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Abstract

Network architecture search (NAS) achieves state-of-the-art results in various
tasks such as classification and semantic segmentation. Recent techniques have
managed to reduce the search for these architectures from several months to just a
few days. So far no attempt has been made to search for Generative Adversarial
Models (GANs). Since their introduction, GANs have been very popular for
image generation. Yet, their training is considered to be a difficult task. The GAN
framework is composed of two components: (i) a generator that tries to generate
images that look real, and (ii) a discriminator that discriminates between generated
and real images. Learning both architectures simultaneously can turn into a very
hard problem. In this work, we relax this problem by searching only for a generator
architecture. Our architecture search algorithm is inspired by the DARTS approach,
and the generator architecture is searched by using the Global Latent Optimization
(GLO) procedure. After the generator architecture is selected, we just plug it
into an existing framework for GAN training. For CTGAN, which we use in this
work, the new model outperforms the original inception score results by 0.25 for
CIFAR-10. It also gets better results than RL based search.

1 Introduction

Generative Adversarial Networks (GANs) [3] have become a very successful framework for image
generation.

The architectures that are used for the generator in the GAN works are usually inspired by DC-GAN
[13] and ResNet [5]. Yet, they are all manually designed.

In recent years, neural architecture search (NAS) based approaches have successfully found models
that have outperformed the state-of-the-art in various tasks. While some of these methods require
a huge amount of computational resources [15, 19], Efficient NAS [12] and the differentiable
architecture search (DARTS) [7] reduced the computational cost significantly to only a few days.

Contribution. In this work, we aim at finding a generator using an efficient neural architecture
search. The operations within the generator, which include components such as up-sample operations,
are different from the common classification networks. The length of the generator is also much
smaller. Thus, we can search all the layers in the network, unlike most of the currently exiting NAS
methods (e.g., DARTS) that assume a repeating structure that builds the network and searches only
for it. Also, the loss function is very different in GAN training compared to the case of classification.

To overcome the instability in GAN training, we search for the generator model using the GLO
training protocol, which lets us search for the generator using a reconstruction loss. This way the
generator search is decoupled from the discriminator and thus we do not need to deal with an untrained
discriminator that will have a negative influence on the learning of the generator.

At the end of the search, we train the found generator architecture using an existing framework for
GAN training, the CTGAN protocol [18]. The search improves the performance in this framework
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both in terms of FID [6] and inception score (IS) [16]. This shows the validity of using the reconstruc-
tion loss in the search. Moreover, on all the datasets used in this work, the search took only a couple
of days on a single GPU, achieving better results than Wang and Huan [17] that use reinforcement
learning. This demonstrates the advantage of the proposed approach for generator search.

2 Background

Generative Adversarial Networks. The common practice shows that training a Generative Ad-
versarial Networks (GANs) [3] is a difficult task due to mode collapse, diminishing gradients and
non-convergence to the Nash equilibrium. Much attention has been given recently to find a solution
to these difficulties. The Wasserstein GAN (WGAN) [1] use earth mover’s distance instead of the
common KL or Jensen divergence. WGAN-GP [4] added a regularization that improved the model
by enforcing the discriminator function to be differentiable 1-Lipschitz. CAGAN [9] introduced an
adversarial consistency loss between different discriminators. CTGAN [18] adds additional regular-
ization over WGAN-GP on the discriminator loss function that penalizes the network if two random
perturbations of the inputs have large distance on the output. In this work, we use the CTGAN
training framework and its discriminator for testing the generator architecture we have found.

GLO [2] replaced the adversarial training that requires having a discriminator, with another optimiza-
tion strategy that only trains a generator. Though the image quality produced by GLO is not as good
as the one of a generator trained with a discriminator, we use it in our search phase due to its stability.

Architecture search techniques. Several methods have been proposed for optimizing the parameters
of neural networks and for finding new architectures. These include reinforcement learning [19,
15] and evolutionary (genetic) [14, 15] based approaches. Yet, these methods require very large
computational resources (some needs thousands of GPU days!). Recent works have managed to
reduce the high computational cost, to a few GPU days, without reducing the performances [7, 10, 12].
In parallel to our work, a reinforcement learning NAS based approach has been proposed for GANs
[17]. Yet, their search time is extremely high as they require using 200 TITAN GPUs for 6 days.

