Incremental Few-Shot Learning with Attention Attractor Networks

Mengye Ren, Renjie Liao, Ethan Fetaya, Richard S. Zemel

University of Toronto and Vector Institute

- Testing **on only new classes** in "few-shot" is not natural.
- Incremental few-shot learning: learn new classes on top of old classes. No access to the old data.
- At each test episode, learn a linear classifier until convergence.
- Attention over base classes to form **attractor regularizers**.
- At the end of the episode, test on a query set of both base and novel.
- Use recurrent backprop (RBP) instead of truncated BPTT for learning more stable loss functions.
- Learned regularizers significantly reduce class interference.

Auto-Meta: Automated Gradient Based Meta Learner Search

Jaehong Kim¹, Sangyeul Lee¹, Sungwan Kim¹, Moonsu Cha¹, Jung Kwon Lee¹, Youngduck Choi^{1,2}, Yongseok Choi¹, Dong-Yeon Cho¹, and Jiwon Kim¹

¹ SK T-Brain ² Yale University

<u>Automated</u> architecture search

Gradient-based <u>Meta</u> learning

T Brain

Performance improvement Few-shot image classification (Omniglot, Mini-ImageNet)

Sebastian Flennerhag, Pablo G. Moreno, Neil D. Lawrence, Andreas Damianou

- gradient trajectories
- to tasks requiring millions of gradient steps

Transferring Knowledge across Learning Processes

• We propose a framework for meta-learning across task geometries by learning from

• We present Leap, a light-weight meta-learner that scales beyond few-shot learning

Few-shot Learning For Free by Modelling Global Class Structure

Xuechen Li*, Will Grathwohl*, Eleni Triantafillou*, David Duvenaud, Richard Zemel

- Most approaches to few-shot classification use **episodic training**.
- We advocate for a simpler approach: a generative model over **all classes:** a VAE with a **mixture of Gaussians prior**.
- Few-shot learning is done by variational inference.
- Our model solves 3 tasks:
 - Few-shot classification
 - Few-shot generation
 - More realistic: **Few-shot integration**.
- Omniglot experiments:
 - On par with state-of-the-art on few-shot classification.
 - Largely outperform our baseline on few-shot integration.

TAEML: Task-Adaptive Ensemble of Meta-Learners

Workshop on Meta-Learning (MetaLearn2018)

Minseop Park / mike_seop@aitrics.com

A

TRICS

Fig2. Solving to few-shot classify the birds: Training all of the tasks won't be efficient

Fig3. Target task adaptive ensemble of pre-trained meta-learners

A Simple Transfer-Learning Extension of Hyperband

Lazar Valkov, Rodolphe Jenatton, Fela Winkelmolen, Cédric Archambeau

- Setting: Hyperparameter Optimisation
- Hyperband (HB):
 - Incrementally allocates more resources to the best-performing candidates initially taken from a pool of randomly sampled candidates.
 - Evaluates different number of initial candidates n_i for r_i
- We enhance HB with model-based sampling, using ABLR (Peronne et al.)

$$\boldsymbol{\Phi}_{\boldsymbol{z}}(\boldsymbol{X}_{t},\boldsymbol{r}_{i})$$

$$P(\boldsymbol{y}_{t}|\boldsymbol{w}_{t},\boldsymbol{z},\boldsymbol{\beta}_{t}) = \mathcal{N}(\boldsymbol{\Phi}_{\boldsymbol{z}}(\boldsymbol{X}_{t},\boldsymbol{r}_{i})\boldsymbol{w}_{t},\boldsymbol{\beta}_{t}^{-1}\boldsymbol{I}_{N_{t}})P(\boldsymbol{w}_{t}|\boldsymbol{\alpha}_{t}) = \mathcal{N}(\boldsymbol{0},\boldsymbol{\alpha}_{t}^{-1}\boldsymbol{I}_{D})$$

- Benefits:
 - Makes use of all data produced by a HB run
 - Can use data from past HB runs to learn better basis function
 - We don't use heuristics for low number of data points, nor to encourage exploration

Learned optimizers that outperform SGD on wallclock and test loss G

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, C. Daniel Freeman, Jascha Sohl-Dickstein

Existing optimizers are **hand designed**. Can we do better with **learning**?

One popular strategy for training such optimizers is to leverage gradients and **truncated backpropagation through time**.

These methods, however, are notoriously unstable!

Careful choice of step length is required:

- Long truncations: exploding gradients
- Short truncations: biased gradients

We use **variational optimization** to "smooth" the loss surface by convolving it with a Gaussian.

$$\mathcal{L}\left(\theta\right) = \mathbb{E}_{\tilde{\theta} \sim \mathcal{N}\left(\theta, \sigma^{2}I\right)}\left[L\left(\tilde{\theta}\right)\right]$$

To optimize this objective, we combine **multiple** gradient estimators with difference variances.

We train **simple** MLP-based learned optimizers that are **faster in wallclock time** and **generalize better** than existing hand-designed methods.

