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Abstract
Current methods to gradient-based meta-learning rely on backpropagating through
the learning process, limiting their scope to few-shot learning. In this work, we
introduce Warped Gradient Descent (WarpGrad), a family of modular optimisers
that can scale to arbitrary adaptation processes. WarpGrad methods meta-learn
to warp task loss surfaces across the joint task-parameter distribution to facili-
tate gradient descent, achieved by sharing fixed, meta-learned layers across task
learners that precondition task parameters during task adaptation. We find that
WarpGrad optimisers converge faster and generalise better in a variety of settings,
including few-shot, supervised, continual, and reinforcement learning.

1 Introduction

Empirical evidence from gradient-based few-shot learning suggests enforcing some form of strict
parameter sharing improve performance by reducing overfitting [22, 31, 33], more robust conver-
gence [48, 38], or superior final performance [35, 42, 21]. Strict parameter sharing can also encode a
meta-learned update-rule [25, 22, 36]. These findings suggest that meta-learning fixed shared parame-
ters offers a strong inductive bias in few-shot learning. However, it remains unclear whether this bias
holds more generally. Unfortunately, because they backpropagate through the adaptation process, we
cannot scale them to general forms of meta-learning [47, 7]. We resolve these limitations in a novel
framework, Warped Gradient Descent (WarpGrad), that preserves the inductive bias of gradient-based
few-shot learning while generalising to meta-learning over arbitrary adaptation processes.

WarpGrad is a family of modular optimisation methods that meta-learn shared warp parameters
across task learners such that gradient-based adaptation of task parameters leads to fast learning
and generalisation. WarpGrad methods belong to a class of meta-learners that precondition native
gradients [25, 22, 36] that are endowed with convergence guarantees with respect to task parameters,
in contrast to recurrent optimisers [39, 2, 24]. Uniquely among gradient-based meta-learners, Warp-
Grad methods meta-learn to precondition gradients over the joint task parameter distribution. This
fundamental departure from the paradigm of backpropagation through the adaptation process lets
them scale beyond few-shot learning without incurring a short-horizon bias [47]. WarpGrad methods
can meta-learn over arbitrary adaptation processes, even if a final loss is not well defined.

2 Warped Gradient Descent

MAML In gradient-based few-shot learning, as defined by the Model-Agnostic Meta-
Learner [MAML; 6], a task τ is defined by a training set Dτtrain and a validation set Dτtest, with
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Figure 1: Right: WarpGrad define an optimiser (ω) by embedding it in task learners (h) through
shared warp layers (ω1,2). These are fixed during adaptation of task parameters θ; backpropagating
through warp layers yields a form of preconditioning (P ). We meta-learn warps over the joint task
parameter distribution to produce preconditioning that facilitates task learning. Right: gradient
descent under WarpGrad amounts to Riemannian descent under a meta-learned metric G.

D := {(xi, yi)}ni=1 for some small n. We adapt a task learner h via a gradient-based update rule
θ ← θ − αP (θ;φ)∇L(θ) with a meta-learned preconditioner P and initialisation θ0,

CMAML(θ0, φ) :=
∑

τ∼p(τ)

LDτtest

(
θ0 − α

K−1∑
k=0

P (θτk ;φ)∇LDτtrain
(θτk)

)
. (1)

This framework backpropagates through the adaptation process, limiting it to few-shot learning
as it is computational expensive, susceptible to exploding/vanishing gradients and the credit as-
signment problem [3, 47]. Our goal is to develop a framework for meta-learning that overcomes
all three limitations. In few-shot meta-learning, Meta-SGD [25] parameterise P as a fixed diag-
onal matrix while Meta-Curvature [36] allows for a block-diagonal P . T-Nets [23] precondition
feed-forward networks, h(x, θ) = Wx, by inserting non-learnable projections T . Backpropa-
gating through h(x, θ, φ) = TWx automatically preconditions task gradients and defines P via
P (θ;φ)∇LDτtrain

(θ) = ∇LDτtrain
(θ;φ), where P has a block-diagonal structure with block entries

TTT . We build on these works by (a) generalising embedded preconditioning beyond a block-
diagonal structure (b) and deriving a novel meta-objective for general-purpose meta-learning.

Generalised preconditioning To generalise embedded preconditioning, we consider an arbitrary
neural network h = hl ◦ · · · ◦ h1, for instance, an MLP or an LSTM (see Appendix A for how to
design WarpGrad optimisers), that we interleave with fixed shared layers ω, h = ωl ◦hl ◦ · · ·◦ω1 ◦h1.
The gradient of task parameters θi of a layer hi embeds preconditioning via backpropagation:

∂ L
∂θi

= E

∇`T
l−(i+1)∏

j=0

Dxω
l−jDxh

l−j

Dxω
iDθih

i

 , (2)

where Dx and Dθ denote the Jacobian with respect to input and parameters, respectively. Prior
works enforce independent Jacobians Dxω = T . In WarpGrad, we relax this assumption by allowing
general functional forms for ω. This gives rise to gradient warping, where the forward pass modulates
Jacobians Dxω, which then precondition task parameter gradients Dθh in the backward pass. This
generalisation has profound implications. In our multi-shot supervised learning experiment, we find
that allowing for non-linearities in ω improves accuracy from 83% to 89%; in our RL experiment,
we introduce a novel form of meta-learned preconditioning by recurrent warps that modulate the
backpropagation through time operator; in contrast, linear preconditioning fail to provide any benefits.
This generality sacrifices an explicit Riemann metric for P , however WarpGrad methods are first-order
equivalent to Riemannian Gradient Descent under a meta-learned metric (Appendix B, E).

Meta-learning over the joint task parameter distribution We consider a general meta-learning
setting where we are given a task distribution p(τ). A task τ = (hτ ,Lτmeta,L

τ
task) is defined by a task

learner hτ embedded with a shared WarpGrad optimiser, a meta-training objective Lτmeta, and a task
adaptation objective Lτtask. We use Lτtask to adapt task parameters θ and Lτmeta to adapt warp parameters
φ. Meta and task objectives can differ in arbitrary ways, but both are expectations over some data,
i.e. L(θ, φ) = Ex,y[`(h(x, θ, φ), y)]. In the simplest case, they differ in terms of validation versus
training data, but they may differ in terms of learning paradigm. For instance, we evaluate a WarpGrad
optimiser in a continual learning experiment where Lτtask is the MSE on the current task, while Lτmeta
is designed to prevent catastrophic forgetting across sequences of tasks (Section 3). WarpGrad is
designed for integrating learning paradigms, a promising avenue for future research [28, 27].
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Figure 2: Left: Omniglot test accuracies on held-out tasks after meta-training on a varying number
of tasks. Shading represents standard deviation across 10 independent runs. Right: On a RL maze
navigation task, mean cumulative return is shown. Shading represents inter-quartile ranges across 10
independent runs.†Simple modulation and ‡retroactive modulation are used [30].

