
Modular Meta-Learning with Shrinkage

Yutian Chen, Abram L. Friesen, Feryal Behbahani,
David Budden, Matthew W. Hoffman, Arnaud Doucet, Nando de Freitas

DeepMind
London, UK

{yutianc,abef}@google.com

Abstract

Most gradient-based approaches to meta-learning do not explicitly account for the
fact that different parts of the underlying model adapt by different amounts when ap-
plied to a new task. For example, the input layers of an image classification convnet
typically adapt very little, while the output layers can change significantly. This can
cause parts of the model to begin to overfit while others underfit. To address this,
we introduce a hierarchical Bayesian model with per-module shrinkage parameters,
which we propose to learn by maximizing an approximation of the predictive
likelihood using implicit differentiation. Our algorithm subsumes Reptile and out-
performs variants of MAML on two synthetic few-shot meta-learning problems.

1 Introduction

The goal of meta-learning is to extract common knowledge from a set of training tasks in order to solve
held-out tasks more efficiently and accurately. One avenue for learning and re-using this knowledge
is to learn a set of modules that can be re-used or re-purposed at test time as needed. Modularity is
intrinsic to deep learning, and examples range from receptive fields or layers to larger components,
such as perception or policy networks. This modularity enables pre-trained convolutional neural
networks to be rapidly fine-tuned on other image classification datasets, for example. However, most
meta-learning algorithms that use test-time adaptation of a learned model, such as MAML [1] and
Reptile [2], do not explicitly account for the modularity present in their models.

We propose here a hierarchical Bayesian modelling approach to modular meta-learning. The parame-
ters within a module are assumed conditionally independent across tasks and their mean follows a
normal distribution parameterized by a per-module “central” parameter and variance term, which acts
as a local shrinkage parameter; see, e.g., Gelman et al. [3]. As the marginal likelihood is typically
intractable in the scenarios we are interested in, we estimate the shrinkage parameters by maximizing
an approximation of a predictive likelihood criterion using implicit differentiation. Empirically, we
find that this approach is numerically stable, and we provide a theoretical analysis on a toy example
suggesting it exhibits good properties. Our approach is complementary to that of Alet et al. [4], which
proposed a modular method to learn model structures. More related work is discussed in Appendix A.

We evaluate our shrinkage-based approach on two synthetic few-shot meta-learning tasks as a proof of
concept. We show that properly accounting for modularity is crucial for achieving good performance
in these tasks. Our method outperforms Reptile [2], MAML [1], and a modular variant of MAML.

2 Hierarchical Bayes formulation of modular meta-learning
We consider a multi-task learning scenario with a number of tasks bearing some similarity to each
other. For each task Tt indexed by t, a finite set of Nt observations Dt = {xn}Nt

n=1 is assumed

3rd Workshop on Meta-Learning at NeurIPS 2019, Vancouver, Canada.

Figure 1: Modular meta-learning: a shrinkage
parameter σm is associated with each module
to control the deviation of task-dependent pa-
rameters θm,t from the central value φm.

Figure 2: Graphical representation of the
Bayesian hierarchical model described in
Eq. (1).

available and Dt is modelled using a probabilistic model with parameters θt; these parameters being
partitioned into M modules; i.e. θt = θ1:M,t = (θ1,t, . . . ,θm,t, . . . ,θM,t), where θm,t ∈ Φm ⊆
RDm . For example, θm,t could be the weights of the m-th layer of a neural network for task t.

To model the relationship between tasks, we adopt a hierarchical Bayesian approach. We assume
that the parameters for a task θt are conditionally independent of those of all other tasks given some
“central" parameters φ = φ1:M = (φ1, . . . ,φm, . . . ,φM), with θm,t ∼ N (θm,t|φm, σ2

mI) for all
m, where N (x|µ,Σ) denotes the normal of mean µ with covariance matrix Σ, and I is the identity
matrix with appropriate dimensionality. The parameter σm is a shrinkage parameter quantifying how
θm,t can deviate from φm. If σm ≈ 0, then θm,t ≈ φm, i.e., when σm shrinks to zero the parameters
of module m become task independent; see Fig. 1 for an illustration. We assign a non-informative
prior to φ and σ = (σ1, . . . , σM), and follow an empirical Bayes approach to learn their values from
the data. This allows the model to automatically decide which modules to re-use and which to adapt.

If we denote by D = (D1, ...,DT) the collection of observations corresponding to T tasks and
σ = (σ1, ..., σM), then the Bayesian hierarchical model considered here can be summarized by the
following probability density (with graphical model shown in Fig. 2)

p(φ,θ,D|σ) = p(φ)

M∏
m=1

T∏
t=1

N (θm,t|φm, σ2
mI)

T∏
t=1

Nt∏
n=1

p(xt,n|θt). (1)

A standard learning strategy is to maximize the marginal likelihood p(D|σ) to obtain a point estimate
of σ, and then compute the resulting posterior p(θ,φ|D,σ). However, in standard applications of
meta-learning, this approach does not scale due to the intractability of marginalization. In the next sec-
tion, we propose an approximate, scalable, Bayesian approach to parameter estimation in this model.

