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Abstract

Exploration is a key component of successful reinforcement learning, but opti-
mal approaches are computationally intractable, so researchers have focused on
hand-designing mechanisms based on exploration bonuses and intrinsic reward,
some inspired by curious behavior in natural systems. In this work, we propose a
strategy for encoding curiosity algorithms as programs in a domain-specific lan-
guage and searching, during a meta-learning phase, for algorithms that enable RL
agents to perform well in new domains. Our rich language of programs, which can
combine neural networks with other building blocks including nearest-neighbor
modules and can choose its own loss functions, enables the expression of highly
generalizable programs that perform well in domains as disparate as grid nav-
igation with image input, acrobot, lunar lander, ant and hopper. To make this
approach feasible, we develop several pruning techniques, including learning to
predict a program’s success based on its syntactic properties. We demonstrate the
effectiveness of the approach empirically, finding curiosity strategies that are sim-
ilar to those in published literature, as well as novel strategies that are competitive
with them and generalize well.

1 Problem formulation

1.1 Meta-learning problem

When an agent is learning to behave online, via reinforcement learning (RL), it is critical that it
both explores its domain and exploits its rewards effectively. We propose to formulate the problem
of generating curious behavior as one of meta-learning: an outer loop, operating at “evolutionary”
scale will search over a space of algorithms for generating curious behavior by dynamically adapting
the agent’s reward signal, and the inner loop will perform standard reinforcement learning using the
adapted reward signal. The outer “evolutionary” search is attempting to find a program for the
curiosity module, so to optimize the agent’s lifetime return ZtT:o ¢, or another global objective like
the mean performance on the last few trials. In this meta-learning setting, our objective is to find
a curiosity module that works well given a broad distribution of environments from which we can
sample at meta-learning time.

Let us assume we have an agent A equipped with an RL algorithm (such as DQN or PPO, with all
hyperparameters specified), which receives states and rewards from and outputs actions to an envi-
ronment &, generating a stream of experienced transitions e(A; £); = (s¢, at, ¢, S¢4+1)- The agent
continually learns a policy 7(t) : s; — a; to maximize the discounted reward >, v'r¢4;, v < 1.

To add exploration to this policy, we include a curiosity module C that has access to the stream of
state transitions e; experienced by the agent and that, at every time-step ¢, outputs a proxy reward
7:. We connect this module so that the original RL agent receives these modified rewards, thus
observing (s¢,a¢, 7t = C(e1.4—1), St+1), without having access to the original r;. The inner RL
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algorithm still purely exploits its reward 7, but a correctly designed C may induce exploration. Our
final objective is: max¢ [Eg‘ {]Ertwe(_A’c;g) {Zfzo Tt}”

1.2 Programs for curiosity

In science and computing, mathematical language has been very successful in describing varied
phenomena and powerful algorithms with short descriptions. Therefore, in order to obtain curiosity
modules that can generalize over a very broad range of tasks we describe them in terms of general
programs in a domain-specific language. We decompose the curiosity module into two compo-
nents: the first, I, outputs an intrinsic reward value ¢; based on the current experienced transition
(8¢, at, Se+1) (and past transitions (s1.4—1, a1.¢—1) indirectly through its memory); the second, ¥,
takes the current time-step ¢ (normalized by dividing by the agent’s lifetime 7'), the actual reward
r¢, and the intrinsic reward 7; and combines them to yield the proxy reward 7;.
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minates, the FIFO buffers are updated and the
adjustable parameters are updated via gradient
descent using the Adam optimizer (Kingma &
Bal [2014)). In practice, we execute multiple re-
ward predictions on a batch and then update on
a batch. See appendix |A|for more details.

Figure 1: Example diagrams of published algo-
rithms covered by our language (larger figures in
the appendix). The green box represents the out-
put of the intrinsic curiosity function, the pink box

To limit the search space and prioritize short, is the loss to be minimized. Pink arcs represent
meaningful programs we limit the total num- Ppaths and networks along which gradients flow
ber of operations of the computation graph to 7.  back from the minimizer to update parameters.
Our language is expressive enough to describe

many (but far from all) curiosity mechanisms in the existing literature, as well as many other po-
tential alternatives, but the expressiveness leads to a very large search space that we need to search
efficiently.

