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Abstract

Discovering and exploiting the causal structure in the environment is a crucial chal-
lenge for intelligent agents. However, it is not understood how such reasoning comes
about, even in natural intelligence. Here, we investigate the emergence of causal rea-
soning and intervention strategies from simpler reinforcement learning algorithms
using a meta-reinforcement learning framework. We find that, after training on dis-
tributions of environments having causal structure, meta-learning agents learn to per-
form a form of causal reasoning in related, held-out tasks. In particular, we find that
the form of causal reasoning learned relates to the information encountered during
learning, ranging from causal inference from observations, to resolving confounders,
selecting informative interventions, and making counterfactual predictions. Empir-
ical findings in human behavioral research suggest promising connections between
our model and the development and implementation of causal reasoning in humans.

1 Introduction

Empirical work in human developmental research suggests that humans’ ability to perform causal
reasoning emerges through experiences in the world rather than from an innate theory of causality
[3,14, 1211 130]. The question then arises of what learning mechanisms allow humans to acquire this
ability through experience. In this work, we demonstrate how causal reasoning can arise in agents
via meta-learning over tasks that contain causal structure. In particular, we use a “meta-reinforcement
learning” framework [16} 34]] that enables performing inferventions in the environment, an essential
ingredient for causal reasoning. This methodology has previously been shown to give rise to complex
policies that exploit structure in the task distribution [[23}29]134}135]].

A hallmark of learning to reason about cause and effect from experience is that the (causal) inference al-
gorithm learned should reflect the structure of the environment. If normative causal reasoning provides
an advantage, and is possible given the data and the structure of the environment, then an agent should
be able to learn it. However, certain other experiences might lead to different algorithms that vary on
the spectrum of how “causally-aware” they are. Graded-ness of causal inference is observed in adult
humans, with humans showing characteristic deviations from normative inference, often tending toward
associative reasoning [[7, 18,127, 128]], with causal notions varying significantly with domain and function
[L7,119]. Learning causality from experience, as in our framework, offers a possible explanation — differ-
ent experiences potentially support different kinds and extents of causal reasoning. In this paper, we test
these predictions in 5 experiments. We see that architecturally identical agents can learn different strate-
gies for reasoning about causal structure depending on the kinds of experiences gathered during training.
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Finally, formal approaches to causal identification (determining the causal graph from data) often
require large amounts of data [9, 31 133]], and inference in the constructed causal graphs is also
computationally expensive [16]. In real-world environments, humans operate under time, data, and
resource constraints, dealing with uncertainty in model structure as well as non-stationarity. Agents
that learn aspects of the learning algorithm directly from experience will adapt to statistical structure
in their specific environment and task, and could utilize useful abstract priors (or inductive biases)
from other episodes that can be difficult to formally specify. Such adaptations amortize much of the
computation over previous experience and could allow better performance than formal approaches
under ecological constraints [e.g.[5, 10, [111[18L132].

The purpose of this work is not to propose a new algorithmic solution to causal inference per se. Rather,
we argue that our meta-learning approach has compelling links to human causal reasoning in terms
of a) how a theory of causality could be learned, b) the graded notion of causality in humans, and c)
resource efficiency by meta-learning inductive biases. Such resource efficient causal inference is also
useful for machine learning [e.g.|1, 113,120} 221124]] (see also supplementary material).

2 Task Setup

In our experiments, we use a simple framework that shares key properties with human causal reasoning.
First, the number of variables over which inference is carried out is small. Second, the amount of
data available (in each task) is limited. Third, agents can actively seek out information by interacting
with the environment rather than only receiving passive input. In each episode the agent interacts
with a different Causal Bayesian Network (CBN) G with N =5 variables. The structure of G is drawn
randomly with some constraints. Each episode consists of T'= 5 steps (i.e. very limited interaction
within each task), which are divided into two phases: an information phase and a quiz phase.

The information phase corresponds to the first 7'— 1 steps during which the agent performs information-
gathering actions and sees node values sampled from G (one node is hidden to allow for unobserved
confounders). Note that G is never directly provided to the agent, but is only observed through 7'—1
samples. An example information phase action is choosing a node to intervene upon, and observing the
resulting values of other nodes. Agents have to perform two distinct tasks during the information phase:
a) choose information gathering actions, and b) process the resulting data to allow downstream causal
reasoning (in quiz phase, see below). To better understand (a), we include a random condition (as
opposed to an active condition) where the environment ignores the agents information phase actions
and randomly chooses information gathering actions. To better understand (b), different agents have
access to different kinds of data for the same information phase action (as detailed in the experiments
below). All the agents in the different experiments are architecturally identical, and give rise to different
behavior solely due to differences in the data they receive in the information phase. The quiz phase,
corresponding to the final step 7', requires the agent to exploit the causal knowledge accumulated
during the information phase, to select the node with the highest value under an external intervention
where a randomly selected node is set to —5. Since the quiz phase requires the agent to predict the
outcome of a previously unseen intervention, consistently good performance in general requires causal
reasoning. The structure of the quiz phase is exactly the same for all agents in all experiments.