3 Learning strategy
To deal with the fact that a large, possibly infinite, number of tasks is available, we propose an
iterative algorithm that at each iteration first samples a batch of tasks Tt ∼ p(T) for t = 1, ..., T
and collects the corresponding datasets D1, ...,DT . The resulting probabilistic model for these
datasets is thus of the form (1). As the corresponding marginal likelihood p(D|σ) and posterior
p(φ,θ|D,σ) are typically intractable, it might be tempting to maximize the joint distribution (1)
w.r.t. to φ,σ,θ to estimate those parameters. Unfortunately, this approach fails as explained on a
toy example in Appendix B. In short, even if the model is correctly specified, the optimal value of σ
when maximizing the joint distribution is 0, and modules do not adapt when σ = 0.

We instead take an approach similar to that of many recent meta-learning algorithms and split each
dataset Dt into train and validation subsets, Dtrain

t and Dval
t , respectively. We estimate the task

parameters θ1:T and shared meta parameters φ with MAP (maximum a posteriori) on the train

2

subsets Dtrain
1:T given σ. This is equivalent to maximizing the log-joint density in Eq. (1), giving

θ̂1:T (σ), φ̂(σ) = argmax
θ1:T ,φ

`MAP, where `MAP := log p
(
θ1:T ,φ|Dtrain

1:T ,σ
)
. (2)

Given these, we estimate the shrinkage parameters σ by maximizing the predictive log-likelihood on
the validation subsets Dval

1:T :

σ̂ = argmax
σ

log p
(
Dval

1:T |Dtrain
1:T ,σ

)
≈ argmax

σ

T∑
t=1

log p(Dval
t |θ̂t(σ)) := argmax

σ
`PLL , (3)

where the marginalization over the posterior of θt is approximated by the MAP point estimate. Using
the MAP approximation of θt within the predictive log-likelihood ensures that our meta-train and
meta-test time procedures match, and that the meta-train metric directly optimizes the metric being
evaluated at meta-test. Additionally, we show in Appendix B.2 that this provides a consistent estimate
of σ on a toy example under regularity conditions. This type of end-to-end meta-learning objective
is similar to various recent works such as Ravi and Larochelle [5] and Finn et al. [1]. However, in
contrast to their emphasis on fast adaptation with a small number of adaptation steps, we are interested
in sample efficiency, and thus allow sufficient time for the task adaptation to converge. Solving Eq. (3)
requires solving Eq. (2), which can require expensive second-order derivatives; however, we show in
Appendix C using implicit differentiation that we can approximate the derivative as

∂`PLL(σ)

∂ log σ2
m

≈
T∑
t=1

(θm,t − φm)>
∂

∂θ̂m,t
log p

(
Dval
t |θ̂t

)
. (4)

Our resulting meta-learning algorithm is shown in Algorithm 1, where SGDk(`) corresponds to
taking k steps with stochastic gradient descent (or an adaptive optimizer such as Adam) on loss `.
Notice that Reptile [2] is a special case of our method when σ tends to∞ and an appropriate learning
rate is used. It is also possible to estimate φ with the predictive log-likelihood objective. We omit the
derivation but the approximate gradient for φ is then equivalent to the first-order MAML update [1].

4 Experimental evaluation

Algorithm 1: Shrinkage-based meta-learning.
Input: Task distribution p(T) and inner steps K.
initialize φ and σ
while not done do
{Tt} ← sample batch of tasks from p(T)
initialize θt ← φ for each task in batch {Tt}
for each task Tt do

θt ← SGDK(`MAP) // Eq. (2).
end
φ← SGD1(`MAP) // Eq. (2).
logσ2 ← SGD1(`PLL) // Eq. (4).

end

We evaluate our proposed method Shrinkage,
along with variants of MAML [1] and Rep-
tile [2] on two synthetic few-shot meta-learning
domains constructed from hierarchical normal
distributions. For each task t, we first sam-
ple latent variables θm,t ∼ N (θm,t|φm, σ2

m)
for each dimension m, and then observations
xt,n ∼ N (xt,n|µt(θt),Ξ). Parameters φ and
σ are fixed but unknown, and different dimen-
sions of σ have different values. To assess the
efficacy of the learning strategy, we use a data
generating process that matches our modeling
assumptions. The data distribution’s mean µt
is a function of θt and is the main aspect that
changes between experiments. The observation noise variance Ξ is a fixed and known diagonal
matrix. The problem in each domain is to learn the parameters θt̃ of a new task Tt̃ given a few
observations {xt̃,n}. The main difference between the two evaluation domains is that µt is a linear
function of θt in the first and is non-linear in the second. Fig. 3 illustrates the experiments in 2-D,
and Appendix D contains a precise specification of both.

To compare the algorithms, we use the negative log-likelihood up to a constant as the loss, and compare
the generalization loss of each algorithm after it adapts to the new task with multiple steps of gradient
descent. For MAML and Shrinkage, we evaluate both the standard (non-modular) versions and
modular versions that learn module-specific parameters, denoted by the “M-” prefix. To ensure a fair
comparison, we increase the flexibility of MAML to match Shrinkage by learning the learning rate of
the inner-loop gradient update for each module, similar to Antoniou et al. [6], who do this to stabilize
MAML as opposed to enabling modularity. Similarly, M-Shrinkage learns a separate σm for each

3

(a) Experiment 1: Linear transform. (b) Experiment 2: Nonlinear spiral transform.