2 Improving the efficiency of our search

We wish to find curiosity programs that work effectively in a wide range of environments. How-
ever, evaluating tens of thousands of programs in the most expensive environments would consume
decades of GPU computation, so we have designed strategies for quickly finding good programs.

Pruning invalid algorithms without running them: First, we check that programs are not du-
plicates using a randomized test where we identically seed two programs, feed them identical fake
data for tens of steps and compare their outputs. Second, we check that the loss functions cannot be
minimized independently of the input data, ex. by setting a network’s weights to zero.

Pruning algorithms in cheap environments: Our ultimate goal is to find algorithms that perform
well on many different environments, both simple and complex. We observe that most valid pro-
grams will be extremely poor curiosity modules and that some environments are solvable in a few
hundred steps while others require tens of millions. Therefore, a key idea in our search is to try
many programs in cheap environments and only a few promising candidates in expensive ones.

Predicting algorithm performance: Perhaps surprisingly, we find that we can predict program
performance directly from program structure. Our search process bootstraps an initial training set
of (program structure, program performance) pairs, then uses this training set to select the most
promising next programs to evaluate. We encode each program’s structure with features representing
how many times each operation is used and use a k-nearest-neighbors regressor. Even though the
correlation between predictions and actual values is only moderately high (0.54 on a holdout test),



this is enough to discover most of the top programs searching only half of the program space, which
is our ultimate goal. Results are shown in appendix [D}

Quickly terminating bad programs: At any point during the meta-search, we use the K current
best programs as benchmarks. Specifically, after every episode of every trial, we check whether the
mean performance of the current program is below the mean performance (at that point during the
trial) of the top K programs minus two standard deviations of their performance minus one standard
deviation of our estimate of the mean of the current program, and if so we terminate the program.

3 Experiments

Our RL agent uses PPO (Schulman et al., |2017) based on|Kostrikov|(2018))’s implementation in Py-
Torch. Our code athttps://bit.ly/meta-learning-curiosity—-algs|takes OpenAl
gym environments (Brockman et al.| 2016).

We evaluate each curiosity algorithm for multiple trials, using a seed dependent on the trial but
independent of the algorithm, which leads to the PPO weights and curiosity data-structures being
initialized identically on the same trials for all algorithms. As is common in PPO, we run multiple
rollouts (5, except for MuJoCo which only has 1), with independent experiences but shared policy
and curiosity modules. Curiosity predictions and updates are batched across these rollouts, but not
across time. PPO policy updates are batched both across rollouts and multiple timesteps.

3.1 First search phase in simple environment

We start by searching for a good intrinsic curiosity program I in a fast image-based grid world ex-
ploratory environment, designed by |Chevalier-Boisvert et al.| (2018). We optimize the total number
of distinct squares visited across the agent’s lifetime.

Our search optimizations allow us to only evaluate half of all synthesized programs (52,000 total, of
length at most 7). Searching through this space took a total of 13 GPU days. As shown in figure 0]
in the appendix, we find that most programs perform relatively poorly, with a long tail of programs
that are statistically significantly better, comprising roughly 0.5% of the whole program space.

The highest scoring program (a few other pro-

grams have lower average performance but are Class Ant Hopper

statistically equivalent) is surprisingly simple Baseline [-953,-39.9] | [318.5, 525.0]
and meaningful. This program, which we will | Meta-learned [+67.5, +80.0] | [589.2, 650.6]
call Top, is shown in appendix[A.3} Of the top |~ pyplished | [+67.4, +98.8] | [627.7, 692.6]

16 programs, 13 are variants of Top and 3 are
variants of a program shown in figure |1 1|in the

X Figure 2: Meta-learned algorithms perform sig-
appendix.

nificantly better than constant rewards and statis-
tically equivalently to published algorithms found
by human researchers (see[I). The table shows the
confidence interval (one standard deviation) for
the mean performance (across trials, across algo-
rithms) for each algorithm category. Performance
is defined as mean episode reward for all episodes.

3.2 Transferring to new environments

Given the fixed reward combiner described in
appendix [C| and the list of the best 2,000 se-
lected programs found in grid world, we evalu-
ate the programs on both lunar lander and ac-
robot, in their discrete action space versions.
Notice that both environments have much longer horizons than the image-based grid world (37,500
and 50,000 vs 2,500) and they have vector-based inputs, not image-based. The results in figure [3]
show good correlation between performance on grid world the new environments.