While MAML-based methods backpropagate through parameter trajectories, we treat them as Monte-
Carlo samples from a conditional distribution p(θ | τ) [10]. Together with the task distribution, these
samples form an empirical distribution p(τ, θ) that defines a joint search space across tasks. We
meta-learn an optimiser that produces good parameter updates across this space. We exploit the
gradient principle to define a meta-objective: a gradient update rule should point in the direction of
steepest descent at each step of adaptation. Crucially, in WarpGrad this direction is not with respect
to the objective that produced the gradient, Lτtask, but with respect to the meta-objective Lτmeta,

L(φ) :=
∑

τ∼p(τ)

∑
θτ∼p(θ|τ)

Lτmeta

(
θτ − α∇Lτtask (θτ ;φ);φ

)
. (3)

Decoupling the task gradient operator∇Lτtask from the geometry encoded in φ lets us infuse global
knowledge in the optimiser; for instance, in section 3 we meta-learn an optimiser against catastrophic
forgetting. Uniquely among gradient-based meta-learners, the WarpGrad meta-objective is defined
point-wise as an expectation over the joint task parameter distribution, allowing it scale beyond
few-shot learning and generalise to arbitrary adaptation processes; it does not suffer from vanish-
ing/exploding gradients nor the credit assignment problem. It does rely on second-order gradients,
a requirement we can relax by detaching task parameter gradients (∇Lτtask) in Eq. 3. This approxi-
mation only discards local second-order effects, which are typically dominated in long parameter
trajectories [7]. The WarpGrad objective is defined in terms of warp parameters φ and takes θ as
given. As such, we can integrate the WarpGrad objective with any meta-objective C defined over θ,
in particular those that learn a “prior” over θ0 (e.g. MAML or Leap [7]); see Appendix D.

Algorithm 1 WarpGrad: online meta-training

Require: p(τ): distribution over tasks
Require: α, β, λ: hyper-parameters

1: initialise φ and θ0
2: while not done do
3: Sample mini-batch of task B from p(τ)
4: gφ, gθ0 ← 0
5: for all τ ∈ B do
6: θτ0 ← θ0
7: for all k in 0, . . . ,Kτ−1 do
8: θτk+1 ← θτk − α∇L

τ
task (θτk ;φ)

9: gφ ← gφ +∇L(φ; θτk)
10: gθ0 ← gθ0 +∇C(θ0; θτ0:k)
11: end for
12: end for
13: φ← φ− βgφ
14: θ0 ← θ0 − λβgθ0
15: end while

To train a WarpGrad optimiser, we use stochastic gra-
dient descent. We solve Eq. 8 by alternating between
sampling task parameters given the current parameter
values for φ and θτ0 and taking meta-gradient steps
over these samples, which can be done in a variety
of ways (appendix C). In Algorithm 1, we illustrate a
simple online version with constant memory and lin-
ear complexity inK. In Appendix C we detail a more
complex offline training algorithm that uses a replay
buffer for greater data efficiency; in our Omniglot
experiment (Section 3), offline meta-training allows
us to update warp parameters 2000 times with each
meta-batch, in contrast to one update for other meta-
learners, which improves final test accuracy from
76.3% to 84.3% (Appendix G).

3 Experiments and Conclusion

We evaluate WarpGrad methods in a set of experi-
ments designed to answer three questions: (a) do WarpGrad methods retain the inductive bias of
MAML-based few-shot learners? (b) Can WarpGrad methods scale to problems beyond the reach of
such methods? (c) Can WarpGrad generalise to complex meta-learning problems? For WarpGrad
methods, we insert warp-layers in a baseline architecture; see appendices for details.
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Table 1: Mean test accuracy after task
adaptation on held out evaluation tasks.
†Multi-headed. See Appendix F and I.

5-way 5-shot miniImageNet

Reptile 66.0± 0.6
Meta-SGD 64.0± 0.9
CAVIA (512) 65.9± 0.6

MAML 63.2± 0.9
Warp-MAML 68.4± 0.6

5-way 5-shot tieredImageNet
MAML 70.3± 1.8
Warp-MAML 74.1± 0.7

20-way 100-shot Omniglot

Finetuning† 76.4± 2.2
Reptile 70.8± 1.9

Leap 75.5± 2.6
Warp-Leap 83.6± 1.9

(a) Few-Shot Learning We evaluate on the
miniImageNet [45, 39] and tieredImageNet [41]
datasets. The former is a random sub-sample of 100
classes from ILSVRC-12, each with 600 images; the
latter stratifies 608 classes into 34 higher-level categories
human-curated ImageNet hierarchy [4]. We use a Warp-
MAML meta-learner (J = L(φ) + CMAML(θ0)) with
linear warps for fair comparison. We report best results
from our experiments or the literature in (Table 1).

(b) Multi-Shot Learning We WarpGrad on the Om-
niglot [19] protocol of [7], where each of the 50 alpha-
bets is a 20-way classification task and adaptation in-
volves 100 gradient steps, ruling out MAML-based ap-
proaches [7]. We train a Warp-Leap meta-learner (J =
L(φ) +CLeap(θ0)) with an offline algorithm (Algorithm 2,
Appendix C) that makes 2000 updates to warp parameters
per meta mini-batch. Except for the case of one pretrain-
ing task, Warp-Leap outperforms all baselines (Figure 2);
non-linear warps, which go beyond block-diagonal precon-
ditioning, reach ~89% test accuracy (Appendix G). Finally,
WarpGrad behave distinctly different from Natural Gradi-
ent Descent methods (Appendix H).