We train a recurrent agent (via A3C; see supplementary material for details) on many different such
CBNs. We test on held out CBNs that have not been seen before with learning turned off. The agent
has to implement a causally-aware strategy to learn about the new CBN in an episode and perform
well in the quiz phase. This strategy itself is meta-learned across many previously encountered CBNs.

3 Experiments

Our two experiments differ in the kinds of data the agent receives in response to the same information
phase actions (detailed below), although the quiz phase is the same. Agent performance is measured
as the reward earned in the quiz phase for held-out CBNs, normalized by the maximum possible reward
achievable with exact causal reasoning. Choosing a random node in the quiz phase gives an average
reward of —5/4 = —1.25 since the externally intervened node always has value —5 and the others
have on average 0 value. We train 8 copies of each agent and report the average performance across
1632 test episodes. Error bars indicate 95% confidence intervals.

Observational Response: In the information phase, the actions of the agent are ignored. The agent
always receives the values of the visible nodes sampled from the joint distribution of G. As the default
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Figure 1: Experiment 1. Agents exhibit causal strategies from observational data. a) Average normalized
performance of the agents. b) Performance split by the presence or absence of at least one parent (Parent and
Orphan respectively) on the externally intervened node. ¢) Performance for Active vs Random Conditional agents.
d) Performance for Associative Baseline vs Active Conditional agents, where intervened node has a parent.

T =5 episode length can prove quite challenging, we also train an agent with 4 x longer episode length
(Long Observational) to measure performance with access to more data.

Conditional Response: This provides more informative observations. Specifically, the agent’s
information phase actions correspond to observing a world in which the selected node X is set to
a high value (5) outside the likely range of normal observations, and the remaining nodes are sampled
from the conditional distribution p(X1.n\ ;| X; =5). We run active and random versions.

Interventional Response: The information phase actions correspond to setting the selected
node X to a high value (5) and sampling the remaining nodes from the intervened distribution
P x,;=5(X1:5\i|X; =5) (see Supplementary material). We run active and random versions.

An intuitive example for how these environmental responses differ is the following: when gauging
whether smoking causes cancer, the different kinds of responses differ in the data they provide. The
observational response provides a uniformly random set of people, and their smoking behavior, and
cancer rates; the conditional response selectively provides “informative samples” in the form of people
who either never smoke or smoke a lot along with corresponding cancer rates; and the interventional
response reports the results of a randomized controlled trial in which people were assigned at random to
smoke or not. Note that the causal inferences in our task are over more nodes, and the conditional and in-
terventional responses also require specification of the node on which to condition or intervene. Various
kinds of causal inferences can be made from these different kinds of data [25]]. Significant causal reason-
ing beyond correlations is possible from passive observations alone (studied in Experiment 1). However,
in the presence of hidden confounders, interventions might be required (studied in Experiment 2).

3.1 Experiment 1: Observational Environments

In Experiment 1, the agents are in environments that do not permit any interventions during the
information phase (only observational and conditional responses). We show that, even under these
restrictions, agents are able to demonstrate behavior consistent with learning about cause and effect
to some extent. To demonstrate this, we compare agents’ performance with that of an “Associative
Baseline”. This baseline acts solely on correlational information, i.e. it chooses the node that has the
maximum value as per the exact p(X ;| X; = —5), with X the node externally intervened upon. We also
study the kind of causal inference learned, and the role of actively choosing information phase actions.

Results: We find that when given access to informative observations, our agents learn to perform causal
reasoning from observational data — the agent receiving Active-Conditional responses significantly
outperforms the Associative Baseline (Fig.[Ta). To further demonstrate that this improvement is due
to causal reasoning, we partition the test cases by whether or not the node that was intervened on in
the quiz phase has a parent (Fig. Eb). If the intervened node X ; has no parents, then G is the same
as the CBN in which X; has been intervened upon, G_, X;» and causal reasoning affords no advantage
over associative reasoning. Indeed, the Active-Conditional agent performs better than the Associative
Baseline only when the intervened node has parents (Fig. [Ib). Agents that receive unconditional
observations, i.e. Observational responses (Fig. [Ia) perform worse than with Active-Conditional
responses, as expected since these provide less diagnostic information. However, they still perform
better than the random action baseline and the same agent learns to utilize more data (Long-Obs.)
to yield better performance. We find that the Active-Conditional agent’s performance is slightly but
significantly (p=0.003, Fig.[Ik) higher than the Random-Conditional agent. This indicates that when
permitted, the agent learns to select actions that provide informative observations.

The Active-Conditional agent however does not utilize full causal reasoning (= 1.0 performance on our
scale). From Fig.[Tp, we see that this drop is driven mostly by test cases where the intervened node has a
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Figure 2: Experiment 2. Agents exhibit causal strategies from interventional data. a) Average normalized
performance of the agents. b) Performance split by the presence or absence of unobserved confounders (abbreviated
as Conf. and Unconf.). c) Performance of active vs passive interventional agents.

parent. We hypothesize that this is due to the presence of unobserved confounders. We consider the test
cases where the externally intervened node has parents and partition into confounded parent(s) or uncon-
founded parent(s) (Fig.[Td). We see that the performance of the Active-Conditional agent is significantly
higher than the associative baseline only in cases where the parent is unconfounded. In confounded
cases, it is not in general possible to do causal inference with access to only observational data. In the
next experiment, we discuss the performance of our agents in an environment that permits interventions.