Learning to Learn with Conditional Class Dependencies

Xiang Jiang^{1,2}, Mohammad Havaei¹, Farshid Varno^{1,2}, Gabriel Chartrand¹, Nicolas Chapados¹, Stan Matwin² ¹ Imagia Inc. ²Dalhousie University

Integrates two views of the data The metric space captures class dependencies Conditional batchnorm helps class separation

Unsupervised Learning via Meta-Learning

Division of Engineering Science UNIVERSITY OF TORONTO

Kyle Hsu¹, Sergey Levine², Chelsea Finn² ¹University of Toronto ²UC Berkeley

- Unsupervised learning is commonly used as pre-training for downstream learning.
 - We improve upon this by incorporating knowledge about the downstream task type: image classification.
- **Unsupervised meta-learning** via CACTUs: meta-learning over tasks constructed from unlabeled data.

Results: better than unsupervised learning, worse than supervised meta-learning

CAMeLiD: Control Adaptation via Meta-Learning Dynamics

James Harrison^{*,1}, Apoorva Sharma^{*,1}, Roberto Calandra², Marco Pavone¹

We develop a Bayesian meta-learning model that is capable of **fast, efficient online updates** and is trained for multi-step probabilistic predictions.

Using this model, we build a control algorithm that captures online model uncertainty and **automatically trades off safety and performance**.

CAMeLiD controlling a quadrotor with a random attached mass. By incorporating model uncertainty into control, we successfully stabilize.

Point estimate meta-learning-based control algorithm results in the quadrotor crashing.

Learning to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning

Anusha Nagabandi*, Ignasi Clavera*, Simin Liu, Ron S. Fearing , Pieter Abbeel, Sergey Levine, Chelsea Finn

Goal

Use **recent experiences** to quickly **adapt** to the current situation.

Graph HyperNetworks for Neural Architecture Search

Chris J. Zhang^{1,2}, Mengye Ren^{1,3}, Raquel Urtasun^{1,3}

¹ Uber Advanced Technologies Group ² Unversity of Waterloo, ³ University of Toronto

NAS Benchmarks

Graph HyperNetworks

Motivation:

• Neural architecture search is an expensive nested optimization

$$a^*=rgmin \mathcal{L}_{\mathit{val}}(w^*(a),a), \;\; w^*(a)=rgmin \mathcal{L}_{\mathit{train}}(w,a)$$

- Instead of using SGD to learn weights, use trained hypernetwork to generate weights
- Graph HyperNetworks (GHN) explicitly model the topology of architectures by learning on a computation graph representation

Anytime Prediction

CIFAR-10: Comparison with NAS methods which employ random search (top half) and advanced search methods (e.g. RL) (bottom half)

Method	Search Cost (GPU days)	$Param\ \times 10^6$	Accuracy
SMASHv1 (Brock et al., 2018)	?	4.6	94.5
SMASHv2 (Brock et al., 2018)	3	16.0	96.0
One-Shot Top (F=32) (Bender et al., 2018)	4	2.7 ± 0.3	95.5 ± 0.1
One-Shot Top (F=64) (Bender et al., 2018)	4	10.4 ± 1.0	95.9 ± 0.2
Random (F=32)	-	4.6 ± 0.6	94.6 ± 0.3
GHN Top (F=32)	0.42	5.1 ± 0.6	95.7 ± 0.1
NASNet-A (Zoph et al., 2018)	1800	3.3	97.35
ENAS Cell search (Pham et al., 2018)	0.45	4.6	97.11
DARTS (first order) (Liu et al., 2018b)	1.5	2.9	97.06
DARTS (second order) (Liu et al., 2018b)	4	3.4	97.17 ± 0.06
GHN Top-Best, 1K (F=32)	0.84	5.7	97.16 ± 0.07

ImageNet Mobile: Comparison with NAS methods which employ advanced search methods (e.g. RL)

Method	Search Cost	Param	FLOPs	Accu	iracy
	(GPU days)	$ imes 10^{6}$	$ imes 10^{6}$	Top 1	Top 5
NASNet-A (Zoph et al., 2018)	1800	5.3	564	74.0	91.6
NASNet-C (Zoph et al., 2018)	1800	4.9	558	72.5	91.0
AmoebaNet-A (Real et al., 2018)	3150	5.1	555	74.5	92.0
AmoebaNet-C (Real et al., 2018)	3150	6.4	570	75.7	92.4
PNAS (Liu et al., 2018a)	225	5.1	588	74.2	91.9
DARTS (second order) (Liu et al., 2018b)	4	4.9	595	73.1	91.0
GHN Top-Best, 1K	0.84	6.1	569	73.0	91.3

Meta-Learning with Latent Embedding Optimization (LEO)

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, Raia Hadsell

We learn a data-dependent latent generative representation of model parameters, and perform gradient-based meta-learning in this low dimensional latent space.

The resulting approach, Latent Embedding Optimization (LEO), decouples the gradient-based adaptation procedure from the underlying high-dimensional space of model parameters.