(c) General-Purpose Meta-Learning

(c.1) Reinforcement Learning To illustrate how WarpGrad may be used both with recurrent
neural networks and in (meta-)meta-reinforcement learning, we evaluate it in a maze navigation task
proposed by [29]. The environment is a fixed maze and a task is defined by randomly choosing a
goal location. The agent’s objective is to find the location as many times as possible, being teleported
to a random location each time it finds it. The learner is advantage actor-critic with a basic recurrent
neural network [46]. We design a Warp-RNN as a HyperNetwork [11] that uses a Warp-LSTM
that is fixed during training. This amounts to meta-learning the optimiser for the meta-learner.
The warp-LSTM modulates the weights of the learner (Appendix J), which in turn is trained on
mini-batches of 30 episodes for 200 000 steps. Recurrence is crucial; linear warps (T-Nets) do
worse than the baseline learner. We accumulate the gradient of fixed warp-parameters continually
(Algorithm 3, Appendix C) at each task parameter update. Warp parameters are updated on every
30th step on the learner’s parameters (we control for meta-LSTM capacity in Appendix J). We
compare against default Learning to Reinforcement Learn [46] and Hebbian meta-learning [29, 30];
see Appendix J for details. The Warp-RNN converges faster, more robustly, and to a higher level of
performance (Figure 2).

(c.2) Continual Learning We test if a WarpGrad optimiser can prevent catastrophic forgetting [9].
To this end, we design a continual learning version of the sine regression meta-learning experiment [6]
by splitting the input interval [−5, 5] ⊂ R into 5 consecutive sub-tasks [an alternative protocol was
recently proposed independently of us by 15]. Each sub-task is a regression problem with the target
being a mixture of two random sine waves; for each task, we train a 4-layer feed-forward task learner
with interleaved warp layers incrementally on one sub-task at a time (see Appendix K for details).
To isolate the behaviour of WarpGrad parameters, we use a fixed random initialisation for each
task sequence. Warp parameters are meta-learned to prevent catastrophic forgetting by defining
Lτmeta to be the average task loss over current and previous sub-tasks, for each sub-task in a task
sequence. This forces warp-parameters to disentangle the adaptation process of current and previous
sub-tasks. Evaluating our WarpGrad optimiser on held-out tasks (Appendix K), we find that it learns
new sub-tasks while largely retaining performance on previous sub-tasks, providing an effective
mechanism against catastrophic forgetting and promising avenue for further research.

Conclusion WarpGrad methods retain the inductive bias of MAML-based meta-learners while
scaling to complex problems and architectures. WarpGrad provides a principled framework for
general-purpose meta-learning that integrates arbitrary learning paradigms with novel forms of pre-
conditioning, opening up for new perspective on gradient-based adaptation and optimisation.
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Appendix

A WarpGrad Design Principles for Neural Nets
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Figure 3: Illustration of possible WarpGrad architectures. Orange represents task layers and blue
represents warp layers. ⊕ denotes residual connections and � any form of gating mechanism. We
can obtain warped architectures by interleaving task and warp layers (a, c) or by designating some
layers in standard architectures as task-adaptable and some as warp layers (b, d).

WarpGrad is a general family of model-embedded meta-learned optimisers. This offers a great deal of
flexibility in approaching a meta-learning problem. To provide some guidance in these design choices,
we briefly discuss general principles we found useful. To embed warp layers given a task-learner
architecture, we may either insert new warp layers in the given architecture or designate some layers
as warp layers and some as task layers. We found that WarpGrad can both be used in a high-capacity
mode where task learners are relatively weak to avoid overfitting, as well as in a low-capacity mode
where task learners are powerful and warp layers are relatively weak. The best approach depends on
the problem at hand. We highlight three approaches to designing WarpGrad optimisers:

(a) Model partitioning. Given a desired architecture, designate some operations as task-adaptable
and the rest as warp layers. Task layers do not have to interleave exactly with warp layers as
gradient warping arises both through the forward pass and through backpropagation. This was
how we approached the tieredImageNet and miniImageNet experiments.

(b) Model augmentation. Given a model, designate all layers as task-adaptable and interleave warp
layers. Warp layers can be relatively weak as backpropagation through non-linear activations
ensures expressive gradient warping. This was our approach to the Omniglot experiment; our
main architecture interleaves linear warp layers in a standard architecture.

(c) Information compression. Given a model, designate all layers as warp and interleave weak task
layers. In this scenario, task learners are prone to overfitting. Pushing capacity into the warp
allows it to encode general information the task learner can draw on during task adaptation. This
approach is similar to approaches in transfer and meta-learning that restrict the number of free
parameters during task training [40, 23, 48].

Note that in either case, once warp layers have been chosen, standard backpropagation automatically
warps gradients for us. Thus, WarpGrad is fully compatible with any architecture, for instance,
Residual Neural Networks [12] or LSTMs. For convolutional neural networks, we may use any form
of convolution, learned normalization [e.g. 14], or adaptor module [e.g. 40, 37] to designed task and
warp layers. For recurrent networks, we can use stacked LSTMs to interleave warped layers, as well
as any type of HyperNetwork architecture [e.g. 11, 44, 8] or partitioning of fast and slow weights [e.g.
32]. Figure 3 illustrates this process.
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B The Geometry of Warped Gradient Descent

The generality of WarpGrad methods means that we are not guaranteed to obtain a well-behaved
preconditioning matrix. Further, while characterising WarpGrad methods as embedding precondition-
ing via gradient warping provides us with a framework for designing WarpGrad optimisers, it offers
little guidance as to how we may meta-learn warp parameters. To address these points, we take a
geometric perspective and reinstate a valid Riemann metric, from which we derive a framework for
meta-learning warp parameters on first principles.

The inner update rule in Eq. 1 represents first-order Riemannian Gradient Descent on task parameters
ifG := P−1 is a valid Riemann metric [1], which enjoys similar convergence guarantees to stochastic
gradient descent. Gradient warping is thus well-behaved if it represents a valid (meta-learned)
Riemann metric. Informally, a metric tensor G is a positive-definite, smoothly varying matrix that
measures the curvature on a manifoldW . The metric tensor defines the steepest direction of descent
by −G−1∇L [20]. To show that a WarpGrad optimiser represents a metric tensor, we define an
explicit warp Ω by reparameterising warp layers such that ωi(hi(x; θi)) = hi(x; Ω(θ)i) ∀x, i. Let Ω
be a map from a Euclidean representation space P onto a Riemannian spaceW with γ = Ω(θ;φ).
The metric tensor G can then be identified via push-forward:

∆θ := ∇ (L◦Ω) (θ;φ) = [DΩ(θ;φ)]
T∇L (γ) (4)

