Incremental Few-Shot Learning with Attention Attractor Networks

Mengye Ren, Renjie Liao, Ethan Fetaya, Richard S. Zemel

University of Toronto and Vector Institute

Testing on only new classes in “few-shot” is not natural.

Incremental few-shot learning: learn new classes on top of old classes. No access to the old data.
At each test episode, learn a linear classifier until convergence.

Attention over base classes to form attractor regularizers.

At the end of the episode, test on a query set of both base and novel.

Use recurrent backprop (RBP) instead of truncated BPTT for learning more stable loss functions.

Learned regularizers significantly reduce class interference.




Auto-Meta: Automated Gradient Based Meta Learner Search
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Automated architecture Gradient-based
search Meta learning

Performance improvement
Few-shot image classification

(Omniglot, Mini-ImageNet)
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across Learning Processes

Sebastian Flennerhag, Pablo G. Moreno, Neil D. Lawrence, Andreas Damianou

e We propose a framework for meta-learning across task geometries by learning from
gradient trajectories

e We present Leap, a light-weight meta-learner that scales beyond few-shot learning
to tasks requiring millions of gradient steps




Few-shot Learning For Free by Modelling Global Class Structure

Xuechen Li*, Will Grathwohl*, Eleni Triantafillou*, David Duvenaud, Richard Zemel
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e Most approaches to few-shot classification use episodic o asia sk
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e \We advocate for a simpler approach: a generative model over R R
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all classes: a VAE with a m|xtur.e qf Gatfssmns prior. AR bt o ol b

e Few-shot learning is done by variational inference. SEL3BAAV oA
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e Our model solves 3 tasks:
o Few-shot classification
o Few-shot generation
o More realistic: Few-shot integration.

e Omniglot experiments: -
o On par with state-of-the-art on few-shot classification. a @ i
D

o Largely outperform our baseline on few-shot integration.




Workshop on Meta-Learning (MetalLearn2018)

TAEML: Task-Adaptive Ensemble of Meta-Learners 1 C S

Minseop Park / mike_seop@aitrics.com
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Fig2. Solving to few-shot classify the birds: Training all of
the tasks won’t be efficient
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Fig3. Target task adaptive ensemble of pre-trained meta-learners



A Simple Transfer-Learning Extension of Hyperband

Lazar Valkov, Rodolphe Jenatton, Fela Winkelmolen, Cédric Archambeau

* Setting: Hyperparameter Optimisation
* Hyperband (HB):
* Incrementally allocates more resources to the best-performing candidates initially taken
from a pool of randomly sampled candidates.
*  Evaluates different number of initial candidates n, for r;
* We enhance HB with model-based sampling, using ABLR (Peronne et al.)
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* Benefits: = > . ) :
« Makes use of all data produced by a HB run il e
* (Can use data from past HB runs to learn better basis function
* We don’t use heuristics for low number of data points, nor to encourage exploration
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Learned optimizers that outperform SGD on wallclock and test loss Google Al

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, C. Daniel Freeman, Jascha Sohl-Dickstein

Existing optimizers are hand designed. Can we do
better with learning?

One popular strategy for training such optimizers is
to leverage gradients and truncated
backpropagation through time.

These methods, however, are notoriously unstable!
Careful choice of step length is required:

e Long truncations: exploding gradients
e Short truncations: biased gradients
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We use variational optimization to "smooth" the
loss surface by convolving it with a Gaussian.
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To optimize this objective, we combine multiple
gradient estimators with difference variances.

We train simple MLP-based learned optimizers that
are faster in wallclock time and generalize better
than existing hand-designed methods.
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Learning to Learn
with Conditional Class Dependencies

Xiang Jiang"?, Mohammad Havaei', Farshid Varno'-?, Gabriel Chartrand’, Nicolas Chapados’, Stan Matwin?
"Imagia Inc. ?Dalhousie University

Integrates two views of the data

The metric space captures class dependencies
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Unsupervised Learning via Meta-Learning #Z2%:
ad

Sy
Kyle Hsu', Sergey Levine?, Chelsea Finn? BAIR
1UniverSity of Toronto 2UC Berkeley BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

Unsupervised learning is commonly used as pre-training for downstream learning.

o  We improve upon this by incorporating knowledge about the downstream task type: image
classification.