Figure 3: Illustration of the hierarchical normal distributions for both experiments and corresponding
performance results. The loss figures each show the mean generalization loss with 68% credible
interval for 1000 test tasks for all algorithms versus test-time adaptation steps.

module and Shrinkage learns a single σ for all modules. In both experiments, the modular algorithms
treat each dimension of θt as a separate module, whereas the underlying distributions have only two
modules, to make the task more challenging for the modular algorithms. We performed extensive
random search for the hyperparameters of each algorithm (i.e., learning rates, number of adaptation
steps, and initial values of σ), choosing the values that minimized the meta-test validation loss.

Linear transform. We begin with a simple model – a two-module joint normal distribution over
θt. To make each task nontrivial, we restrict the posterior to a narrow subspace near the

∑
m θm,t

hyperplane, causing gradient descent to converge slowly regardless of the number of observations.

Fig. 3a shows a 2-D example of this model as well as the performance of all algorithms on it. With
the small number of observations for each task, the main challenge in this task is overfitting. While
all algorithms are able to learn each module accurately, each module’s loss must reach its minimum
at the same time in order to achieve the global minimum of the total loss, otherwise the some
modules will begin to overfit while others still underfit. The modular algorithms, M-Shrinkage and
M-MAML, learn to adapt different modules at different rates and thus outperform their single-module
counterparts. Among non-modular algorithms, the generalization loss of Shrinkage is better than
Reptile, and matches MAML at its best adaptation step. Without proper regularization, all versions
of MAML and Reptile eventually overfit, whereas Shrinkage and M-Shrinkage do not. The different
behaviors of these algorithms are further illustrated by comparing the trajectories of parameter
estimation error during task adaptation in Fig. 5 (Appendix D).

Nonlinear transform. In the second experiment, we explore a more realistic scenario where the data
is generated by a nonlinear transformation, again with two modules. The transformation µt(θt) is a
spiral that rotates consecutive non-overlapping pairs of parameters by an angle proportional to their
L2 distance from the origin. Fig. 3b shows an example of this transform applied to a 2-D Gaussian.

Fig. 3b shows the performance of all algorithms on this second experiment. Due to the narrow valley
in the optimization landscape caused by the spiral transform, all algorithms require hundreds of
adaptation steps to minimize the loss. Again, the modular algorithms do well relative to their non-
modular counterparts and to Reptile, which overfits badly. In our experiments, MAML was unstable
when training with more than 100 inner loop steps. As a result, the best-performing hyperparameter
value had a shorter adaptation horizon than required for this task, causing both MAML variants to
perform worse. We also trained first-order MAML models to try to avoid this instability but these
also underperformed (see Fig. 7, Appendix D). Overall, learning a modular prior for M-Shrinkage
allows it to avoid overfitting and outperform the other methods in both of our experiments.

5 Conclusions

We showed that explicitly accounting for modularity is important for good performance in few-shot
meta-learning. Our resulting algorithm has ties to MAML and contains Reptile as a special case,
providing a new justification for its meta parameter update rule. Our analysis in the supplement
highlights the importance of cross validation for meta-learning. In future work, we plan to extend our
analysis to include more general models, and to apply our Shrinkage algorithm to more challenging
domains, such as few-shot classification and reinforcement learning.

4

References
[1] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep

networks. In International Conference on Machine Learning, pages 1126–1135, 2017.

[2] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

[3] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. Bayesian
Data Analysis. Chapman and Hall/CRC, 2013.

[4] Ferran Alet, Tomás Lozano-Pérez, and Leslie P Kaelbling. Modular meta-learning. In Conference on
Robot Learning, 2018.

[5] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
Conference on Learning Representations, 2017.

[6] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your MAML. In International
Conference on Learning Representations, 2019.

[7] Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task dependent adaptive metric for
improved few-shot learning. In Conference on Neural Information Processing Systems, 2018.

[8] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with differen-
tiable convex optimization. In IEEE Computer Vision and Pattern Recognition, 2019.

[9] Tianhe Yu, Chelsea Finn, Sudeep Dasari, Annie Xie, Tianhao Zhang, Pieter Abbeel, and Sergey Levine.
One-shot imitation from observing humans via domain-adaptive meta-learning. In Robotics: Science and
Systems, 2018.

[10] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement learning.
International Conference on Learning Representations, 2019.

[11] Yutian Chen, Yannis Assael, Brendan Shillingford, David Budden, Scott Reed, Heiga Zen, Quan Wang,
Luis C. Cobo, Andrew Trask, Ben Laurie, Caglar Gulcehre, Aaron van den Oord, Oriol Vinyals, and
Nando de Freitas. Sample efficient adaptive text-to-speech. In International Conference on Learning
Representations, 2019.

[12] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In Conference
on Neural Information Processing Systems, pages 4077–4087, 2017.

[13] Oriol Vinyals, Charles Blundell, Timothy P. Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching
networks for one shot learning. In Conference on Neural Information Processing Systems, pages 3630–3638,
2016.

[14] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In International Conference on Machine Learning,
pages 2554–2563, 2017.