∆γ := DΩ(θ;φ) ∆θ = G(γ;φ)
−1∇L(γ), (5)

whereG−1 :=[DΩ][DΩ]
T . Provided Ω is not degenerate (G is non-singular),G−1 is positive-definite,

hence a valid Riemann metric. Because WarpGrad optimisers act in P , they represent this metric
implicitly. Task parameter gradients under non-linear warps are therefore not exactly equivalent to
preconditioning under P = G−1, but from first-order Taylor series expansion we have that

(L◦Ω)(θ − α∆θ) = L(γ − α∆γ) +O(α2). (6)

Consequently, gradient warping can be understood as warping the native loss surface into a surface
conducive to task adaptation. Warp parameters φ control this geometry and therefore what task
adaptation converges to. By meta-learning φ we can accumulate information that is conducive to
task adaptation but that may not be available during that process. Because task adaptation relies on
stochastic gradient descent, the meta-learned geometry should yield as effective updates as possible
across expected task parameterisations, which implies a canonical meta-objective of the form

min
φ

EL,γ∼p(L,γ)
[
L
(
γ − αG(γ;φ)

−1∇L(γ)
)]
. (7)

In contrast to MAML-based approaches (Eq. 1), this objective avoids backpropagation through the
adaptation process. Instead, it defines task adaptation abstractly by introducing a joint distribution
over objectives and parameterisations, opening up for general-purpose meta-learning at scale.

C WarpGrad Meta-Training Algorithms

In this section, we provide variants of WarpGrad training algorithms used in this paper. Algorithm 1
describes a simple online algorithm, which accumulates meta-gradients online during task adaptation.
This algorithm has constant memory and scales linearly in the length of task trajectories. In Algo-
rithm 2, we describe an offline meta-training algorithm. This algorithm is similar to Algorithm 1 in
many respects, but differs in that we do not compute meta-gradients online during task adaptation.
Instead, we accumulate them into a replay buffer of sampled task parameterisations. This buffer is a
Monte-Carlo sample of the expectation in the meta objective (Eq. 8) that can be thought of as a dataset
in its own right. Hence, we can apply standard mini-batching with respect to the buffer and perform
mini-batch gradient descent on warp parameters. This allows us to update warp parameters several
times for a given sample of task parameter trajectories, which can greatly improve data efficiency. In
our Omniglot experiment, we found offline meta-training to converge faster: in fact, a mini-batch
size of 1 (i.e. η = 1 in Algorithm 2 converges rapidly without any instability.
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Finally, in Algorithm 3, we present a continual meta-training process where meta-training occurs
throughout a stream of learning experiences. Here, C represents a multi-task objective, such as the
average task loss,Cmulti =

∑
τ∼p(τ) L

τ
task. Meta-learning arise by collecting experiences continuously

(across different tasks) and using these to accumulate the meta-gradient online. Warp parameters
are updated intermittently with the accumulated meta-gradient. We use this algorithm in our maze
navigation experiment, where task adaptation is internalised within the RNN task learner.

Algorithm 1 WarpGrad: online meta-training

Require: p(τ): distribution over tasks
Require: α, β, λ: hyper-parameters

1: initialise φ and θ0
2: while not done do
3: Sample mini-batch of task B from p(τ)
4: gφ, gθ0 ← 0
5: for all τ ∈ B do
6: θτ0 ← θ0
7: for all k in 0, . . . ,Kτ−1 do
8: θτk+1 ← θτk − α∇L

τ
task (θτk ;φ)

9: gφ ← gφ +∇L(φ; θτk)
10: gθ0 ← gθ0 +∇C(θτ0 ; θτ0:k)
11: end for
12: end for
13: φ← φ− βgφ
14: θ0 ← θ0 − λβgθ0
15: end while

Algorithm 3 WarpGrad: continual meta-training

Require: p(τ): distribution over tasks
Require: α, β, λ, η: hyper-parameters

1: initialise φ and θ
2: i, gφ, gθ ← 0

3: while not done do
4: Sample mini-batch of task B from p(τ)
5: for all τ ∈ B do
6: gφ ← gφ +∇L(φ; θ)
7: gθ ← gθ +∇C(θ;φ)
8: end for
9: θ ← θ − λβgθ

10: gθ, i← 0, i+ 1
11: if i = η then
12: φ← φ− βgφ
13: i, gθ ← 0
14: end if
15: end while

Algorithm 2 WarpGrad: offline meta-training

Require: p(τ): distribution over tasks
Require: α, β, λ, η: hyper-parameters

1: initialise φ and θ0
2: while not done do
3: Sample mini-batch of task B from p(τ)

4: T ← {τ : [θ0] for τ in B}
5: for all τ ∈ B do
6: θτ0 ← θ0
7: for all k in 0, . . . ,Kτ−1 do
8: θτk+1 ← θτk − α∇L

τ
task (θτk ;φ)

9: T [τ ].append(θτk+1)

10: end for
11: end for
12: i, gφ, gθ0 ← 0

13: while T not empty do
14: sample τ, k without replacement
15: gφ ← gφ +∇L(φ; θτk)

16: gθ0 ← gθ0 +∇C(θτ0 ; θτ0:k)

17: i← i+ 1
18: if i = η then
19: φ← φ− βgφ
20: θ0 ← φ− λβgθ0
21: i, gφ, gθ0 ← 0

22: end if
23: end while
24: end while

D WarpGrad Optimisers

WarpGrad methods are compatible with any learner over θ; for instance, (a) Multi-task solution: in
online learning, we can alternate between updating a multi-task solution and tuning warp parameters.
We use this approach in our Reinforcement Learning experiment (Section 3); (b) Meta-learned
point-estimate: when task adaptation occurs in batch mode, we can meta-learn a shared initialisation
θ0. Our few-shot and supervised learning experiments take this approach Section 3; (c) Meta-learned
prior: we can use meta-learners that define a full prior [42, 35, 18, 16], enabling Bayesian approaches
to WarpGrad. The family of WarpGrad methods is fully described by combining our meta-objective
L (or L̂) with a meta-objective C over θ0,

J(φ, θ0) := L (φ) + λ C (θ0) , (8)
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where λ ∈ [0,∞) is a hyper-parameter. To make the objective in Eq. 8 tangible, we illustrate two
WarpGrad optimisers used in our experiment (for detailed definitions of all WarpGrad optimisers we
use, see Appendix D). We define a Warp-MAML that we use for few-shot learning by choosing C to
be the MAML objective (Eq. 1). For experiments that MAML cannot scale to, we define Warp-Leap
by choosing the Leap objective [7] for C. Leap is an attractive complement as it has linear complexity
in task adaptation length as well as constant memory usage. It is defined by minimising the average
distance between θ0 and θτK , implemented by fixing θτk and pulling θτk−1 forward towards it under
the Euclidean norm in P . By virtue of push-forward, this corresponds to the Riemannian norm onW .
Hence, Warp-Leap is a greedy search for geodesics in the meta-learned geometry defined by

CLeap(θ0) :=
∑

τ∼p(τ)

Kτ∑
k=1

∥∥sg [ϑτk]− ϑτk−1
∥∥
2
, ϑτk = (θτk,0, . . . , θ

τ
k,n,L

τ
task (θτk ;φ)). (9)

Next, we describe the full set of algorithms used in our experiments.