3 GAN search

Our goal here is to efficiently search for a suitable generator architecture. Our assumption, which
is demonstrated later empirically, is that a generator that is found based on an image reconstruction
criterion can also be used to produce improved images when plugged in an existing GAN procedure.
Our generator search method is inspired by DARTS [7]. It learns in an efficient way what operations to
use in each layer of the generator from a pre-fixed set of operations that are all used at the beginning.

3.1 DARTS

Figure 1: CIFAR-10 found
generator.

DARTS [7] contains two phases: In the first one, it searches for
the network architecture; and in the second, the new architecture is
trained from scratch and then evaluated. DARTS searched network
architecture is built from repeating structure of operations, which
is called a ’cell’. Thus, it only searches for this structure. Each
cell is composed of a feed-forward graph of feature maps that are
connected between them by a mixture of operations. This Mixed
Operation denoted by ō(i,j) is equal

ōi,j(x) =

∑
o∈O exp(α

(i,j)
o )o(x)∑
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, (1)

where o(x) is an operation on x, O is the group of all operations in
the search space, and αi,j

o is the learned weight for o. The α values
in (1) are learned by optimizing the loss function w.r.t their values.

In DARTS, two types of cells are being learned - Normal and Reduction. Normal cell outputs a
feature map of the same size as the input. Reduction cell outputs a feature map of a smaller size than
the input. The operations o(i,j) can be average/max-pool or types of convolutions with varying kernel
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sizes and strides. The kind of operations that are used depend on the cell type. The complete network
is composed of a concatenation of several cells.

In the search phase, to make the process faster, the network is smaller than the one that is used in the
second phase. At the end of the search, pruning is done to most of the operations, based on their α
values. The remaining operations (non-pruned ones) are the final cell structure.

3.2 The generator search

In our search strategy, we do not use the cells method. Since the commonly used generator networks
are not as deep as the ones used in classification, we can search for the whole network altogether
without using cells. Although many generator architectures are also built from several repeating
operations, we exploit the relatively short length of the network and the efficiency of the search
algorithm to make the search more flexible in finding new structures.

Search phase. In order to search only for a generator, we adapt the GLO method. This strategy trains
a generator alone without the use of a discriminator by optimizing both with respect to the latent
space input (z) and the generator weights. For each train image it matches a random noise vector
z in the latent space, in order to train the generator to output for each z its corresponding image.
Then, a reconstruction loss w.r.t the train image (compared to the generator output) is calculated.
The reconstruction loss is a combination of a squared-loss (`2(x, x̀) =‖ x− x̀ ‖22 and a Laplacian
pyramid (Lap1(x, x̀) =

∑
j 22j | Lj(x)− Lj(x̀) |1, where Lj(x) is the jth level of the pyramid).

Using alternating optimization between the GLO and α values, we perform one step of optimization
with respect to the latent space input and generator weights as in GLO, followed by another step with
respect to the α values of the MixedOp. The loss function is a combination L2 and Lap1 as in GLO.

Figure 2: Network structure
before pruning. Has two op-
erations types: normal (arrows
to gray blocks) and up-sample
(arrows to orange blocks).

Searched network structure. The searched network is divided into
three parts. The first is fixed and inspired by ResNet and contains a
linear operation with reshape. The second contains the architecture
and operations that we search for. The last part is also fixed and
contains bn+relu+conv+tanh, again, similar to ResNet.

As in DARTS, we use MixedOp to connect between feature maps
but with different types of operations in each MixedOp. We use two
types: (i) Normal operations that keep the size of their input; and
(ii) up-sample operations that increase the size of their input. We
also prune connections at the end based on their value, as we explain
hereafter.

The normal operations employed are inspired by DARTS and ResNet
architecture. They include a combination of bn+Relu+conv with ker-
nel sizes of 1 and 3, Max and Average pooling, skip connection, sep-
arate convolutions(see [7]) and dilated convolution with kernel sizes
of 3 or 5. The up-sample operations used are inspired by the DC-
GAN and ResNet architectures and include bn+Relu+deconvolution
with kernel sizes of 4 and 6 and bn+Relu+nearest neighbor up-
sampling + convolution with a kernel size of 1 or 3.

Figure 2 presents the connections used in the search between the
different feature maps. We define normal and up-sampled feature
maps as the feature maps that are created using normal and up-
sample operations respectively. In other words, the input MixedOp to a normal/up-sampled feature
map is a normal/up-sample MixedOp. As can be seen in the figure, the up-sampled feature maps
are connected between them with residual connections and are connected to the normal feature map
before them.