3.2 Experiment 2: Interventional Environments

In this experiment, we test if agents can learn to perform causal inference from interventions by allowing
interventional responses to information phase actions. In particular, we are interested in performance
in the presence of unobserved confounders. We test both active and random versions of the agent.

Results: We see in Fig.[2a that the agent with access to Active-Interventional responses from the en-
vironment performs better than the Active-Conditional agent, achieving close to optimal performance.
This shows that when given access to interventions, the agent learns to leverage them to perform
causal reasoning. Partitioning the test cases by whether the externally intervened node has unobserved
confounders (Fig.[2b), we see that the Active-Interventional agent performs close to optimal on both
confounded and unconfounded test cases. Further, we find that the Active-Interventional agent learns
to strategically control the interventions performed and choose highly informative interventions: its
performance is significantly better than the Random-Interventional agent and almost at ceiling (Fig.2k).

Even restricted to inference in the absence of confounders however, the performance of the
Active-Conditional agent is not as high as the performance of the Interventional Agent — even though
such inferences are in theory within reach of the conditional agent. This could be an example of
the agent utilizing unspecified statistical information — in our framework, the final quiz phase node
values are the negative (with noise) of the values observed, if the quiz phase node is intervened on
in the information phase. Given interventional responses observed in information phase therefore,
it is relatively easy to predict the effects of the random external intervention in quiz phase (see
supplementary material for more complex cases). But with access to only conditional observations,
one has to remember and integrate information across several values observed in information phase to
correctly predict the result of the external intervention in the quiz phase. When utilizing such structure,
interventions are easier to learn from as also observed in humans [8}[7].

4 Discussion

Mirroring the criteria for valuable links to human causal reasoning outlined in the introduction,
we show that a) causal reasoning capabilities can be learned via meta-learning through interaction
with an environment that rewards and permits causal reasoning, and b) graded kinds and extents of
causal reasoning can arise depending on the data we have access to. We find that depending on the
environment, our agents learn to: 1) leverage observational data to make causal inferences, 2) leverage
interventions to resolve unobserved confounders, and 3) actively generate informative data. In the
supplementary, we showcase our agents performing counterfactual reasoning. And finally, c) even
in this simple domain, we observe evidence of unspecified, non-trivial underlying statistical structure
in the environment, as well as preliminary evidence that our agents utilize it to amortize and simplify
inferences. Other work on statistical approaches to learning causal structure [1} 15} [14], as well as
methods from neuroscience [35]], could provide further insights into what our agents learn.

A crucial contribution of our work is to consider causal reasoning in natural intelligence not an end
in and of itself but a means to better performance on some downstream task that is easier to specify, in



a world that contains causal structure. In our case this task is acquiring reward in an RL task, but could
be generalized to any other task by simply changing the meta-learning objective. This is a reasonable
assumption since causal reasoning exists in humans, and even chimpanzees and rats [2} 12} 26] without
“formal instruction” on causality itself. This assumption allows us to frame the acquisition of causal
reasoning as a meta-learning problem, and we highlight how this approach could also capture many
qualitative empirical findings in how causal reasoning is learned and implemented in humans.
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Supplementary
to Meta-reinforcement learning of causal strategies

1 Related Work

Goodman et al. [13] demonstrated how an abstract notion of causality in humans can be learned from
experience, with hierarchical Bayesian inference. Our approach is similar to this as meta-learning
can also be framed as hierarchical Bayesian inference [14]. However, these approaches provide
complementary advantages. While formal theory learning (as in [13]]) is systematic and generalizes
across domains, it requires the pre-specification of discrete primitives and an expensive zero order
(stochastic search) optimization to learn the correct theory built from these primitives [S, 28]. A
restrictive choice of primitives limits the space of possible theories, while a generous choice makes
the optimization very expensive. This approach also leaves open the question of the origin of these
discrete primitives and how they might be plausibly implemented in the brain. Our method avoids these
assumptions and instead uses a first order (gradient-based) optimization method that leverages learning
signals from the environment, thus discovering emergent structure directly from experience [[19]. Since
our model is implemented with a deep neural network, which can be universal approximators [[17,29],
it can implement different graded causal theories that don’t conform to purely normative accounts, in a
neurally-plausible distributed representation. This could give rise to graded causal reasoning behaviors
analogous to those seen in humans [10}[11}125/126] .

Bengio et al [3] propose a meta-learning approach to utilize explicit, pre-specified statistical properties
of interventions to isolate and disentangle causal variables in a supervised learning setting. Our
work shows how a spectrum of ‘causally-aware algorithms’ can arise from utilizing several different
kinds of implicit, unspecified statistical structure in the environment. Our reinforcement learning
approach further allows the agent to directly interact with the environment to also simultaneously
learn an experimental policy that utilizes this underlying structure. Denil et al [8] showed that deep
reinforcement learning agents can learn to perform actions to gain knowledge about latent, physical
properties of objects, but do not explore explicit causal inference.