[15] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-learning
with memory-augmented neural networks. In International Conference on Machine Learning, pages
1842–1850, 2016.

[16] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-learner.
In International Conference on Learning Representations, 2018.

[17] Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Learning to learn around a
common mean. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems 31, pages 10169–10179. 2018.

[18] Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-learn stochastic
gradient descent with biased regularization. In International Conference on Machine Learning, pages
1566–1575, 2019.

[19] Mikhail Khodak, Maria Florina-Balcan, and Ameet Talwalkar. Adaptive gradient-based meta-learning
methods. arXiv preprint arXiv:1906.02717, 2019.

[20] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando de Freitas. Learning to learn by gradient descent by gradient descent. In
Conference on Neural Information Processing Systems, pages 3981–3989, 2016.

5

[21] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Rémi Munos, Charles
Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv preprint
arXiv:1611.05763, 2016.

[22] Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P Lillicrap, Matt
Botvinick, and Nando de Freitas. Learning to learn without gradient descent by gradient descent. In
International Conference on Machine Learning, pages 748–756, 2017.

[23] Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in stochastic
meta-optimization. International Conference on Learning Representations, 2018.

[24] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-based
meta-learning as hierarchical Bayes. In International Conference on Learning Representations, 2018.

[25] Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn. Bayesian
model-agnostic meta-learning. In Conference on Neural Information Processing Systems, pages 7332–7342,
2018.

[26] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In Conference
on Neural Information Processing Systems, pages 9516–9527, 2018.

[27] Sachin Ravi and Alex Beatson. Amortized Bayesian meta-learning. In International Conference on
Learning Representations, 2019.

[28] Harrison Edwards and Amos Storkey. Towards a neural statistician. In International Conference on
Learning Representations, 2017.

[29] Marta Garnelo, Dan Rosenbaum, Chris J Maddison, Tiago Ramalho, David Saxton, Murray Shanahan,
Yee Whye Teh, Danilo J Rezende, and S.M. Ali Eslami. Conditional neural processes. arXiv preprint
arXiv:1807.01613, 2018.

[30] Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard E Turner. Meta-
learning probabilistic inference for prediction. International Conference on Learning Representations,
2019.

[31] Luisa M. Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In International Conference on Machine Learning, 2019.

[32] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, and
Raia Hadsell. Meta-learning with latent embedding optimization. In International Conference on Learning
Representations, 2019.

[33] Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise metric and subspace.
In International Conference on Machine Learning, 2018.

6

A Related work

Meta-learning refers to a class of algorithms where models are quickly adapted to new tasks with few
training examples by leveraging knowledge acquired from a set of training tasks. Meta-learning has
proven successful across a wide range of problems, including image classification [7, 8], robotics
[9, 10], and speech synthesis [11], and many different approaches have been investigated.

Metric based methods learn a kernel for an embedding space, which is then used at test time to
relate unseen examples to already seen data [12, 13]. Memory based methods [14–16] use external
or internal memory architectures to store and leverage key training examples or history dependent
information at test time. Optimization based methods instead modify the learning procedure, by
learning good initialization [1, 2], regularization [17–19], or an optimizer [5, 20–22] to output the
parameters of the learned model, allowing the learner to quickly and effectively adapt to new tasks.

Our work builds on this third class of approaches. A popular example of these, MAML, directly
learns an initialization of the network parameters, from which it can adapt to a new task from the task
distribution in only a very small number of gradient steps [1]. MAML requires expensive computation
of second order derivatives and is hard to scale with the number of adaptation steps, subject to the
short horizon bias [23]. Compared to works that emphasize fast adaptation and back-propagation
of gradients through a limited number of consecutive gradient descent steps, our method optimizes
task parameters toward the regularized optimum and back-propagates through the stationary point.
We also show in this paper that Reptile [2], which avoids computing the second order derivative by
updating the meta parameters towards the average of the optimized task parameters, can be derived
as a special case of our framework.

Several hierarchical Bayesian approaches and a variety of inference methods have been proposed
for meta learning. Grant et al. [24] introduced the first Bayesian variant of MAML using a Laplace
approximation. Yoon et al. [25] and Finn et al. [26] introduced different probabilistic extensions to
MAML, using approximate posteriors (either through an ensemble of particles or variational inference
with a Gaussian posterior). Other methods have also proposed gradient based hierarchical Bayesian
methods (e.g. Ravi and Beatson [27]) where posterior uncertainty is captured via a learned variational
distribution that allows efficient test-time variational inference after a few gradient update steps. Other
works (e.g. [28–30]) employ inference networks directly mapping from query set to variational latent
variables without any gradient based optimization required at test time. These methods are more
space and compute efficient although the capacity is limited by the size of the inference network. We
also take a hierarchical Bayesian modeling approach and use the MAP estimate of task parameters
for scalability. More sophisticated inference methods can be considered under our framework but we
leave this for future work.