Warp-MAML We use this algorithm for few-shot learning (Section 3). We use the full warp-
objective in Eq. 3 together with the MAML objective (Eq. 1),

JWarp-MAML := L(φ) + λCMAML(θ0), (10)

where CMAML = LMAML under the constraint P = I . In our experiments, we trained Warp-MAML
using the online training algorithm (Algorithm 1).

Warp-Leap We use this algorithm for multi-shot meta-learning. It is defined by applying Leap to
θ0 (Eq. 9),

JWarp-Leap := L(φ) + λCLeap(θ0). (11)

Note that the Leap meta-gradient makes a first-order approximation to avoid backpropagating through
the adaptation process. It is given by

∇CLeap(θ0) ≈ −
∑

τ∼p(τ)

Kτ∑
k=1

∆Lτtask (θτk ;φ)∇Lτtask

(
θτk−1;φ

)
+ ∆θτk∥∥ϑτk − ϑτk−1∥∥2 , (12)

where ∆Lτtask (θτk ;φ) := Lτtask (θτk ;φ)− Lτtask

(
θτk−1;φ

)
and ∆θτk := θτk − θτk−1. In our experiments,

we train Warp-Leap using Algorithm 1 in the multi-shot tieredImageNet experiment and Algorithm 2
in the Omniglot experiment. We perform an ablation study for training algorithms, exact (Eq. 3)
versus approximate (detaching inner gradient) meta-objective, and warp architecture on Omniglot
in Appendix G.

Warp-RNN For our Reinforcement Learning experiment, we define a WarpGrad optimiser by
meta-learning an LSTM that modulates the weights of the task learner (see Appendix J for details).
For this algorithm, we face a continuous stream of experiences (episodes) that we meta-learn over
using our continual meta-training algorithm (Algorithm 3). In our experiment, both Lτtask and Lτmeta
are the advantage actor-critic objective [46]; C is computed on one batch of 30 episodes, whereas L is
accumulated over η = 30 such batches, for a total of 900 episodes. As each episode involves 300 steps
in the environment, we cannot apply the exact meta objective, but use the approximate meta objective
that detaches the inner task gradient. Specifically, let Eτ = {s0, a1, r1, s1, . . . , sT , at, rT , sT+1}
denote an episode on task τ , where s denotes state, a action, and r instantaneous reward. Denote a
mini-batch of randomly sampled task episodes by E = {Eτ}τ∼p(τ) and an ordered set of K consecu-
tive mini-batches by Ek = {Ek−i}K−1i=0 . Then L̂(φ; Ek) = 1/n

∑
Ei∈Ek

∑
Eτi,j∈Ei

Lτmeta(φ; θ,Eτi,j)

and Cmulti(θ;Ek) = 1/n′
∑
Eτk,j∈Ek

Lτtask(θ;φ,Eτk,j), where n and n′ are normalising constants.
The Warp-RNN objective is defined by

JWarp-RNN :=

{
L(φ; Ek) + λCmulti(θ;Ek) if k = η

λCmulti(θ;Ek) otherwise.
(13)
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WarpGrad for Continual Learning For this experiment, we focus on meta-learning warp-
parameters. Hence, the initialisation for each task sequence is a fixed random initialisation, (i.e.
λC(θ0) = 0). For the warp meta-objective, we take expectations over N task sequences, where each
task sequence is a sequence of T = 5 sub-tasks that the task-learner observes one at a time; thus while
the task loss is defined over the current sub-task, the meta-loss averages of the current and all prior
sub-tasks, for each sub-task in the sequence. See Appendix K for detailed definitions. Importantly,
because WarpGrad defines task adaptation abstractly by a probability distribution, we can readily im-
plement a continual learning objective by modifying the joint task parameter distribution p(τ, θ) that
we use in the meta-objective (Eq. 3). A task defines a sequence of sub-tasks over which we generate
parameter trajectories θτ . Thus, the only difference from multi-task meta-learning is that parameter
trajectories are not generated under a fixed task, but arise as a function of the continual learning
algorithm used for adaptation. We define the conditional distribution p(θ | τ) as before by sampling
sub-task parameters θτt from a mini-batch of such task trajectories, keeping track of which sub-task t
it belongs to and which sub-tasks came before it in the given task sequence τ . The meta-objective
is constructed, for any sub-task parameterisation θτt , as Lτmeta(θ

τt) = 1/t
∑t
i=1 L

τ
task (θτi ,Di;φ),

where Dj is data from sub-task j (Appendix K). The meta-objective is an expectation over task
parameterisations,

LCL(φ) :=
∑

τ∼p(τ)

T∑
t=1

∑
θτt∼p(θ|τt)

Lτmeta

(
θτt ;φ

)
. (14)

E Synthetic Experiment

To build intuition for what it means to warp space, we construct a simple 2-D problem over loss
surfaces. A learner is faced with the task of minimising an objective function of the form fτ (x1, x2) =
gτ1 (x1) exp(gτ2 (x2))− gτ3 (x1) exp(gτ4 (x1, x2))− gτ5 exp(gτ6 (x1)),, where each task fτ is defined by
scale and rotation functions gτ that are randomly sampled from a predefined distribution. Specifically,
each task is defined by the objective function

fτ (x1, x2) = bτ1(aτ1 − x1)2 exp(−x21 − (x2 + aτ2)2)

− bτ2(x1/s
τ − x31 − x52) exp(−x21 − x22)

− bτ3 exp(−(x1 + aτ3)2 − x21)),

where each a, b and s are randomly sampled parameters from

sτ ∼ Cat(1, . . . , 10)

aτi ∼ Cat(−1, 0, 1)

bτi ∼ Cat(−5, . . . , 5).