Unsupervised meta-learning via CACTUs: meta-learning over tasks constructed from unlabeled data.
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1. run embedding learning

“ L embedding function %

{x:} {zi}

2a. cluster embeddings multiple times 3. run meta-learning on tasks

) ) oo ‘ %LE WA: meta-learner M) learning procedure F
P1 P2

Results: better than unsupervised learning, worse than supervised meta-learning
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CAMeLiD: Control Adaptation
via Meta-Learning Dynamics

James Harrison*', Apoorva Sharma*’,
Roberto Calandra?, Marco Pavone'

A

Autonomous Systems Lab

. . CAMelLiD trolli
We develop a Bayesian meta-learning | 7, quadrotor witha
model that is capable of fast, efficient | =" random attached mass.
. . . By incorporating model
online updates and is trained for uncertainty into control,
we successfully

multi-step probabilistic predictions. I o

Using this model, we build a control Point estimate ]/ ..... - Z\
: . meta-learning-based | * . :
algorlthm that captures o_nllne model control algorithm SO
uncertainty and automatically trades  resultsinthe '
quadrotor crashing.

off safety and performance. ]

"Stanford University, 2UC Berkeley {jharrison, apoorva,pavone}@stanford.edu, roberto.calandra@berkeley.edu




Learning to Adapt in Dynamic, Real-World Environments Through
Meta-Reinforcement Learning

@
{@%‘@AIR Anusha Nagabandi*, Ignasi Clavera*, Simin Liu,

Ron S. Fearing , Pieter Abbeel, Sergey Levine, Chelsea Finn

Goal

Use recent experiences to quickly adapt to the current situation.

Test time: Meta-Model-Based RL

Meta-trained prior 6*

Meta-learn a dynamics model
Tasks: temporal windows w\:ze % = Update rule Adapted model 6*'
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Learning to Design RNA

Frederic Runge* Danny Stoll* Stefan Falkner

o

Meta-learn a policy across RNA Design tasks

AutoML for joint optimization of:
Policy network architecture
RL formulation
Training Hyperparameters

New state-of-the-art on three benchmarks

RNA folding

100

Frank Hutter

o
-
2
—a
zl.u
o

80
60
40

20

Solved Sequences [%]

£ \ota-LEARN

N i

0 g

102710"  10* 10*
Time [seconds]

TensorForce startup overhead

10*



Graph HyperNetworks for Neural Architecture Search

Chris J. Zhang'?, Mengye Ren!3, Raquel Urtasun'3

1 Uber Advanced Technologies Group ? Unversity of Waterloo, 3 University of Toronto

CIFAR-10: Comparison with NAS methods which employ random search

(top half) and advanced search methods (e.g. RL) (bottom half)
Method Search Cost (GPU days) Param x10°  Accuracy

g SMASHv1 (Brock et al., 2018) ? 4.6 94.5
Graph Propagation Shared MLP SMASHv2 (Brock et al., 2018) 3 16.0 96.0
One-Shot Top (F=32) (Bender et al., 2018) 4 27+03 955+0.1
- One-Shot Top (F=64) (Bender et al., 2018) 4 104 +£10 959402
Motivation: Random (F=32) - 46+06 946+03
 Neural architecture search is an expensive nested optimization GHN Top (F=32) 0.42 51+06 95.7+0.1
a* = argmin L,(w*(a),a), w*(a) = arg min Lyin(w, a) NASNet-A (Zoph et al., 2018) 1800 33 97.35
a w ENAS Cell search (Pham et al., 2018) 0.45 4.6 97.11
e Instead of using SGD to learn weights, use trained hypernetwork to DARTS (first order) (Liu et al., 2018b) 15 2.9 97.06
generate weights DARTS (second order) (Liu et al., 2018b) 4 34 97.17 + 0.06
o Graph HyperNetworks (GHN) explicitly model the topology of architectures GHN Top-Best, 1K (F=32) 0.84 5.7 97.16 £ 0.07

by learning on a computation graph representation

Anytime Prediction ImageNet Mobile: Comparison with NAS methods which employ advanced

search methods (e.g. RL)