Related to our focus on modularity are a few meta-learning works that do not update all the parameters
of the network at test time. Instead, they split them into task-specific and shared parameters [31],
learn to produce network weights from task-specific embeddings [32], or learn a layer-wise subspace
in which to do task specific gradient-based adaptation [33]. Our hierarchical Bayesian approach
with shrinkage prior provides a flexible framework for incorporating prior knowledge about model
structures and task similarities. Recent work also proposed a compositional approach to modular
meta-learning [4], where at test time a search over module structure is performed with optional
adaptation. Our method is complementary with theirs in that we learn how to optimally adapt or
re-use modules at test time, which can be used within their adaptation phase.

Our method is also closely related to works on meta-regularization [17–19]. While meta-initialization
aims at learning a good initialization for parameters of the network, meta-regularization aims at
learning a regularization parameter to avoid over-fitting and improve stability. Our work differs from
most works in this thread on the way of estimating the regularization strength σ−2

m in a modular
model.

B A simple Gaussian example

To illustrate the asymptotic behavior of different learning strategies as T →∞, we consider a simple
model with M = 1 module, D = D1 = 1 observation dimensionality, and normally-distributed
observations,

7

Example (1D Normal observation).

M = 1, D = 1, Nt ≡ N, ∀t = 1, . . . , T,

xt,n ∼ N (xt,n|θt, 1),∀t = 1, . . . , T, n = 1, . . . , N.

The task likelihood function is

p(θ1:T ,x1:T |φ, σ) =

T∏
t=1

(
N (θt|φ, σ2)

N∏
n=1

N (xt,n|θt, 1)

)
. (5)

We denote by φTrue and σTrue the true value of variable φ and σ in the following analysis.

B.1 Estimating all variables with MAP

We propose here to estimate the parameters θ1:T , φ, σ by maximizing log p(θ1:T , φ|D, σ). Since we
are interested in the case when T →∞, we assign a flat prior to the parameter φ without affecting the
conclusion at the asymptotic case. Maximizing this quantity is equivalent (up to an additive constant)
to maximizing the function

`MAP(θ1:T , φ, σ) = −T
2

log σ2 − 1

2

T∑
t=1

(θt − φ)2

σ2
− 1

2

T∑
t=1

N∑
i=1

(xt,n − θt)2 . (6)

Proposition 1 (Non-existence of the joint MAP estimate of (θt, φ, σ)). `MAP does not have a global
maximum and diverges to +∞ as σ → 0+, ∀φ ∈ R so that φ = θt,∀t = 1 . . . T .

The proof follows directly from the definition of the joint.

Proposition 2 (Consistency of MAP estimate of φ). For any σ > 0, estimate φ̂ at the joint MAP
value of (φ, θ1:T) is the sample mean across all tasks

φ̂ = x̄ ∼ N
(
x̄|φTrue,

1

T

(
σ2

True +
1

N

))
→ δ[φ̂ = φTrue], as T →∞

where x̄ := 1
T

∑
t x̄t := 1

NT

∑
n,t xn,t, and δ denotes a delta distribution.

Proof of Proposition 2. We set all the partial derivatives of Eq. (6) with respect to φ and θt to zero.
The equation ∂φ`MAP = 0 gives

φ̂ =
1

T

T∑
t=1

θt. (7)

The equation ∂θt`MAP = 0 gives

θ̂t =

∑N
n=1 xt,n + φ/σ2

N + 1/σ2
. (8)

Now by summing Eq. (8) over t = 1, ..., T and using Eq. (7) then for any σ > 0 we obtain

φ̂ =
1

NT

T∑
t=1

N∑
n=1

xt,n := x̄ ∼ N
(
φTrue,

1√
T

(σ2
True +

1

N
)

)
. (9)

Therefore, the MAP estimate of φ is an unbiased and consistent estimate of the ground truth value as
T →∞ for any σ > 0.

Proposition 3 (Estimation of σ by gradient ascent). Let φ and θ1:T be at the MAP as a function of σ,

and denote the sample variance of x̄t across tasks with S =
∑T

t=1(x̄t−x̄)2

T . Maximizing the objective
`MAP(θ1:T (σ), φ(σ), σ) with respect to σ by gradient ascent will diverge at σ → 0+ if either of the
following two conditions is satisfied

8

1. S < 4
N ,

2. σ2 is initialized within
(

0, 1
2

(
S − 2

N −
√
S(S − 4

N)
))

.

Otherwise, it converges to a local maximum σ̂2 = 1
2

(
S − 2

N +
√
S(S − 4

N)
)

.

Corollary 1. As the number of training tasks T →∞, condition 1 is equivalent to

σ2
True <

3

N

and the initialization boundary of σ2 in condition 2 converges to

1

2

(
σ2

True −
1

N
−
√

(σ2
True +

1

N
)(σ2

True −
3

N
)

)
,

beyond which the σ2 estimate converges at

σ̂2 =
1

2

(
σ2

True −
1

N
+

√
(σ2

True +
1

N
)(σ2

True −
3

N
)

)
. (10)

Proof of Proposition 3 and Corollary 1. Plugging Eq. (9) into Eq. (8), we have

θ̂t − φ̂ =
x̄t − x̄

1 + 1
Nσ2

. (11)

Setting the partial derivatives of Eq. (6) ∂σ2`MAP = 0 gives

σ̂2 =

∑T
t=1(θt − φ)2

T
. (12)

Now by plugging Eq. (11) into this expression, we have

σ̂2 =

∑T
t=1(x̄t − x̄)2

T (1 + 1
Nσ̂2)2

. (13)

Hence we have a quadratic equation in σ2 which is given by

σ̂4 + (2/N − S)σ̂2 + 1/N2 = 0, (14)

where S =
∑T

t=1(x̄t−x̄)2

T ∼ σ2
True+ 1

N

T χ2
T−1 with χ2

T−1 being a standard Chi-squared random variable
with a degree of freedom T − 1.