2 Problem Specification

Our goal is to demonstrate that causal reasoning can arise from meta-reinforcement learning. Further,
we demonstrate that depending on the kinds of data the agents see during training, the kind of causal
reasoning learned varies. Our agents learn to leverage statistical structure in different kinds of available
information, to carry out different kinds of causal reasoning. In this section, we first briefly formalize
causal inference and how it depends on the kinds of data the environment provides.

Causal relationships among random variables can be expressed using causal Bayesian networks
(CBNs G) [7, 123, 130]. Each node X; corresponds to a random variable, and the joint distribution
p(X1,...,Xn) is given by the product of conditional distributions of each node X; given its parent

nodes pa(X;),i.e. p(X1.n) :Hfilp(Xi|pa(Xi)).

The edges of G encode causal semantics: a directed path from X, (cause) to X, (effect) is called a
causal path. The causal effect of X, on X, is the conditional distribution of X, given X, restricted
to only causal paths. This restriction is an essential caveat, since the simple conditional distribution
p(Xe|X.) encodes only correlations (i.e. associative reasoning). Intervening on a node X . corresponds
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to removing its connection to its parent nodes pa(X.), and fixing it to some value C yielding a new
CBN G_, x,=c. The causal effect of X, on X, is given by the conditional distribution in this new CBN.
This distribution is denoted as p_, x,—c (X¢| X.=C).

Different kinds of environments support different kinds of causal reasoning. It is often possible to
compute p_, x,—c(X|X.=C) (i.e. causal reasoning) using observations from We investigate
this kind of causal reasoning in Experiment 1 (Observational Environments). However, in the presence
of unobserved confounders (an unobserved variable that affects both X . and X.), this is, in general , no
longer possible [23]]. The only way to compute causal effects p_, x,—c (X¢|X.=C) in this case is by
collecting observations directly from the intervened graph G_, x,—c. In Experiment 2 (Interventional
Environments), we investigate this kind of causal reasoning, by allowing agent to perform interventions
on the environment. An additional level of sophistication comes from counterfactual environments
(see section[7.1|for results).

3 Extended Methods

Causal Graphs, Observations, and Actions

We generate graphs that have N =5 nodes and sample the adjacency matrix to have non-zero entries
only in its upper triangular part (this guarantees that all the graphs obtained are acyclic). Edge weights
w;; are uniformly sampled from {—1,0,1}. This yields 3V (N ~=1)/2 = 59049 unique graphs. These
can be divided into equivalence classes, i.e. sets of graphs that are structurally identical but differ in
the permutation order of the node labels. Our held-out test set consists of 12 random graphs plus all
other graphs in the corresponding equivalence classes, yielding 408 total graphs in the test set. Each
of these are tested with 4 possible external interventions giving a total of 1632 test episode. Thus,
none of the graphs in the test set (or any graphs equivalent to these) have been seen during training.

We sample each node, X; € R, as a Gaussian random variable. The distribution of parentless nodes
is N (1 =0.0,0 =0.1), while for a node X; with parents pa(X;) we use the conditional distribution
p(Xilpa(X;)) =N (u=>,w;; X;,0=0.1) with X; € pa(X;). We also tested graphs with non-linear
causal effects and larger graphs of size N = 6 (see Section[7.3).

A root node of G is always hidden, to allow for unobserved confounders, and the agent can therefore
only ever see the values of the other 4 nodes. These 4 nodes are henceforth referred to as the ‘visible
nodes’. The concatenated values of the nodes, v;, and a one-hot vector indicating the external
intervention during the quiz phase, m,, (explained below) form the observation vector provided to
the agent at step ¢, 0; = [vs,m]

In both phases, at each step ¢, the agent chooses to take one out of 2(/N —1) actions. The first N —1 ac-
tions are information actions, and the second [NV —1 actions are quiz actions. Both information and quiz
actions are associated with selecting the NV — 1 visible nodes, but can only be legally used in the appropri-
ate phase of the task. If used in the wrong phase, a penalty is applied and the action produces no effect.

Information Phase. The information phase differs depending on the kind of environment the agent
is in — observational or interventional. Here, we discuss the case of the interventional environment.

An information action a, =+ causes an intervention on the i-th node, setting the value of X,, =X, =5
(the value 5 is outside the likely range of sampled observations and thus facilitates learning the
causal graph). The node values v; are then obtained by sampling from p_, x,—5(X1.5\;| X; =5) (where
X1.n\q indicates the set of all nodes except X;), i.e. from the intervened CBN G, x,, —5. Ifaquizaction
is chosen during the information phase, it is ignored, i.e. the node values are sampled from G as if no
intervention has been made. Furthermore, the agent is given a penalty of r, = —10 in order to encourage
it to take quiz actions during the quiz phase. There is no other reward during the information phase.

The default length an episode is fixed to be 7' = N = 5, giving an information phase of length of
T —1=4. This episode length was chosen because in the noise-free limit, a minimum of N —1=4
interventions, one on each visible node, is required in general to resolve the causal structure.