The task is to minimise the given objective from a randomly sampled initialisation, x{i=1,2} ∼
U(−3, 3). During meta-training, we train on a task for 100 steps using a learning rate of 0.1. Each
task has a unique loss-surface that the learner traverses from the randomly sampled initialisation.
While each loss-surface is unique, they share an underlying structure. Thus, by meta-learning a warp
over trajectories on randomly sampled loss surfaces, we expect WarpGrad to learn a warp that is close
to invariant to spurious descent directions. In particular, WarpGrad should produce a smooth warped
space that is quasi-convex for any given task to ensure that the task learner finds a minimum as fast
as possible regardless of initialisation.

To visualise the geometry, we use an explicit warp Ω defined by a 2-layer feed-forward network with a
hidden-state size of 30 and tanh non-linearities. We train warp parameters for 100 meta-training steps;
in each meta-step we sample a new task surface and a mini-batch of 10 random initialisations that we
train separately. We train to convergence and accumulate the warp meta-gradient online (Algorithm 1).
We evaluate against gradient descent in Figure 4 on randomly sampled loss surfaces. Both optimisers
start from the same initialisation, chosen such that standard gradient descent struggles; we expect that
the WarpGrad optimisers has learned a geometry that is robust to the initialisation (top row in Figure 4).
This is indeed what we find; the geometry learned by WarpGrad smoothly warps the native loss
surface into a well-behaved space where gradient descent converges to a local minimum.
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Figure 4: Example trajectories on three task loss surfaces. We start Gradient Descent (black)
and WarpGrad (magenta) from the same initialisation; while SGD struggles with the curvature,
the WarpGrad optimiser has learned a warp such that gradient descent in the representation space
(top) leads to rapid convergence in model parameter space (bottom).

F Omniglot

We follow the protocol of Flennerhag et. al. [7], including choice of hyper-parameters. In this setup,
each of the 50 alphabets that comprise the dataset constitutes a distinct task. Each task is treated as
a 20-way classification problem. Four alphabets have fewer than 20 characters in the alphabet and
are discarded, leaving us with 46 alphabets in total. 10 alphabets are held-out for final meta-testing;
which alphabets are held out depend on the seed to account for variations across alphabets; we train
an evaluate all baselines on 10 seeds. For each character in an alphabet, there are 20 raw samples.
Of these, 5 are held out for final evaluation on the task while the remainder is used to construct
a training set. Raw samples are pre-processed by random affine transformations in the form of
(a) scaling between [0.8, 1.2], (b) rotation [0, 360), and (c) cropping height and width by a factor
of [−0.2, 0.2] in each dimension. This ensures tasks are too hard for few-shot learning. During
task adaptation, mini-batches are sampled at random without ensuring class-balance (in contrast to
few-shot classification protocols [45]). Note that benchmarks under this protocol are not compatible
with few-shot learning benchmarks.

We use the same convolutional neural network architecture and hyper-parameters as in [7]. This
learner stacks a convolutional block comprised of a 3× 3 convolution with 64 filters, followed by
2 × 2 max-pooling, batch-normalisation, and ReLU activation, four times. All images are down-
sampled to 28 × 28, resulting in a 1 × 1 × 64 feature map that is passed on to a final linear layer.
We create a Warp Leap meta-learner that inserts warp layers between each convolutional block,
W ◦ ω4 ◦ h4 ◦ · · · ◦ ω1 ◦ h1, where each h is defined as above. In our main experiment, each ωi
is simply a 3× 3 convolutional layer with zero padding; in Appendix G we consider both simpler
and more sophisticated versions. We find that relatively simple warp layers do quite well. However,
adding capacity does improve generalisation performance. We meta-learn the initialisation of task
parameters using the Leap objective (Eq. 9), detailed in Appendix D.

Both Lτmeta and Lτtask are defined as the negative log-likelihood loss; importantly, we evaluate them on
different batches of task data to ensure warp layers encourage generalisation. We found no additional
benefit in this experiment from using hold-out data to evaluate Lτmeta. We use the offline meta-training
algorithm (Appendix C, Algorithm 2); in particular, during meta-training, we sample mini-batches
of 20 tasks and train task learners for 100 steps to collect 2000 task parameterisations into a replay
buffer. Task learners share a common initialisation and warp parameters that are held fixed during
task adaptation. Once collected, we iterate over the buffer by randomly sampling mini-batches of task
parameterisations without replacement. Unless otherwise noted, we used a batch size of η = 1. For
each mini-batch, we update φ by applying gradient descent under the canonical meta-objective (Eq. 3),
where we evaluate Lτmeta on a randomly sampled mini-batch of data from the corresponding task.
Consequently, for each meta-batch, we take (up to) 2000 meta-gradient steps on warp parameters φ.
We find that this form of mini-batching causes the meta-training loop to converge much faster and
induces no discernible instability.
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Figure 5: Omniglot results. Top: test accuracies on held-out tasks after meta-training on a varying
number of tasks. Bottom: AUC under accuracy curve on held-out tasks after meta-training on a
varying number of tasks. Shading represents standard deviation across 10 independent runs. We
compare between Warp-Leap, Leap, and Reptile, multi-headed finetuning, as well as SGD and KFAC
which used random initialisation but with 10x larger batch size and learning rate.

We compare Warp-Leap against no meta-learning with standard gradient descent (SGD) or KFAC [26].
We also benchmark against baselines provided in [7]; Leap, Reptile [34], MAML, and multi-headed
fine-tuning. All learners benefit substantially from large batch sizes as this enables higher learning
rates. To render no-pretraining a competitive option within a fair computational budget, we allow
SGD and KFAC to use 10x larger batch sizes, enabling 10x larger learning rates. This renders
them computationally costly, taking 2x and 4x longer to train on a given task during meta-test time
than Warp-Leap, respectively.

G Ablation study: Warp Layers, Meta-Objective, and Meta-Training

WarpGrad provides a principled approach for model-informed meta-learning. It offers several degrees
of freedom and to evaluate these design choices, we conduct an ablation study where we vary the
design of warp layers as well as meta-training approach. For the ablation study, we fixed the number
of pretraining tasks to 25 and report final test accuracy over 4 independent runs. All ablations use the
same hyper-parameters, except for online meta-training which uses a learning rate of 0.001.

First, we vary the meta-training protocol by (a) using the approximate objective that detaches the
inner task gradient, (b) using online meta-training (Algorithm 1), and (c) whether meta-learning
the learning rate used for task adaptation is beneficial in this experiment. We meta-learn a single
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Table 2: Mean test error after 100 training steps on held out evaluation tasks. †Multi-headed. ‡No
meta-training, but 10x larger batch sizes (allows 10x larger learning rates).