Positive roots of Eq. (14) exist if and only if

S ≥ 4

N
. (15)

When T →∞, S → σ2
True + 1

N , the condition above approaches

σ2
True ≥

3

N
. (16)

When the condition (15) or (16) does not hold, no stationary point exists and gradient ascent from
any initialization will diverges toward σ̂2 → 0+. Figs. 4a and 4c illustrate the log-posterior and its
gradient in that case.

When the condition above is satisfied, there exist two (or one when the equality holds) roots at:

σ2
root =

1

2

(
S − 2

N
±
√
S(S − 4

N
)

)
, (17)

9

(a) L(σ2) when stationary points do not exist. (b) L(σ2) when stationary points exist.

(c) ∂σ2L when stationary points do not exist. (d) ∂σ2L when stationary points exist.

Figure 4: Example of the joint log-likelihood (up to a constant) and its gradient wrt σ2

that is asymptotically

σ2
root =

1

2

(
σ2

True −
1

N
±
√

(σ2
True +

1

N
)(σ2

True −
3

N
)

)
, T →∞. (18)

By checking the sign of the gradient ∂σ2`MAP and plugging in Eq. (11), we can find that the left
root is a local minimum and the right root is a local maximum. So if one follows gradient ascent to
estimate σ2, the optimization will diverge toward 0 when σ2 is initialized below the left root, and
converge to the second root otherwise. Figs. 4b and 4d illustrate the log-posterior `MAP as a function
of σ2 and its gradient when φ and θt are at their stationary point and condition 1 is satisfied.

B.2 Estimating σ with predictive log-likelihood

Here we consider updating φ and θ1:T following the same MAP estimate as above, but estimate
σ with the approximate gradient of the log-posterior (Eq. (4)) on a set of independently sampled
validation data y1:T where yt,n ∼ N (x; θt, 1),∀t = 1, . . . , T, n = 1, . . . ,K.

Proposition 4. Following the updating rules Eqs. (2) and (4), as T →∞ the stationary point of φ
and σ exists and satisfies

φ̂ = φTrue, σ̂2 = σ2
True.

Proof. Following Eq. (4), the approximate gradient of the validation log-likelihood wrt log σ2 is

∂`PLL(σ2)

∂ log σ2
≈
∑
t

∂

∂θt
log p (yt|θt) (θt − φ)

= −K
∑
t

(θt − ȳt)(θt − φ) := g. (19)

10

By plugging the conditions at a stationary point Eqs. (8) and (9) we have

g = − KT

(1 + 1
Nσ2)2

1

T

∑
t

(
x̄t − ȳt +

1

Nσ2
(x̄− ȳt)

)
(x̄t − x̄) (20)

Following the generating process of xt and yt, conditioned on φ and σ, the joint distribution of x̄t
and ȳt with θt marginalized out is jointly normal and satisfies

[x̄t, ȳt]
T ∼ N

(
φ12,

[
σ2

True + 1
N σ2

True

σ2
True σ2

True + 1
K

])
, (21)

and x̄ is the sample average of T conditionally independent random variables x̄1:T .

At the limit of T →∞, by expanding the product in Eq. (20) and taking the average of various terms
with their expectations, we have

g
a.s.−→ m

N(1 + 1
Nσ2)2

(
σ2

True

σ2
− 1

)
. (22)

We can find that at this limit, the update of log σ2 will converge to the true value σ̂ = σTrue.

C Derivation of the approximate gradient of predictive log-likelihood

Lemma 1. (Implicit differentiation) Let ŷ(x) be the stationary point of function f(x,y), that is,
∂f(x,y)
∂y |y=ŷ(x) = 0,∀x then the gradient of ŷ can be computed as

∂

∂x
ŷ(x) = −

(
∂2f

∂y2

)−1
∂2f

∂y∂x
. (23)

By applying the chain rule, the derivative of the predictive log-likelihood Eq. (3) is given by

∂`PLL(σ)

∂ log σ2
m

=

(
T∑
t=1

∂

∂θ̂t
log p

(
Dval
t |θ̂t

) ∂θ̂t(σ−2)

∂σ−2
m

)
∂σ−2

m

∂ log σ2
m

. (24)

To compute the derivative of θ̂t(σ), denote the set of all the model parameters we take MAP estimate
of as Θ = [φ,θ1,θ2, . . . ,θT], and apply Lemma 1 to the log-posterior on the training subset in
Eq. (2), `MAP(Θ|σ−2). We have

∂θ̂t(σ
−2)

∂σ−2
= −

(
∂2`MAP

∂Θ2

)−1

t,·

∂2`MAP

∂Θ∂σ−2
, (25)

where At,· denotes the t’s block row of the matrix A. We assume a normal distribution for the prior
of φ, p(φ) = N (φ|0, δ2I) and then the second order derivatives are given as

∂2`MAP

∂Θ2 =


−∆−1 − TΣ−1 Σ−1 . . . Σ−1

Σ−1 −H1 −Σ−1 . . . 0
...