Method Search Cost Param FLOPs  Accuracy
(GPU days) x10° x10% Top1 Top5

NASNet-A (Zoph et al., 2018) 1800 53 564 74.0 91.6
NASNet-C (Zoph et al., 2018) 1800 49 558 725 91.0
AmoebaNet-A (Real et al., 2018) 3150 51 555 745 920
AmoebaNet-C (Real et al., 2018) 3150 6.4 570 757 924
PNAS (Liu et al., 2018a) 225 51 588 742 919
DARTS (second order) (Liu et al., 2018b) 4 49 595 731 91.0

GHN Top-Best, 1K 0.84 6.1 59 730 913




Meta-Learning with Latent Embedding Optimization (LEO)

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, Raia Hadsell

optimized in inner loop
\ . optimized in outer loop
£tr

— Inference

We learn a data-dependent latent generative
representation of model parameters, and perform
gradient-based meta-learning in this low
dimensional latent space.

Inner loop
optimization

The resulting approach, Latent Embedding L
Optimization (LEO), decouples the gradient-based /n\ /-.\ /n\
adaptation procedure from the underlying =D @D ... @D
high-dimensional space of model parameters. N s I R |

LEQ is state-of-the-art on both minilmageNet and b, o, (w2 {7 AV b

tieredimageNet 5-way 1-shot and 5-shot LT )

classification tasks. [ Enwoder| [ Docoder|
% S el

Q Deep Mind %‘;;& ﬁ We are in the process of open-sourcing our embeddings and code!
i




Proximal Meta-Policy Optimization: ProMP
Jonas Rothfuss*, Dennis Lee*, Ignasi Clavera*,
Tamim Asfour, and Pieter Abbeel

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

Goal

1. Analyze credit assignment in meta-reinforcement learning
2. Develop a new objective that trains for the pre-update sampling distribution

Credit Assignent Sampling Distribution Low Variance Curvature Estimator (LVC)
. H-1 ﬂ_@ at|3t H-1
JWVE( r(sy,ay T~ Pr(T
=0 L(mo at|3t)) (; (o t)> AL

*  Meta-gradient with low variance
MAML - * Unbiased closed to local optima

Proximal Meta-Policy Optimization: ProMP

ProMP Objective: Incoporates the benefits of:
*  Proximal Policy Optimization
ProMP _ 7CLIPp/ N !/ __ LR .
J7(0) = J7(0) = 1Dk p(me, . m) st 0" =0+ aVyJr™(0) * LVC Estimator
.
Experiments
Performance Comparison Variance Comparison Exploration — Exploitation
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Attentive Task-Agnostic Meta-Learning
for Few-Shot Text Classification

%

Xiang Jiang"?, Mohammad Havaei', Gabriel Chartrand’, Hassan Chouaib’, Thomas Vincent', Andrew Jesson, Nicolas Chapados’, Stan Matwin?
"Imagia Inc. ?Dalhousie University

Task-agnostic representation learning
Task-specific attentive adaptation

Attention decouples the representation learning
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Variadic Meta-Learning by Bayesian Nonparametric Deep Embedding
Kelsey Allen, Hanul Shin*, Evan Shelhamer*, Josh Tenenbaum

?

few-shot learning ] supervised learning

small-scale large-scale
variadic meta-learning

any-shot, any-way generalization
between meta-train and meta-test
with mixed supervision

experiments:

- from 5-way to 1692-way and

from 1-shot to unsupervised on Omniglot
- from 1-shot to 50-shot on mini-ImageNet
- from 2-shot to 5000-shot on CIFAR-10

with comparison of prototypes, MAML, graph nets,
and good old supervised learning

Fully Supervised Prototypical Network ~ Semi Supervised Prototypical Network

BANDE

BANDE clusters labeled and unlabeled data into
multi-modal prototypes that represent each class
by a set of clusters instead of only one

multi-modal prototypes
for alphabet and character recognition

classes

distractor cluster
ema support
unlabeled
*  query
x  cluster center

Training Proto. Nets

BANDE

Alphabet Alphabet 64.9+0.2

91.210.1

85.7+0.2
94.91+0.2

Alphabet Chars (20-way)

Chars (20-way)

95.3+0.2
95.1+0.1




From Nodes to Networks: Evolving Recurrent Neural Networks

Adltya Rawal* , RiStO Miikku|ainen* * Work done at Sentient Technologies
aditya.rawal@uber.com, risto@cs.utexas.edu
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Meta Learning for Defaults — Symbolic Defaults

Jan N. van Rijn, Florian Pfisterer, Janek Thomas, Andreas Miiller, Bernd Bischl, Joaquin Vanschoren

© learn
sklearn. svn.SVC » Defaults commonly used in Machine

Learning research and practise

Ot versions
. class sKlearn.swn. SVC (C=1.0. kemel=1bf. degree=3, gamma=auto_deprecated, coef0=0.0, shrinking=True,
cite us i you probabilty=Faise, 0=0.001, cache_size=200, class_welght=None, verbose=False, max_ite
o sonvare, decision_function_shape=ovr’ random_state=None)

source]

sklearn.svn SVC
Examples using C-Support Vector Classification.

‘The implementation is based on fiosvm. The fit time complexity is more than quadratic with the number of samples.

‘which makes it hard to scale to dataset with more than a couple of 10000 samples.

“The muticiass support is handled according to a one-vs-one scheme.

For details on !

of the provided k xctions and how gamma, coef0 and degree:
affect each other, see section in the e ct

Read more n the User Guide.
Parameters: C: float, optional (default=1.0)
Penalty parameter C of the error term.
kernel : string, optional (default="rbf)
Specifies the kernel type to be used in the algorithm. It must be one of finear’ ‘poly, bf
“sigmoid, precomputed or a callabl. If none is given, bf wil be used. f a callableis given itis
used to pre-compute the kernel matrix from data matrices; that matrix should be an array of
shape (n_sanples, n_samples)

degree : int, optional (default=3)

Degree of the polynomial kernel function (poly). Ignored by all other kernels.
‘gamma : float, optional (default="auto’)

Kernel cosflicient for rbf, poly’ and ‘sigmoid

Current default s ‘auto’ which uses 1 /n_fealures, if gamma~'scale’ is passed then it uses 1
‘auto’, wil change to

(n_features * X.std() as value of gamma. The current default of gamma,
scale’ . auto_deprecated, a depr
indicating that no expiiit value of gamma was passed.

coef0 : float, optional (default=0.0)

Independent term in kernel function. I is only signifiant in ‘poly’ and ‘sigmoid

shrinking : boolean, optional (default=True)

&5 COLUMBIA | ENGINEERING

Meta Learning for Defaults — Symbolic Defaults — NIPS Meta-Learning Workshop 2018
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Meta Learning for Defaults — Symbolic Defaults
Jan N. van Rijn, Florian Pfisterer, Janek Thomas, Andreas Miiller, Bernd Bischl, Joaquin Vanschoren
© learn
sklearn. svn.SVC » Defaults commonly used in Machine
e T T T g ——r— Learning research and practise

te us i you probabilty=False, 0/=0.001, cache_size=200, ciass_weight=None, verbose=False, max_i

decision_functon_shape=ovr',random_state=None)

e SO—— » Example: SVM(C=1.0, 7=0.0125,
The mplemenaton e n . Th i copisy i mor thn usatc i e mumber f sl
Vs R hard 10 el o st with e an i o 10000 s kernel=RBF

“The muticiass support is handled according to a one-vs-one scheme.