LEO is *state-of-the-art* on both *minilmageNet* and *tieredImageNet* 5-way 1-shot and 5-shot classification tasks.

We are in the process of open-sourcing our embeddings and code!

Proximal Meta-Policy Optimization: ProMP

Jonas Rothfuss*, Dennis Lee*, Ignasi Clavera*, Tamim Asfour, and Pieter Abbeel

Goal

- 1. Analyze credit assignment in meta-reinforcement learning
- 2. Develop a **new objective** that trains for the pre-update sampling distribution

Credit Assignent Sampling Distribution

Low Variance Curvature Estimator (LVC)

$$J^{\text{LVC}}(\boldsymbol{\tau}) = \sum_{t=0}^{H-1} \frac{\pi_{\theta}(\boldsymbol{a}_t | \boldsymbol{s}_t)}{\bot(\pi_{\theta}(\boldsymbol{a}_t | \boldsymbol{s}_t))} \left(\sum_{t'=t}^{H-1} r(\boldsymbol{s}_{t'}, \boldsymbol{a}_{t'}) \right) \quad \boldsymbol{\tau} \sim P_{\mathcal{T}}(\boldsymbol{\tau})$$

- Meta-gradient with **low variance**
- Unbiased closed to local optima

Proximal Meta-Policy Optimization: ProMP

ProMP Objective:

$$J_{\mathcal{T}}^{\text{ProMP}}(\theta) = J_{\mathcal{T}}^{\text{CLIP}}(\theta') - \eta \bar{\mathcal{D}}_{KL}(\pi_{\theta_o}, \pi_{\theta}) \quad \text{s.t.} \quad \theta' = \theta + \alpha \, \nabla_{\theta} J_{\mathcal{T}}^{LR}(\theta)$$

Incoporates the benefits of:

- Proximal Policy Optimization
- LVC Estimator

Attentive Task-Agnostic Meta-Learning for Few-Shot Text Classification

Xiang Jiang^{1,2}, Mohammad Havaei¹, Gabriel Chartrand¹, Hassan Chouaib¹, Thomas Vincent¹, Andrew Jesson,¹ Nicolas Chapados¹, Stan Matwin² ¹ Imagia Inc. ²Dalhousie University

Task-agnostic representation learning

Task-specific attentive adaptation

Attention decouples the representation learning

Variadic Meta-Learning by Bayesian Nonparametric Deep Embedding Kelsey Allen, Hanul Shin*, Evan Shelhamer*, Josh Tenenbaum

any-shot, any-way generalization between meta-train and meta-test with mixed supervision

experiments:

- from 5-way to 1692-way and from 1-shot to unsupervised on Omniglot
- from 1-shot to 50-shot on mini-ImageNet
- from 2-shot to 5000-shot on CIFAR-10

with comparison of prototypes, MAML, graph nets, and good old supervised learning

BANDE clusters labeled and unlabeled data into *multi-modal prototypes* that represent each class by a set of clusters instead of only one

		classes
,	• • • •	distractor cluster support
		unlabeled
	*	query
	×	cluster center

multi-modal prototypes

for alphabet and character recognition

Training	Testing	Proto. Nets	BANDE
Alphabet	Alphabet	$64.9 {\pm} 0.2$	91.2 ±0.1
Alphabet	Chars (20-way)	$85.7 {\pm} 0.2$	95.3 ±0.2
Chars	Chars (20-way)	94.9 ±0.2	95.1 ±0.1

From Nodes to Networks: Evolving Recurrent Neural Networks

Aditya Rawal*, Risto Miikkulainen* aditya.rawal@uber.com, risto@cs.utexas.edu * Work done at Sentient Technologies

Meta Learning for Defaults - Symbolic Defaults

Jan N. van Rijn, Florian Pfisterer, Janek Thomas, Andreas Müller, Bernd Bischl, Joaquin Vanschoren

Defaults commonly used in Machine Learning research and practise

Meta Learning for Defaults - Symbolic Defaults - NIPS Meta-Learning Workshop 2018

Meta Learning for Defaults - Symbolic Defaults

Jan N. van Rijn, Florian Pfisterer, Janek Thomas, Andreas Müller, Bernd Bischl, Joaquin Vanschoren

- Defaults commonly used in Machine Learning research and practise
- Example: SVM(C=1.0, γ=0.0125, kernel=RBF)

Meta Learning for Defaults - Symbolic Defaults - NIPS Meta-Learning Workshop 2018

Meta Learning for Defaults - Symbolic Defaults

Jan N. van Rijn, Florian Pfisterer, Janek Thomas, Andreas Müller, Bernd Bischl, Joaquin Vanschoren

- Defaults commonly used in Machine Learning research and practise
- Example: SVM(C=1.0, γ=0.0125, kernel=RBF)
- Goal: Defaults based on meta-feature
- Example: SVM(C=85, γ=0.2 / num. features, kernel=RBF)
- Classical form of meta-learning
- Question: How to find good symbolic defaults?
- Answer: Let's discuss this at our poster!