"When the CBN G is known, this process can be formalized as do-calculus [231124]). In our case the CBN is not
directly provided, and the agent must simultaneously perform causal identification using samples from G [15].

2’Observation’ o; refers to the reinforcement learning term, i.e. the input from the environment to the agent.
This is distinct from observations in the causal sense which we refer to as observational data.



Quiz Phase. The quiz phase remains the same for all the different environments and agents. In the quiz
phase, one visible node X is selected at random to be intervened on by the environment. Its value is
set to —5. We chose —5 to disallow the agent from memorizing the results of interventions in the infor-
mation phase (which are fixed to +5) in order to perform well on the quiz phase. The agent is informed
which node received this external intervention via the one-hot vector m; as part of the observation from
the the final pre-quiz phase timestep, 7'— 1. For steps ¢ <T'—1, m is the zero vector. The agent’s reward
on this step is the sampled value of the node it selected during the quiz phase. In other words, rr = X; =
Xar—(n—1) if the action selected is a quiz action (otherwise, the agent is given a penalty of r = —10).

Active vs Random Conditions. Our agents have to perform two distinct tasks during the information
phase: a) actively choose which nodes to act on and b) perform casual reasoning based on the
observations. We refer to this setup as the “active” condition. To better understand the role of (a),
we include comparisons with a baseline agent in the “random” condition where the environment
ignores the agents actions and randomly chooses a visible node to intervene upon at each step of the
information phase. Note again that the only difference between agents in these two conditions is the
kind of data the environment provides them.

Two Kinds of Learning. An “inner loop” of learning occurs within each episode where the agent
is learning from the 4 samples it gathers during the information phase to perform well in the quiz phase.
The same agent then enters a new episode, where it has to repeat the task on a different CBN. Test
performance is reported on CBNs that the agent has never previously seen after all the weights of the
RNN have been fixed. Hence, the only transfer from the training to test set (or the “outer loop” of
learning) is a learned procedure for collecting evidence in the information phase to perform well in
the quiz phase. Exactly what this learned procedure is will depend on the training environment. We
will show that this learned procedure can include performing different kinds of causal inference, as
well as active information gathering.

Agent Architecture and Training.

We used a long short-term memory (LSTM) network [16] (with 192 hidden units) that, at each
time-step ¢, receives a concatenated vector containing [o;,a;—1,7:—1,m;] as input, where oy is the
observation, a;_1 is the previous action, 7;_; the previous reward and m; indicates the external
intervention. The outputs, calculated as linear projections of the LSTM’s hidden state, are a set of
policy logits (with dimensionality equal to the number of available actions), plus a scalar baseline.
The policy logits are transformed by a softmax function, and then sampled to give a selected action.

Learning was by asynchronous advantage actor-critic [20]. In this framework, the loss function
consists of three terms — the policy gradient, the baseline cost and an entropy cost. The baseline cost was
weighted by 0.05 relative to the policy gradient cost. The weighting of the entropy cost was annealed
over the course of training from 0.25 to 0. Optimization was via RMSProp with e =107°, momentum
=0.9 and decay = 0.95. Learning rate was annealed from 9 x 10~° to 0, with a discount of 0.93.
Hyperparameters were optimized by performing a coarse grid search (2-4 values) over learning rate,
discount factor, and the number of hidden units in the LSTM. Unless otherwise stated, training was done
for 1 107 steps using batched environments with a batch size of 1024, using a distributed architecture.

In all experiments, the agent is tested with the learning rate set to zero using a held-out test set as
discussed in the main text.

4 Formalism for Memory-based Meta-learning

Meta-learning refers to a broad range of approaches in which aspects of the learning algorithm itself are
learned from the data. Many individual components of deep learning algorithms have been successfully
meta-learned, including the optimizer [[1], initial weight parameters, [12]], a metric space [31], and
use of external memory [27].

Following the approach of [9,|32], the entire inner loop of learning is implemented by a recurrent
neural network (RNN), and we train the weights of the RNN with model-free reinforcement learning
(RL). The RNN is trained on a broad distribution of problems which each require learning. Consider
a distribution D over Markov Decision Processes (MDPs). We train an agent with memory (in our
case an RNN-based agent) on this distribution. In each episode, we sample a task m ~ D. At each
step ¢ within an episode, the agent sees an observation o;, executes an action a,, and receives a reward
r¢. Both a;—1 and r;_ are given as additional inputs to the network. Thus, via the recurrence of the



network, each action is a function of the entire trajectory H; = {0g,a0,70,-..,0¢t—1,0¢—1,7t—1,0¢ } Of
the episode. Because this function is implemented by the neural network, its complexity is limited
only by the size of the network. When trained in this way, the RNN is able to implement a learning
algorithm capable of efficiently solving novel learning problems in or near the training distribution.