...
.

Σ−1 0 . . . −HT −Σ−1

 , (26)

∂2`MAP

∂Θ∂σ−2
=

[
Diagm

(∑
t

(θm,t − φm)

)
,Diagm (φm − θm,1) , . . . ,Diagm (φm − θm,T)

]T
,

(27)

where ∆ = Diagm(δ2
mIDm), Σ = Diagm(σ2

mIDm), Ht = − ∂2

∂θ2
t

log p(Dtrain
t |θt) is the negative

Hessian matrix of task t’s training log-likelihood, Diagm(Am) denotes an operator to convert a list
of matrices (A1, . . . ,AM) with index m to a block diagonal matrix with m’s diagonal element being
Am, Id denotes an identity matrix of dimension d and Dm is the dimension of m’s module.

11

It is impractical to invert the Hessian matrix except for a simple model with a few tasks. We first
make a block diagonal approximation

∂2`MAP

∂Θ2 ≈ −Diag
(
∆−1 + TΣ−1,H1 + Σ−1, . . . ,HT + Σ−1

)
(28)

and plug that into Eq. (25), and further into Eq. (4)

∂`PLL(σ)

∂ log σ2
m

≈ σ−2
m

∑
t

∂

∂θt
log p

(
Dval
t |θ̂t(σ−2)

) (
Ht + Σ−1

)−1

·,m (θm,t − φm),

where (A)−1
·,m denotes the m-th column of the inverse matrix of A. Unfortunately, the Hessian matrix

Ht of log p(Dtrain
t |θt) is still expensive to compute. We can either take a diagonal approximation

∂`PLL(σ)

∂ log σ2
m

≈ σ−2
m

∑
t

∂

∂θm,t
log p

(
Dval
m,t|θ̂t(σ−2)

)(
diag

(
(Ht)m,m + σ−2

m I
)−1

(θm,t − φm)
)
,

(29)

where diag(A) is the diagonal matrix of A, or if the prior influence from σ is a lot stronger than the
task observation, i.e., σ−2

m � − ∂2

∂
(
θ
(d)
m,t

)2 log p(Dtrain
t |θt),∀d,m, t, we can ignore the second order

derivative and further simplify as

∂`PLL(σ)

∂ log σ2
m

≈
∑
t

(θm,t − φm)T
∂

∂θm,t
log p

(
Dval
m,t|θ̂t(σ−2)

)
. (30)

D Additional experiment details

We evaluate our proposed method Shrinkage, along with variants of MAML [1] and Reptile [2] on
two synthetic few-shot meta-learning domains.

Recall from the main paper that the parameters φ and σ are fixed but unknown and different modules
have different shrinkage parameters, σm. We use Ik, 1k and 0k to denote the k × k identity matrix
and the length-k vector of 1s and 0, respectively. We sample

θm,t ∼ N (θm,t|φm, σ2
mIDm)

and

xt,n ∼ N (xt,n|µt(θt),Ξ)

for each module m, task t, and n. The data distribution’s mean is a function of θ and varies across
experiments. The observation noise variance Ξ = diag(ξ2) = diag(ξ2

1 , . . . , ξ
2
D) is a fixed and known

diagonal matrix with dimensions d ∈ {1, . . . , D}. The problem in each domain is to learn the
parameters θt̃ of a new task Tt̃ given a few observations {xt̃,n}, where N train

t = N val
t for all tasks.

The main difference between the two evaluation domains is that µt is a linear function of θt in the
first and is non-linear in the second.

Experiment 1: Linear transformation

Experiment 1 defines a simple, modular model in which the final observation dimension is the sum
of the θm terms, in order to create a valley in the optimization landscape. We use the following
parameters:

M =8,

D =9,

φ =1M ,

σ =[8, 8, 8, 8, 2, 2, 2, 2],

ξ =[8, 8, 8, 8, 5, 5, 5, 5, 1],

with transformation

µt(θt) = [IM , 1M/
√
M]>θt.

12

The two true modules are thus θ1:4 and θ5:8 but, in this experiment, we do not give the module
structure to the algorithms, which treat each dimension as a separate module. This allows us to
evaluate how well the algorithms can identify the module structure from data. The mean of the
observations is thus θ in the first M dimensions and

∑
m
θm/
√
M in the final dimension. However,

because ξ is small in the final dimension (i.e., ξM is small), the posterior of θ is restricted to a small
subspace near the

∑
m θm hyperplane. Gradient descent thus converges slowly regardless of the

number of observations.

0 50 100 150 200

2

4

6

Av
er

ag
e

|
m

m
,T

ru
e| MAML

0 50 100 150 200

2

4

6 M-MAML

0 50 100 150 200
Task adaptation steps

2

4

6

Av
er

ag
e

|
m

m
,T

ru
e| Shrinkage

0 50 100 150 200
Task adaptation steps

2

4

6 M-Shrinkage

Figure 5: The absolute error for the linear transformation experiment between the estimated value of
each parameter θ̂m and its true value versus the number of adaptation steps at meta-test time. Curves
show the average behavior over 1000 test tasks. Each curve corresponds to one parameter dimension.

