chapados1,  Stan Matwin2

1 Imagia Inc.  2Dalhousie University

Task-agnostic representation learning

Task-specific attentive adaptation

Attention decouples the representation learning



Variadic Meta-Learning by Bayesian Nonparametric Deep Embedding
Kelsey Allen, Hanul Shin*, Evan Shelhamer*, Josh Tenenbaum

experiments:

- from 5-way to 1692-way and
from 1-shot to unsupervised on Omniglot

- from 1-shot to 50-shot on mini-ImageNet
- from 2-shot to 5000-shot on CIFAR-10

with comparison of prototypes, MAML, graph nets,
and good old supervised learning

multi-modal prototypes
for alphabet and character recognition

few-shot learning
small-scale

supervised learning
large-scale

?

variadic meta-learning

BANDE clusters labeled and unlabeled data into
multi-modal prototypes that represent each class
by a set of clusters instead of only one

any-shot, any-way generalization
between meta-train and meta-test
with mixed supervision



From Nodes to Networks: Evolving Recurrent Neural Networks
Aditya Rawal* , Risto Miikkulainen*

aditya.rawal@uber.com, risto@cs.utexas.edu  
* Work done at Sentient Technologies

LSTM NAS Cell Evolved 
Cell

Encourage Search for Novel Cells

  Recurrent Cell 
as Tree      

Evolve

Crossover Mutation

Meta-LSTM: Seq2Seq model to predict learning curve. 
Speeds-up search by 4X. 

Transfer to Music

Language Modeling Music



Meta Learning for Defaults – Symbolic Defaults

Jan N. van Rijn, Florian Pfisterer, Janek Thomas, Andreas Müller, Bernd Bischl, Joaquin Vanschoren

I Defaults commonly used in Machine
Learning research and practise

I Example: SVM(C=1.0, �=0.0125,
kernel=RBF)

I Goal: Defaults based on meta-feature

I Example: SVM(C=85, �=0.2 / num.
features, kernel=RBF)

I Classical form of meta-learning

I Question: How to find good symbolic
defaults?

I Answer: Let’s discuss this at our poster!

Meta Learning for Defaults – Symbolic Defaults — NIPS Meta-Learning Workshop 2018
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