Learning the weights of the RNN by model-free RL can be thought of as the “outer loop” of learning.
The outer loop shapes the weights of the RNN into an “inner loop” learning algorithm, which plays
out in the activation dynamics of the RNN and can continue learning even when the weights of
the network are frozen. The inner loop algorithm can also have very different properties from the
outer loop algorithm used to train it. For example, this approach has been used to negotiate the
exploration-exploitation tradeoff in multi-armed bandits [9,32], learn algorithms which dynamically
adjust their own learning rates [32,133]], and perform one-shot learning using external memory [27]. In
the present work we explore the possibility of obtaining a causally-aware inner-loop learning algorithm.

5 Formalism for Causal Inference

5.1 Causal Bayesian Networks

By combining graph theory and probability the-
ory, the causal Bayesian network framework

G/ ING /AN provides us with a graphical tool to formal-
l / A\ l ize and test different levels of causal reason-

X, X, ing. This section introduces the main defini-

tions underlying this framework and explains

(@ (®) how to visually test for statistical independence

Figure 1: (a): Directed acyclic graph. The node X3 (2.4 16, 7118 211122, 231 130].

is a collider on the path X; — X35<— X5 andanon- A graph is a collection of nodes and links con-
collider on the path Xy — X3 — Xj4. (b): Cyclic necting pairs of nodes. The links may be directed
graph obtained from (a) by adding a link from X4  or undirected, giving rise to directed or undi-
to X;. rected graphs respectively.

A path from node X; to node X is a sequence of linked nodes starting at X; and ending at X;. A
directed path is a path whose links are directed and pointing from preceding towards following nodes
in the sequence.

A directed acyclic graph is a directed graph with no directed paths starting and ending at the same
node. For example, the directed graph in Fig.[I(a) is acyclic. The addition of a link from X4 to X,
gives rise to a cyclic graph (Fig.[T(b)).

A node X; with a directed link to X is called parent of X ;. In this case, X is called child of X;.

A node is a collider on a specified path if it has (at least) two parents on that path. Notice that a node
can be a collider on a path and a non-collider on another path. For example, in Fig.[T(a) X is a collider
on the path X; — X3 <— X and a non-collider on the path Xs — X35 — X4.

A node X; is an ancestor of anode X if there exists a directed path from X to X ;. In this case, X is
a descendant of X;.

A graphical model is a graph in which nodes represent random variables and links express statistical
relationships between the variables.

A Bayesian network is a directed acyclic graphical model in which each node X; is associated with
the conditional distribution p(X;|pa(X;)), where pa(X;) indicates the parents of X;. The joint distri-
bution of all nodes in the graph, p(X1.n), is given by the product of all conditional distributions, i.e.

p(X1n) =TT/, p(Xilpa(X;)).

When equipped with causal semantic, namely when describing the process underlying the data genera-
tion, a Bayesian network expresses both causal and statistical relationships among random variables—in
such a case the network is called causal.

Assessing statistical independence in Bayesian networks. Given the sets of random variables X', )
and Z, X and ) are statistically independent given Z if all paths from any element of X to any element
of Y are closed (or blocked). A path is closed if at least one of the following conditions is satisfied:



(i) There is a non-collider on the path which belongs to the conditioning set Z.

(i1) There is a collider on the path such that neither the collider nor any of its descendants belong
to Z.

5.2 An Intuitive Example of Cause-effect Reasoning in a CBN

An example of CBN G is given in Fig.[2h, where
FE represents hours of exercise in a week, H car-
p(4) p(A) diac health, and A age. Random variables are de-

noted by capital letters (e.g., F’) and their values
@A .

by small letters (e.g., ). The causal effect of 2 on
E —>

H is the conditional distribution restricted to the

path £ — H,i.e. excluding the path F«+ A— H.

The variable A is called a confounder, as it con-

p(E|A)  p(H|AE) §(E—e)  p(H|AE) founds the causal effect with non-causal statisti-
@ (b) cal influence.

Simply observing cardiac health conditioning on
Figure 2: (a): A CBN G with a confounder for the  exercise level from p(H|E) (associative reason-
effect of exercise (£) on heath (/) given by age ing) cannot answer if change in exercise levels
(A). (b): Intervened CBN G_, .. cause changes in cardiac health (cause-effect rea-

soning), since there is always the possibility that

correlation between the two is because of the
common confounder of age.

The causal effect of E' = e can be seen as the conditional distribution p_,p—.(H|E = e on the
intervened CBN G_, g, resulting from replacing p(F|A) with a delta distribution § (£ —e) (thereby
removing the link from A to E) and leaving the remaining conditional distributions p(H|E,A) and
p(A) unaltered (Fig.@b). The rules of do-calculus [23]24] tell us how to compute p_, p—.(H|E =€)
using observations from G. In this case p_,p—.(H|E =¢) =) ,p(H|E =e,A)p(A)"| Therefore,
do-calculus enables us to reason in the intervened graph G_, . even if our observations are from G.
This is the kind of causal reasoning possible in our observational data setting.

Such inferences are always possible if the confounders are observed, but in the presence of unobserved
confounders, for many CBN structures the only way to compute causal effects is by collecting
observations directly from the intervened graph, e.g. from G_, g_. by fixing the value of the variable
FE = e and observing the remaining variables—we call this process performing an actual intervention in
the environment. In our interventional data setting the agent has access to such interventions.