For details on fion of the provided k xctions and how gamma, coef0 and degree:
affect each other, see section in the e ct

Read more in the User G
Parameters: C: float, optior
pmwpm

kernel : string, optiond{
Speciles e kerel 5 Tin the algorithm. It must be one of finear’ ‘poly, rbf
‘sigmoid, ‘precomputed' or a callabl. If none is given, bf willbe used. If a callable is given it is
used to pre-compute the kernel matrix from data matrices; that matrix should be an array of
shape (n_sanples, n_samples)
degra

. ﬂp"ﬂ
Degree of the poly T unction (poly). Ignored by all cther kerels.

‘gamma : float, optional (default="auto’)
Kernel cosflicient for rbf, poly’ and ‘sigmoid

Current default s ‘auto’ which uses 1 /n_fealures, if gamma~'scale’ is passed then it uses 1

(n ieatuves ) s val ofgarma. The curant dofaut of arma, a4’ vl o to
. “auto_deprecated of auto'is

mmcannu rat no explct valuo of gamma was pased.

«coef0 : float, optional (defaul

Meta Learning for Defaults — Symbolic Defaults — NIPS Meta-Learning Workshop 2018 d}) LOLUMBlA ‘ ENGINEERING
™

Fu Foundation School of Engincering and Applied Science




© learn

scikitiearn v0.20.1
Otrer versions

leaso cite us

Meta Learning for Defaults — Symbolic Defaults — NIPS Meta-Learning Workshop 2018

Meta Learning for Defaults — Symbolic Defaults

Jan N. van Rijn, Florian Pfisterer, Janek Thomas, Andreas Miiller, Bernd Bischl, Joaquin Vanschoren

sklearn.svm.SVC

s skeam, . SUC (010, fomol1. dgro=S ganmas . deprcaed.cout-00, snking=Tue
probabilty-Faise 0}-0.001, cache_size-200,class_weight-None, verbose~False, max.te-
decision._function_shapo="ov’,random_siate=Nore) source]

C-Support Vector Classification.

‘The implementation is based on fiosvm. The fit time complexity is more than quadratic with the number of samples.
‘which makes it hard to scale to dataset with more than a couple of 10000 samples.

“The muticiass support is handled according to a one-vs-one scheme.

For details on

affect each other, see section in the

Read more i the U
Parameters:

fion of the provided k and how gamma, coef0 and degree

C: float, optional (default=1.0)
Penalty parameter C of the error term.

kernel : string, optional (default="rbf)
Specifies the kernel type to be used in the algorithm. It must be one of finear’ ‘poly, bf
“sigmoid, precomputed or a callabl. If none is given, bf will be used. f a callable is given itis
used to pre-compute the kernel matrix from data matrices; that matrix should be an array of
shape (n_sanples, n_samples)

degree : int, optional (default=3)
Degree of the polynomial kernel function (poly). Ignored by all other kernels.

‘gamma : float, optional (default="auto’)
Kernel cosflicient for rbf, poly’ and ‘sigmoid

Current default s ‘auto’ which uses 1 /n_fealures, if gamma~'scale’ is passed then it uses 1

(n_features * X.std() as value mgamma The curen dofau of arma, ks’ vl o to
‘auto_deprecat pr of auto'is

indicating that no expiiit value of gamma was passed.

coef0 : float, optional (default=0.0)
Independent term in kernel function. I is only signifiant in ‘poly’ and ‘sigmoid

shrinking : boolean, optional (default=True)

Defaults commonly used in Machine
Learning research and practise

Example: SVM(C=1.0, y=0.0125,
kernel=RBF)

Goal:

Example: SVM(C=85, v=0.2 / num.
features, kernel=RBF)

Classical form of meta-learning

Defaults based on meta-feature

Question: How to find good symbolic
defaults?

Answer: Let's discuss this at our poster!
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