Method WarpGrad Leap Reptile Finetuning† MAML KFAC‡ SGD‡
No. Meta-training tasks

1 49.5± 7.8 37.6± 4.8 40.4± 4.0 53.8± 5.0 40.0± 2.6 56.0 51.0
3 68.8± 2.8 53.4± 3.1 53.1± 4.2 64.6± 3.3 48.6± 2.5 56.0 51.0
5 75.0± 3.6 59.5± 3.7 58.3± 3.3 67.7± 2.8 51.6± 3.8 56.0 51.0
10 81.2± 2.4 67.4± 2.4 65.0± 2.1 71.3± 2.0 54.1± 2.8 56.0 51.0
15 82.7± 3.3 70.0± 2.4 66.6± 2.9 73.5± 2.4 54.8± 3.4 56.0 51.0
20 82.0± 2.6 73.3± 2.3 69.4± 3.4 75.4± 3.2 56.6± 2.0 56.0 51.0
25 83.8± 1.9 74.8± 2.7 70.8± 1.9 76.4± 2.2 56.7± 2.1 56.0 51.0

scalar learning rate (as warp parameters can learn layer-wise scaling) along with a single scalar
for momentum. Meta-gradients for the learning rate and momentum rate are clipped at 0.001 and
we use a learning rate of 0.001. Note that when using offline meta-training, we store both task
parameterisations and the momentum buffer at that point; when computing the canonical objective
(Eq. 3) we use these in the update rule.

Further, we vary the architecture used for warp layers. We study simpler versions that use channel-
wise scaling and more complex versions that use non-linearities and residual connections. We
also evaluate a version where each warp-layer has two stacked convolutions, where the first warp
convolution outputs 128 filters and the second warp convolution outputs 64 filters. Finally, in the
two-layer warp-architecture, we evaluate a version that inserts a FiLM layer between the two warp
convolutions. These are adapted during task training from a 0 initialisation; they amount to task
embeddings that condition gradient warping on task statistics.

Table 3: Ablation study: mean test error after 100 training steps on held out evaluation tasks. Mean
and standard deviation over 4 independent runs. Offline refers to offline meta-training (Appendix C),
online to online meta-training Algorithm 1; full denotes Eq. 3 and approx denotes the first-order
approximation;†Batch Normalization [14]; ‡equivalent to FiLM layers [37];§Residual connection [12],
when combined with BN, similar to the Residual Adaptor architecture [40]; ¶FiLM task embeddings.

Architecture Meta-training Meta-objective Accuracy

None (Leap) Online None 74.8± 2.7
3× 3 conv (default) Offline full (L, Eq. 3) 84.4± 1.7

3× 3 conv Offline approx 83.1± 2.7
3× 3 conv Online full 76.3± 2.1
3× 3 conv Offline full, learned α 83.1± 3.3

Scaling‡ Offline full 77.5± 1.8
1× 1 conv Offline full 79.4± 2.2
3× 3 conv + ReLU Offline full 83.4± 1.6
3× 3 conv + BN† Offline full 84.7± 1.7
3× 3 conv + BN† + ReLU Offline full 85.0± 0.9
3× 3 conv + BN† + Res§ + ReLU Offline full 86.3± 1.1
2-layer 3× 3 conv + BN† + Res§ Offline full 88.0± 1.0
2-layer 3× 3 conv + BN† + Res§ + TA¶ Offline full 88.1± 1.0

H Ablation study: WarpGrad and Natural Gradient Descent

Here, we perform ablation studies to compare the geometry that a WarpGrad optimiser learns to the
geometry that Natural Gradient Descent (NGD) methods represent (approximately). For consistency,
we run the ablation on Omniglot. As computing the true Fisher Information Matrix is intractable,
we can compare WarpGrad against two common block-diagonal approximations, KFAC [26] and
Natural Neural Nets [5].

First, we isolate the effect of warping task loss surfaces by fixing a random initialisation and only
meta-learning warp parameters. That is, in this experiment, we set λC(θ0) = 0. We compare
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Figure 6: Ablation study. Left: Comparison of mean activation value E[h(x)] across layers, pre- and
post-warping. Right: Shatten-1 norm of Cov(h(x), h(x)) − I , pre- and post-norm. Statistics are
gathered on held-out test set and averaged over tasks and adaptation steps.

against two baselines, stochastic gradient descent (SGD) and KFAC, both trained from a random
initialisation. We use task mini-batch sizes of 200 and task learning rates of 1.0, otherwise we use
the same hyper-parameters as in the main experiment. For WarpGrad, we meta-train with these
hyper-parameters as well. We evaluate two WarpGrad architectures, in one, we use linear warp-layers,
which gives a block-diagonal preconditioning, as in KFAC. In the other, we use our most expressive
warp configuration from the ablation experiment in appendix G, where warp-layers are two-layer
convolutional block with residual connections, batch normalisation, and ReLU activation. We find
that warped geometries facilitate task adaptation on held-out tasks to a greater degree than either
SGD or KFAC by a significant margin (table 4). We further find that going beyond block-diagonal
preconditioning yields a significant improvement in performance.

Table 4: Ablation study: mean test error after 100 training
steps on held out evaluation tasks from a random initialisa-
tion. Mean and standard deviation over 4 seeds.

Method Preconditioning Accuracy

SGD None 40.1± 6.1
KFAC (NGD) Linear (block-diagonal) 58.2± 3.2
WarpGrad Linear (block-diagonal) 68.0± 4.4
WarpGrad Non-linear (full) 81.3± 4.0

Second, we explore whether the geom-
etry that we meta-learn under in the
full Warp-Leap algorithm is approxi-
mately Fisher. In this experiment we
use the main Warp-Leap architecture.
We use a meta-learner trained on 25
tasks and that we evaluate on 10 held-
out tasks. Because warp layers are lin-
ear in this configuration, if the learned
geometry is approximately Fisher, post-
warp activations should be zero-centred and the layer-wise covariance matrix should satisfy
Cov(ωi(hi(x)), ωi(hi(x))) = I , where I is the identify matrix [5]. If true, Warp-Leap would
learn a block-diagonal approximation to the Inverse Fisher Matrix, as Natural Neural Nets.

To test this, during task adaptation on held-out tasks, we compute the mean activation in each
convolutional layer pre- and post-warping. We also compute the Shatten-1 norm of the difference
between layer activation covariance and the identity matrix pre- and post-warping, as described
above. We average statistics over task and adaptation step (we found no significant variation in these
dimensions).