5.3 Counterfactual Reasoning

Cause-effect reasoning can be used to correctly answer predictive questions of the type “Does exercising
improve cardiac health?” by accounting for causal structure and confounding. However, it cannot
answer retrospective questions about what would have happened. For example, given an individual ¢
who has died of a heart attack, this method would not be able to answer questions of the type “What
would the cardiac health of this individual have been had she done more exercise?”. This type of
question requires reasoning about a counterfactual world (that did not happen). To do this, we can first
use the observations from the factual world and knowledge about the CBN to get an estimate of the
specific latent randomness in the makeup of individual ¢ (for example information about this specific
patient’s blood pressure and other variables as inferred by her having had a heart attack). Then, we can
use this estimate to compute cardiac health under intervention on exercise. This procedure is called the
Abduction-Action-Prediction Method [24] and is described below.

Assume, for example, the following model for G in Figure2} E=wapA+n, H=wag A+wpg E+e,
where the weights w;; represent the known causal effects in G and € and 7 are terms of (e.g.) Gaussian
noise that represent the latent randomness in the makeup of each individual. These noise variables are

3In the causality literature, this distribution would most often be indicated with p( H |do(E =¢)). We prefer
to use p—, = (H|E = e) to highlight that intervening on F results in changing the original distribution p, by
structurally altering the CBN.

*Notice that conditioning on E =e would instead give p(H|E=¢)=3" ,p(H|E =¢,A)p(A|E=e).



zero in expectation, so without access to their value for an individual we simply use G: F=wg A,
H =wsgA+wgy E to make causal predictions. Suppose that for individual ¢ we observe: A= at,
E =¢€’, H=h'. We can answer the counterfactual question of “What if individual i had done more
exercise, i.e. £ = ¢/, instead?” by: a) Abduction: estimate the individual’s specific makeup with
€ =hi—waga’ —wgpe',b) Action: set E to more exercise €/, ¢) Prediction: predict a new value for
cardiac health as i’ =waga'+wgge +¢-.

6 RL Baselines

We can also compare the performance of these agents to two standard

— model-free RL baselines. The Q-total Agent learns a Q-value for

o gach action across all steps for all the episodes. The Q-episode

Agent learns a Q-value for each action conditioned on the input at

each time step [0¢,a¢—1,7t—1], but with no LSTM memory to store

previous actions and observations. Since the relationship between

action and reward is random between episodes, Q-total was equivalent

.I.dﬂ- i to selecting actions randomly, resulting in a considerably negative

Rewardeamed ' reward (—1.247 4 2.940). The Q-episode agent essentially makes

sure to not choose the arm that is indicated by m; to be the external

] o intervention (which is assured to be equal to —5), and essentially

Figure 3: Reward distribution  chooses randomly otherwise, giving a reward close to 0 (0.080 &
2.077).

Percentage of DAGs

7 Additional Experiments

The purview of the previous experiments was to show a proof of concept on a simple tractable system,
demonstrating that causal induction and inference can be learned and implemented via a meta-learned
agent. In the following, we additionally demonstrate counterfactual reasoning, and scale up our results
to more complex systems in two new experiments.

7.1 Experiment 3: Counterfactual Setting

In Experiment 3, the agent was again allowed to make interventions as in Experiment 2, but in this case
the quiz phase task entailed answering a counterfactual question. We explain here what a counterfactual
question in our experimental domain looks like. Assume X; =" j wj; Xj+€; where ¢; is distributed
as V(0.0,0.1) (giving the conditional distribution p(X;[pa(X;)) =N (3, w;;X;,0.1) as described
in Section 3). After observing the nodes Xo.n (X is hidden) in the CBN in one sample, we can
infer this latent randomness €; for each observable node X; (i.e. abduction) and answer counterfactual
questions like “What would the values of the nodes be, had X; instead taken on a different value than
what we observed?”, for any of the observable nodes X;. We test three new agents, two of which are
learned: “Active Counterfactual”, “Random Counterfactual”, and “Optimal Counterfactual Baseline”
(not learned).

Counterfactual Agents: This agent is the same as the Interventional agent, but trained on tasks in
which the latent randomness in the last information phase step ¢ =T'— 1 (where some X, = +5) is
stored and the same randomness is used in the quiz phase step ¢ =T (where some Xy = —5). While the
question our agents have had to answer correctly so far in order to maximize their reward in the quiz
phase was “Which of the nodes Xy will have the highest value when X f is set to —5?”, in this setting,
we ask “Which of the nodes X5. y would have had the highest value in the last step of the information
phase, if instead of having the intervention X, = +5, we had the intervention X ; = —5?”. We run
active and random versions of this agent as described in the main text.

Optimal Counterfactual Baseline: This baseline receives the true CBN and does exact abduction of
the latent randomness based on observations from the penultimate step of the information phase, and
combines this correctly with the appropriate interventional inference on the true CBN in the quiz phase.

Results

We focus on two key questions in this experiment.
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Active-Int.