Fig. 5 shows the task adaptation behavior of each θm during meta-test for MAML, M-MAML,
Shrinkage, and M-Shrinkage. The two-module structure is apparent in each subfigure, as dimensions
with higher variance have higher average error. In MAML, the dimensions in each module reach their
respective minima at different times, indicating that some dimensions are overfit while others remain
underfit. Similarly, Shrinkage with a single σ is unable to properly fit each dimension, as some
still overfit while others underfit. M-MAML solves MAML’s adaptation-timing issues by learning
step-sizes for each module so that each dimension begins to overfit at the same time; however,
overfitting still occurs after this point. Finally, M-Shrinkage learns a separate σm for each module,
allowing each dimension to be fit without overfitting.

Experiment 2: Nonlinear transformation

Experiment 2 defines a more realistic optimization scenario for meta-learning, where the data is
generated by a nonlinear transformation of the task parameters. Specifically,

M =10,

D =10,

σ =[4, 4, 4, 4, 4, 4, 4, 4, 8, 8],

φ =2 · 1M ,
ξ =10 · 1D.

The true modules are θ1:8 and θ9:10. The transformation µt(θt) is a “swirl” effect that rotates
non-overlapping pairs of consecutive parameters with an angle proportional to their L2 distance from
the origin. Specifically, each consecutive non-overlapping pair (µt,d, µt,d+1) is defined as[

µt,d
µt,d+1

]
= Rot

(
ω
√
θ2
t,d + θ2

t,d+1

)
·
[
θt,d
θt,d+1

]
, for d = 1, 3, ...,M − 1,

13

where

Rot(ϕ) =

[
cosϕ − sinϕ
sinϕ cosϕ

]
, (31)

and ω = π/5 is the angular velocity of the rotation. This is a nonlinear volume-preserving mapping that
forms a spiral in the observation space. Fig. 3b shows an example of this transform in 2-dimensions
when applied to a Gaussian.

Results using MAP estimator for σ

Fig. 6a and Fig. 6b show the test adaptation results from Experiments 1 and 2 for variants of our
Shrinkage method. Specifically, these include results using the MAP estimator of σ (M-Shrinkage
MAP) in place of the predictive likelihood (M-Shrinkage). In the first experiment, M-Shrinkage
MAP simply underperforms the predictive likelihood. However, in the second experiment, the MAP
estimate is extremely unstable and the learned value causes adaptation to diverge. These results
provide empirical evidence for the failure of MAP estimation for σ detailed in Appendix B.1.

0 50 100 150 200
Task adaptation steps

5.0

5.2

5.4

5.6

5.8

6.0

M
e
ta

-t
e
st

in
g
 g

e
n
e
ra

liz
a
ti

o
n
 l
o
ss Shrinkage

M-Shrinkage

M-Shrinkage MAP

(a) Experiment 1: Linear transform

0 200 400 600 800 1000
Task adaptation steps

6

8

10

12

14

16

18

20

M
e
ta

-t
e
st

in
g
 g

e
n
e
ra

liz
a
ti

o
n
 l
o
ss

(b) Experiment 2: Nonlinear spiral transform

Figure 6: Mean and 68% credible interval of the generalization loss as a function of the number of
adaptation steps for experiments 1 and 2.

Results comparing MAML with FOMAML

Fig. 7a and Fig. 7b show the test adaptation results from Experiments 1 and 2 for variants of MAML.
To try to avoid the instabilities of MAML at large numbers of adaptation steps, we also evaluated
its first-order variant, shown as FO-MAML, and a modular variant of first-order MAML (FO-M-
MAML). Like our implementations of MAML and M-MAML, FO-MAML learns a single learning
rate, and FO-M-MAML learns a learning rate per module. These are more stable during training but
performance degrades after 65 inner loop steps. We suspect that this is because first-order MAML
ignores the second derivative term and, after many adaptation steps, the direction of its gradient
update for φ becomes uncorrelated with the correct update direction. As such, the performance of
MAML and first-order MAML are similar.

14

0 50 100 150 200
Task adaptation steps

5.0

5.2

5.4

5.6

5.8

6.0

M
e
ta

-t
e
st

in
g
 g

e
n
e
ra

liz
a
ti

o
n
 l
o
ss MAML

M-MAML

FO-MAML

FO-M-MAML

(a) Experiment 1: Linear transform

0 200 400 600 800 1000
Task adaptation steps

5.7

5.8

5.9

6.0

6.1

M
e
ta

-t
e
st

in
g
 g

e
n
e
ra

liz
a
ti

o
n
 l
o
ss

(b) Experiment 2: Nonlinear spiral transform

Figure 7: Mean and 68% credible interval of the generalization loss as a function of the number of
adaptation steps for experiments 1 and 2.

15

	Introduction
	Hierarchical Bayes formulation of modular meta-learning
	Learning strategy
	Experimental evaluation
	Conclusions
	Related work
	A simple Gaussian example
	Estimating all variables with MAP
	Estimating with predictive log-likelihood

	Derivation of the approximate gradient of predictive log-likelihood
	Additional experiment details