Finally, we evaluate the 16 best programs on grid world (most of which also did well on lunar
lander and acrobot) on two MuJoCo environments (Todorov et al., 2012): hopper and ant. These
environments have more than an order of magnitude longer exploration horizon than acrobot and
lunar lander, exploring for 500K time-steps, as well as continuous action-spaces instead of discrete.
We then compare the best 16 programs on grid world to four weak baselines (constant 0,-1,1 and
Gaussian noise reward) and the three published algorithms expressible in our language (shown in
figure [T). We run two trials for each algorithm and pool all results in each category to get a con-
fidence interval for the mean of that category. All trials used the reward combiner found on lunar
lander. For both environments we find that the performance of our top programs is statistically
equivalent to published work and significantly better than the weak baselines, confirming that we
meta-learned good curiosity programs.
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Figure 3: We show correlation between program performance in gridworld and performance in
harder environments (lunar lander on the left, acrobot on the right), using the top 2,000 programs in
gridworld. Performance is evaluated using mean reward across all learning episodes, averaged over
trials (two trials for acrobot / lunar lander and five for gridworld).We can see that almost all intrinsic
curiosity programs that had statistically significant performance for grid world also do well on the
other two environments. In green, we show the performance of three published works; in increasing
gridworld performance: disagreement (Pathak et al., [2019), inverse features (Pathak et al., [2017)
and random distillation (Burda et al.l 2018]).

Note that we meta-trained our intrinsic curiosity programs only on one environment (GridWorld)
and showed they generalized well to other very different environments. Adding more more meta-
training tasks would be as simple as standardising the performance within each task (to make results
comparable) and then selecting the programs with best mean performance. We chose to only meta-
train on a single, simple, task because it (surprisingly!) already gave great results; highlighting the
broad generalization of meta-learning program representations.

4 Related work

Closest to our work, in Evolved Policy Gradients|Houthooft et al.|(2018) meta-learn a neural network
that computes a loss function based on interactions of the agent with an environment. The weights of
this network are optimized via evolution strategies to efficiently optimize new policies from scratch
to satisfy new goals. They show that they can generalize more broadly than MAML and RL? by
meta-training a robot to go to different positions to the east of the start location and then meta-test
making the robot quickly learn to go to a location to the west. In contrast, we showed that by
meta-learning programs, we can generalize between radically different environments, not just goal
variations of a single environment. For more review please see appendix [B]

5 Conclusions

In this work we show that programs are a powerful, succinct, representation for algorithms for
generating curious exploration, and these programs can be meta-learned efficiently via active search.
Results from this work are two-fold. First, by construction, algorithms resulting from this search
will have broad generalization and will thus be a useful default for RL settings, where reliability is
key. Second, the algorithm search code is open-sourced to facilitate further research on exploration
algorithms based on new ideas or building blocks, which can be added to the search. In addition,
we note that the approach of meta-learning programs instead of network weights may have further
applications beyond finding curiosity algorithms, such as meta-learning optimization algorithms or
even meta-learning meta-learning algorithms.
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A Details of our domain-specific language for curiosity algorithms

We have the following types. Note that S and A get defined differently for every environment.

e RR: real numbers such as r; or the dot-product between two vectors.

e RT: numbers guaranteed to be positive, such as the distance between two vectors. The
only difference to our program search between R and R™ is in pruning programs that
can optimize objectives without looking at the data. For R™ we check whether they can
optimize down to 0, for R we check whether they can optimize to arbitrarily negative
values.

e state space S: the environment state, such as a matrix of pixels or a vector with robot joint
values. The particular form of this type is adapted to each environment.

e action space A: either a 1-hot description of the action or the action itself. The particular
form of this type is adapted to each environment.

e feature-space F = R32: a space mostly useful to work with neural network embeddings.
For simplicity, we only have a single feature space.

e List[X]: for each type we may also have a list of elements of that type. All operations
that take a particular type as input can also be applied to lists of elements of that type by
mapping the function to every element in the list. Lists also support extra operations such
as average or variance.