Pruning phase. At the end of the search phase, we perform pruning. The pruning consists of two
stages. In the first stage, for each feature map, we keep only one connection to its previous feature
maps. The connection is selected to be the operation with the largest value of α. In the second stage,
if the connection that was selected in the first stage is residual (which may leave the previous feature
map unconnected as the operation skips it), we will also add another operation by selecting from the
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direct connections the one with the highest α. The rationale behind our pruning strategy is to allow
having skip connection in the network structure but without enforcing them.

GAN training. After finding the generator architecture with our search, we can use it to replace the
generator in any given GAN framework, e.g., CTGAN [18]. Then, we simply train the new generator
with the discriminator of that framework.

4 Experiments
Table 1: CIFAR-10 unsupervised

Method IS FID

Real data 11.24 2.1
SN-GAN [8] 8.22 ± 0.5 11.8
WGAN-GP [4] 7.86 ± 0.07 14.1
CTGAN [18] 8.12 ± 0.12 -
CAGAN [9] 8.35 ± 0.09 -
AGAN [17] 8.29 ± 0.9 30.5
DEGAS(ours) 8.37 ± 0.08 12.01

Table 2: STL unsupervised

Method IS FID

Real data 26.08 ± 0.26 3.5
SN-GAN [8] 9.10 ±.04 40.1
WGAN-GP [4] 9.05 ± 0.12 -
CAGAN [9] 9.51 ± 0.14 -
AGAN [17] 9.23 ± .08 52.7
DEGAS (STL net) 9.22 ± 0.08 40.25
DEGAS (CIFAR net) 9.71 ± 0.11 28.76

We used CIFAR-10 and STL datasets for our exper-
iments. For having a quantitative evaluation, we mea-
sured the FID [6] and Inception score (IS) [16] on
CIFAR-10 and STL. More results appear in a longer
version of this paper (including also experiments on
CelebA). For calculating the IS, we employed the
same method as in [11] and other works and for cal-
culating the FID we used the same method as in [6].

4.1 Search results and generalization

We searched for a generator for CIFAR-10 and STL
using the scheme described above. In all cases, we do
not use the labels provided with the data (in CIFAR-
10 and STL) in the search. In a longer version of this
paper we show that the generator architecture that is
found without labels shows good performance also when the labels are added. We show also the
transferability of the model across datasets.

We use the DARTS [7] hyperparameters of CIFAR-10, except for the learning rate that is set to 3e-1
for CIFAR-10, and 3e-2 for STL. On 1 Nvidia TITAN-X GPU, the search took 28 hours for CIFAR-10
and 100 hours for STL. The unsupervised generator training time was 37 hours for CIFAR-10 and 85
hours for STL.

CIFAR-10. Figure 1 presents the network found for CIFAR-10. Notice that different operations
are selected in each layer (both for the up-sample and normal operations), which demonstrates the
advantage of not forcing the network into the cell structure. Table 1 compares the IS and FID scores
of our model to other existing works. Notice that our results are on par with the state of the art
methods, better than the RL based search and improves the one of CTGAN, which is our baseline.

STL. For STL, we performed two experiments: (i) searching on STL and then training on it; and (ii)
taking the network found on CIFAR-10 and training it on STL. As the image size in CIFAR-10 and
STL is different, we have increased the latent vector size by a factor of the image size ratio between
CIFAR-10 and STL, in the CIFAR-10 network, which leads to the desired size at the output for STL.

As can be seen in Table 2, the architecture we found on CIFAR-10 transfers well to STL and even
outperforms the one searched on STL. We believe that the difference between the results is due to
the hyperparameters (initially designed for CIFAR-10) used in the search. We expect that a better
hyperparameter selection will improve the search on STL.

4.2 Conclusion

This work introduced DEGAS, a method for searching efficiently generator models without the need
to search for a discriminator. On CIFAR-10 and STL, DEGAS outperforms a parallel work to us for
automated GAN search [17], both in terms of the search and train cost and terms of inception score.
We have also demonstrated the transferability of our found generator both across datasets.The paper’s
main contribution is that it is the first to provide an efficient generator search strategy. It avoids long
search time by using a continuous search space and the GLO framework.
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