Optimal CF b
| | 1
0.0 05 1.0 15 2.0 0.0 0.5 1.0 15 2.0 25 Passive-Int. Agent  Passive-CF Agent

Normalized performance Normalized performance

Figure 4: Experiment 3. Agents do counterfactual reasoning. a) Performance of the agents tested in this
experiment. Note that performance can be above 1.0 since the counterfactual agent can theoretically
perform better than the optimal interventional baseline, which doesn’t have access to noise information.
See main text for details. b) Performance split by if the maximum node value in the quiz phase is
degenerate (Deg.) or distinct (Dist.). ¢) Quiz phase for an example test-CBN. See Figures in Main text
for alegend. Here, the left panel shows G_, x,— 5 and the nodes taking the mean values prescribed by
P x,=—5(X1:n\j|Xj =—5). Wesee that the Active-Int. Agent’s choice is consistent with maximizing
on these node values, where it makes a random choice between two nodes with the same value. The
right panel panel shows G_, x =5 and the nodes taking the exact values prescribed by the means of
P—X;=—5 (X1 N\j | X; =—5), combined with the specific randomness inferred from the previous time
step. As aresult of accounting for the randomness, the two previously degenerate maximum values are
now distinct. We see that the Active-CF. agent’s choice is consistent with maximizing on these node
values.

(1) Do our agents learn to do counterfactual inference? The Active-Counterfactual Agent achieves
higher performance than the maximum possible performance using only causal reasoning (Figure
Ha). This indicates that the agent learns to infer and apply noise information from the last step of
the information phase. To evaluate whether this difference is driven by the agent’s use of abduc-
tion, we split the test set into two groups, depending on whether or not the decision for which node
will have the highest value in the quiz phase is affected by the latent randomness, i.e. whether or
not the node with the maximum value in the quiz phase changes if the noise is resampled. This
is most prevalent in cases where the maximum expected reward is degenerate, i.e. where several
nodes give the same maximum reward (denoted by hatched bars in Figure [@b). Here, agents with
no access to the randomness have no basis for choosing one over the other, but different noise sam-
ples can give rise to significant differences in the actual values that these degenerate nodes have.
We see indeed that there is no difference in the rewards received
by the Active-Counterfactual and Active-Interventional Agents in
— the cases where the maximum values are distinct, however the
— ‘ ‘ Active-Counterfactual Agent significantly outperforms the Active-
00 02 04 06 08 10 12 14  Ipterventional Agent in cases where there are degenerate maximum
Normalized performance . . . . . .

values. This performance increase is very high since in most cases
where the maximum values are degenerate, this maximum value is
close to 0.0. Thus, taking the noise into account gives the Counterfac-

Figure 5: Active and Random  tyal agent a huge relative advantage in these cases.

Counterfactual Agents

(i1) Do our agents learn to make useful interventions in the service of
a counterfactual task? The Active-Counterfactual Agent’s performance is significantly greater than the
Random-Counterfactual Agent’s (Fig.[5). This indicates that when the agent is allowed to choose its
actions, it makes tailored, non-random choices about the interventions it makes and the data it wants to
observe — even in the service of a counterfactual objective.

7.2 Experiment 4: Non-linear Causal Graphs

In this experiment, we generalize some of our results to nonlinear, non-Gaussian causal graphs which
are more typical of real-world causal graphs and to demonstrate that our results hold without loss of
generality on such systems.

Here we investigate causal Bayesian networks (CBNs) with a quadratic dependence on the parents by
changing the conditional distribution to p(X;|pa(X;)) :N(Nizj w;i(X;+X7),0). Here, although

(3
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Figure 6: Results for non-linear graphs. (a) Comparing average episode reward for agents trained with
different data. (b) Comparing information phase intervention policies.

each node is normally distributed given its parents, the joint distribution is not multivariate Gaussian
due to the non-linearity in how the means are determined. We find that the Long-Observational
Agent achieves more reward than the Observational Agent indicating that the agent is in fact learning
the statistical dependencies between the nodes, within an episode. ’| We also find that the Active-
Interventional Agent achieves reward well above the best agent with access to only observational data
(Long-Observational in this case) indicating an ability to reason from interventions. We also see that
the Active-Interventional Agent performs better than the Random-Interventional Agent, indicating an
ability to choose informative interventions.

7.3 Experiment 5: Larger Causal Graphs

(a) (b)
Active-CF

Active-Int. Random-Int.
Active-Cond. Active-Int.

Obs. . ICE| ‘
Long-Obs. Optimal C- !

0.0 1.0

0.0 1.0
Avg. Reward Avg. Reward

Figure 7: Results for N =6 graphs. (a) Comparing average episode reward for agents trained with
different data. (b) Comparing information phase intervention policies.

In this experiment we scaled up to larger graphs with N = 6 nodes, which afforded considerably
more unique CBNs than with N =5 (1.4 x 107 vs 5.9x 10%). As shown in Fig. |Za, we find the same
pattern of behavior noted in the main text where the rewards earned are ordered such that Observational
agent < Active-Conditional agent < Active-Interventional agent < Active-Counterfactual agent. We
see additionally in Fig.[7b that the Active-Interventional agent performs significantly better than
the baseline Random-Interventional agent, indicating an ability to choose non-random, informative
interventions.
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