There are four classes of modules: 1. Input modules (shown in blue), drawn from the set
{8, az, s¢11} for the I module and from the set {i;,r:} for the x module. 2. Buffer and pa-
rameter modules (shown in gray) of two kinds: FIFO queues that provide a finite list of the k£ most
recent inputs, and neural network weights which may (pink border) or may not get updated via
back-propagation depending on the computation graph. 3. Functional modules (shown in white)
such as a “Neural Network™ or “L2 Distance”. 4. Update modules (shown in pink), that either add
variables to buffers (such as “k-Nearest-Neighbor”) or that add real-valued outputs to a global loss
for gradient descent. A single node in the DAG is designated as the output node (shown in green):
the output of this node is considered to be the output of the entire program.

Our programs have four data types: reals R, state space of the given environment S, action space of
the given environment A and feature space IF, used for intermediate computations and always set to
R32 in our current implementation.

The instantiation of some types and operations depends on the environment. Neural networks are
either convolutional or fully connected and action prediction losses either use mean squared error
or negative log likelihood. This type of abstraction enables our meta-learning approach to discover
curiosity modules that generalize radically, applying not just to new tasks, but to tasks with substan-
tially different input and output spaces than the tasks they were trained on. For example, a neural
network module going from S to I will be instantiated as a convolutional neural network if S is
an image and as a fully connected neural network of the appropriate dimension if S is a vector.
Similarly, if we are measuring an error in action space A we use mean-squared error for continuous
action spaces and negative log-likelihood for discrete action spaces. This means that the same cu-
riosity program can be applied to states and actions regardless of dimensionality, shapes (ex. images
vs. vectors) or type (ex. continuous vs. discrete).



A.1 Curiosity operations

Operation Input type(s) State Output type
Add R, R R
RunningNorm R R R
Variable AsBuffer X List[X] List[X]
NearestNeighborRegressor | I, I List[F] F
SubtractOneTenth R R
NormalDistribution R
Subtract R, R R
Sqrt(Abs(x)) R RT
NN ]F, F—F F, F ®]F7F—>]F F

NN F, F— A F,F @]F,F_,A A
NNF— A F ®]F~>A A
NNA - F A @A—HF F
(CO)NN S Os_F F
(C)NN, Detach S Os_r F
(CO)NNEnsemble S 5xOg_F List|F]
NN Ensemble F — F F 5XOp_F List[F]
NN Ensemble F, F — F F,F S5XOF FF List|F
NN Ensemble F, A — F F, A 5xO4 FoF List|F
Minimize Value R Adam

L2Norm X RT
L2Distance X, X R
ActionSpaceLoss X, A RT
DotProduct X, X R

Add X, X X
Detach X X
Mean List[R] R
Variance List[X] RT
Mean List[X] X
Mapped L2 Norm List[X] List[R]
Average Distance List|X], X R
Minus List[X], X List[X]

Note that X stands for the option of being F or A. NearestNeighborRegressor takes a query and a
target, automatically creates a buffer of the target (thus keeps a list as a state) and answers based on
the buffer. RunningNorm keeps track of the variance of the input and normalizes by that variance.

A.2 Reward combiner operations

Operation

Input type(s)

State

Qutput type

Constant {0.01,0.1,0.5,1}

NormalDistribution

Add

Max

Min

WeightedNormalizedSum

| = 5|

o
=

RunningNorm

Variable AsBuffer

List[R]

Subtract

Multiply

| =

Sqrt(Abs(x))

i =P sl s e

Mean

~
~.
0

~

[R]

==l s R sl Pl s s es s e

Note that Weighted N ormalizedSum(a, b, ¢, d)
ance of the input and normalizes by that variance.

= lal+el”

ab+cd

RunningNorm keeps track of the vari-




A.3 The top program discovered by our program search

s(t+1) 0{1:S - F s(t)

N/

a(t) NN:S - F NN:S - F

target pred ictio\ /

Action Prediction Loss L2 Distance

Add To Loss

Figure 4: Top program in the large phase 1 search. It uses a single neural network to predict the
action from s;4; and then compares its predictions based on s; with its predictions based on sy 1,
generating high intrinsic reward when the difference is large. The action prediction loss module
either computes a softmax followed by NLL loss or appends zeros to the action to match dimensions
and applies MSE loss, depending on the type of the action space. Note that this is not the same as
rewarding taking a different action in the previous time-step. To the best of our knowledge, the
algorithm represented by this program has not been proposed before, although its simplicity makes
us think it may have. The network predicting the action is learning to imitate the policy learned by
the internal RL agent, because the curiosity module does not have direct access to the RL agent’s
internal state.

A.4 Two other published algorithms covered by our DSL

02: FxF 5 A NN:S - F NN:S -5 F 03: FxF->F NN:A - F
target
NN:FxF 5 A NN: FxF > F
prediction
Action Prediction Loss L2 Distance
Add
Add To Loss

Figure 5: Curiosity by predictive error on inverse features by Pathak et al.|(2017). In pink, paths and
networks where gradients flow back from the minimizer.
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NN: § - F + Detach 0{2: F xA > [F) NN: § - F + Detach

NN: F xA - [F]

l

Variance Average Distance

AddToLoss

Figure 6: Curiosity by ensemble predictive variance [Pathak et al.|(2019). In pink, paths and net-
works where gradients flow back from the minimizer.

B Extra related work

In some regards our work is similar to neural architecture search (NAS) (Stanley & Miikkulainen,
2002; [Elsken et al.| 2018} [Pham et al., [2018; Zoph & Lel 2016)) or hyperparameter optimization for
deep networks (Mendoza et al., 2016), which aim at finding the best neural network architecture
and hyper-parameters for a particular task. However, in contrast to most (but not all, see Zoph et al.
(2018)) NAS work, we want to generalize to many environments instead of just one. Moreover,
we search over programs, which include non-neural operations and data structures, rather than just
neural-network architectures, and decide what loss functions to use for training. Our work also
resembles work in the AutoML community (Hutter et al.,|2018)) that searches in a space of programs,
for example in the case of SAT solving (KhudaBukhsh et al.| [2009) or auto-sklearn (Feurer et al.,
2015). Although we take inspiration from ideas in that community (Jamieson & Talwalkar, 2016;
Li et al.l 2016)), our algorithms also specify their own optimization objectives (vs being specified by
the user) which need to work well in syncrony with an expensive deep RL algorithm.

There has been much interesting work in designing intrinsic curiosity algorithms. We take
inspiration from many of them to design our domain-specific language. In particular, we rely on
the idea of using neural network training as an implicit memory, which scales well to millions
of time-steps, as well as buffers and nearest-neighbour regressors. As we showed in figure [I] we
can represent several prominent curiosity algorithms. We can also generate meaningful algorithms
similar to novelty search (Lehman & Stanley, 2008) and EX 2 (Fu et all 2017); which include
buffers and nearest neighbours. However, there are many exploration algorithm classes that we do
not cover, such as those focusing on generating goals (Srivastava et al., 2013} Kulkarni et al., 2016
Florensa et al., |2018)), learning progress (Oudeyer et al., 2007; Schmidhuber, 2008} |Azar et al.,
2019), generating diverse skills (Eysenbach et al., 2018), stochastic neural networks (Florensa et al.,
2017} [Fortunato et al., [2017), count-based exploration (Tang et al., [2017) or object-based curiosity
measures (Forestier & Oudeyer, 2016)). Finally, part of our motivation stems from |Taiga et al.[(2019)
showing that some bonus-based curiosity algorithms have trouble generalising to new environments.

Most work on meta-RL has focused on learning transferable feature representations or parameter
values for quickly adapting to new tasks (Finn et al., 2017; Finn| 2018} |Clavera et al.,[2019) or im-
proving performance on a single task (Xu et al.| 2018} |Veeriah et al.,[2019). However, the range of
variability between tasks is typically limited to variations of the same goal (such as moving at dif-
ferent speeds or to different locations) or generalizing to different environment variations (such as
different mazes or different terrain slopes). There have been some attempts to broaden the spectrum
of generalization, showing transfer between Atari games thanks to modularity (Fernando et al.| 2017
Rusu et al.| 2016) or proper pretraining (Parisotto et al., [2015). However, as noted by [Nichol et al.
(2018), Atari games are too different to get big gains with current feature-transfer methods; they
instead suggest using different levels of the game Sonic to benchmark generalization. Moreover, |Yu
et al.| (2019) recently proposed a benchmark of many tasks. [Wang et al.| (2019) automatically gen-
erate different terrains for a bipedal walker and transfer policies between terrains, showing that this
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is more effective than learning a policy on hard terrains from scratch; similar to our suggestion
in section 2] In contrast to these methods, we aim at generalization between completely different
environments, even between environments that do not share the same state and action spaces.

Closer to our formulation, Zheng et al.[(2018)) parametrize an intrinsic reward function which influ-
ences policy-gradient updates in a differentiable manner, allowing them to backpropagate through a
single step of the policy-gradient update to optimize the intrinsic reward function for a single task.
Finally, |(Chiang et al.| (2019)); Faust et al.| (2019) have a setting similar to ours where they modify
reward functions over the entire agent’s lifetime, but instead of searching over intrinsic curiosity
algorithms they tune the parameters of a hand-designed reward function.

More relevant to our work, there have been research efforts on meta-learning exploration policies.
Duan et al.|(2016); Wang et al.|(2017) learn an LSTM that explores an environment for one episode,
retains its hidden state and is spawned in a second episode in the same environment; by training
the network to maximize the reward in the second episode alone it learns to explore efficiently
in the first episode. |Stadie et al.| (2018) improves their exploration and that of |[Finn et al.| (2017)
by considering the importance of sampling in RL policies. (Gupta et al.|(2018) combine gradient-
based meta-learning with a learned latent exploration space in which they add structured noise for
meaningful exploration. In contrast to all three of these methods, we search over algorithms, which
will allows us to generalize more broadly and to consider the effect of exploration on up to 10% —10°
time-steps instead of the 10?2 — 103 of previous work.

C Searching for a reward combiner

Our reward combiner was developed in lunar lander (the simplest environment with meaningful
extrinsic reward) based on the best program (shown in appendix [F) among a preliminary set of
16,000 programs. Among a set of 2478 candidates (with 5 or less operations) the best reward

(tie—t/T)-dt/T1¢ - Notice that for 0 < 43 < 1 (usually the case) this is

1+,
approximately 7 = i7 + (1 —t/T)i; + (t/T)rs, which is a down-scaled version of intrinsic reward
plus a linear interpolation that ranges from all intrinsic reward at ¢ = 0 to all extrinsic reward at
t = T In future work, we hope to co-adapt the search for intrinsic reward programs and combiners
as well as find multiple reward combiners.

combiner was 7; =
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D Predicting algorithm performance

Performance Regressor on the Test Set

600

Actual Performance

T T T T
100 200 300 400 500
predicted Performance

Figure 7: Predicting algorithm performance from the structure of the program alone. Comparison
between predicted and actual performance on a test set; showing a correlation of 0.54. In black, the
identity line.

# of Top 0.01 Programs Found vs # Evaluated

# of top 0.01 programs found
o @
o o
L I

Y
S

~
=3
.

2000 4000 6000 8000 10000 12000 14000 16000
Num programs evaluated

Figure 8: Predicting algorithm performance allows us to find the best programs faster. We investigate
the number of the top 1% of programs found vs. the number of programs evaluated, and observe
that the optimized search (in blue) finds 88% of the best programs after only evaluating 50% of the
programs (highlighted in green). The naive search order would have only found 50% of the best
programs at that point.
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E Performance on grid world

600 H

500 Hr

400

300

Number of states visited

200

100

i i i i i i i
0 5000 10000 15000 20000 250000 1000 2000
Program index, sorted by mean performance

Figure 9: In black, mean performance across 5 trials for all 26,000 programs evaluated (out of their
finished trials). In green mean plus one standard deviation for the mean estimate and in red one
minus one standard deviation for the mean estimate. On the right, you can see program means form
roughly a gaussian distribution of very big noise (thus probably not significant) with a very small
(between 0.5% and 1% of programs) long tail of programs with statistically significant performance
(their red dots are much higher than almost all green dots), composed of algorithms leading to good
exploration.
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F Interesting programs found by our search

0{1}: S - [F] s(t+1) 0{2):S - F
NN: S = [F] NN: S = F + Detach NN:S - F

Minus

=

Sqrt(Abs(x))

AddToLoss

Figure 10: Top variant in preliminary search on grid world; variant on random network distillation
using an ensemble of trained networks instead of a single one.
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Figure 11: Good algorithm found by our search (3 of the top 16 programs on grid world are variants
of this program). On its left part it does random network distillation but does not use that error as
a reward. Instead it does an extra prediction based on the state transition on the right and compares
both predictions. Notice that, to make both predictions, the same F — T network was used to map
from the query to the target, thus sharing the weights between both predictions.
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