Figure 6 summarise our results. We find that, in general, WarpGrad-Leap has zero-centered post-warp
activations. That pre-warp activations are positive is an artefact of the ReLU activation function.
However, we find that the correlation structure is significantly different from what we would expect if
Warp-Leap were to represent the Fisher matrix; post-warp covariances are significantly different from
the identity matrix and varies across layers.

These results indicate that WarpGrad methods behave distinctly different from Natural Gradient
Descent methods. One possibility is that WarpGrad methods do approximate the Fisher Information
Matrix, but with higher accuracy than other methods. A more likely explanation is that WarpGrad
methods encode a different geometry since it can learn to leverage global information beyond the task
at hand, which enables it to express geometries that standard Natural Gradient Descent cannot.
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I miniImageNet and tieredImageNet

miniImageNet This dataset is a subset of 100 classes sampled randomly from the 1000 base classes
in the ILSVRC-12 training set, with 600 images for each class. Following [39], classes are split into
non-overlapping meta-training, meta-validation and meta-tests sets with 64, 16, and 20 classes in
each respectively.

tieredImageNet As described in [41], this dataset is a subset of ILSVRC-12 that stratifies 608
classes into 34 higher-level categories in the ImageNet human-curated hierarchy [4]. In order to
increase the separation between meta-train and meta-evaluation splits, 20 of these categories are used
for meta-training, while 6 and 8 are used for meta-validation and meta-testing respectively. Slicing
the class hierarchy closer to the root creates more similarity within each split, and correspondingly
more diversity between splits, rendering the meta-learning problem more challenging. High-level
categories are further divided into 351 classes used for meta-training, 97 for meta-validation and
160 for meta-testing, for a total of 608 base categories. All the training images in ILSVRC-12 for
these base classes are used to generate problem instances for tieredImageNet, of which there are a
minimum of 732 and a maximum of 1300 images per class.

For all experiments, N -way K-shot classification problem instances were sampled following the
standard image classification methodology for meta-learning proposed in [45]. A subset of N classes
was sampled at random from the corresponding split. For each class, K arbitrary images were chosen
without replacement to form the training dataset of that problem instance. As usual, a disjoint set of
L images per class were selected for the validation set.

Few-shot classification In these experiments we used the established experimental protocol for
evaluation in meta-validation and meta-testing: 600 task instances were selected, all using N = 5,
K = 1 or K = 5, as specified, and L = 15. During meta-training we used N = 5, K = 5 or
K = 15 respectively, and L = 15.

Task learners used 4 convolutional blocks defined by with 128 filters (or less, chosen by hyper-
parameter tuning), 3× 3 kernels and strides set to 1, followed by batch normalisation with learned
scales and offsets, a ReLU non-linearity and 2 × 2 max-pooling. The output of the convolutional
stack (5 × 5 × 128) was flattened and mapped, using a linear layer, to the 5 output units. The
last 3 convolutional layers were followed by warp layers with 128 filters each. Only the final 3
task-layer parameters and their corresponding scale and offset batch-norm parameters were adapted
during task-training, with the corresponding warp layers and the initial convolutional layer kept
fixed and meta-learned using the WarpGrad objective. Note that, with the exception of CAVIA,
other baselines do worse with 128 filters as they overfit; MAML and T-Nets achieve 46% and 49
% 5-way-1-shot test accuracy with 128 filters, compared to their best reported results (48.7% and
51.7%, respectively).

Hyper-parameters were tuned independently for each condition using random grid search for highest
test accuracy on meta-validation left-out tasks. Grid sizes were 50 for all experiments. We choose the
optimal hyper-parameters (using early stopping at the meta-level) in terms of meta-validation test set
accuracy for each condition and we report test accuracy on the meta-test set of tasks. 60000 meta-
training steps were performed using meta-gradients over a single randomly selected task instances
and their entire trajectories of 5 adaptation steps. Task-specific adaptation was done using stochastic
gradient descent without momentum. We use Adam [17] for meta-updates.

Multi-shot classification For these experiments we used N = 10, K = 640 and L = 50. Task
learners are defined similarly, but stacking 6 convolutional blocks defined by 3× 3 kernels and strides
set to 1, followed by batch normalisation with learned scales and offsets, a ReLU non-linearity and
2× 2 max-pooling (first 5 layers). The sizes of convolutional layers were chosen by hyper-parameter
tuning to {64, 64, 160, 160, 256, 256}. The output of the convolutional stack (2 × 2 × 256) was
flattened and mapped, using a linear layer, to the 10 output units.

Hyper-parameters were tuned independently for each algorithm, version and baseline using random
grid search for highest test accuracy on meta-validation left-out tasks. Grid sizes were 200 for all
multi-shot experiments. We choose the optimal hyper-parameters in terms of mean meta-validation
test set accuracy AUC (using early stopping at the meta-level) for each condition and we report test
accuracy on the meta-test set of tasks. 2000 meta-training steps were performed using averaged
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meta-gradients over 5 random task instances and their entire trajectories of 100 adaptation steps with
batch size 64, or inner-loops. Task-specific adaptation was done using stochastic gradient descent
with momentum (0.9). Meta-gradients were passed to Adam in the outer loop.

We test WarpGrad against Leap, Reptile, and training from scratch with large batches and tuned mo-
mentum. We tune all meta-learners for optimal performance on the validation set. WarpGrad outper-
forms all baselines both in terms of rate of convergence and final test performance (Figure 7).

Figure 7: Multi-shot tieredImageNet results. Top: mean learning curves (test classification accuracy)
on held-out meta-test tasks. Bottom: mean test classification performance on held-out meta-test tasks
during meta-training. Training from scratch omitted as it is not meta-trained.

J Maze Navigation

To illustrate both how WarpGrad may be used with Recurrent Neural Networks in an online meta-
learning setting, as well as in a Reinforcement Learning environment, we evaluate it in a maze
navigation task proposed by [29]. The environment is a fixed maze and a task is defined by randomly
choosing a goal location in the maze. During a task episode of length 200, the goal location is fixed
but the agent gets teleported once it finds it. Thus, during an episode the agent must first locate
the goal, then return to it as many times as possible, each time being randomly teleported to a new
starting location. We use an identical setup as [30], except our grid is of size 11 × 11 as opposed
to 9 × 9. We compare our Warp-RNN to a Learning to Reinforcement Learn [46] and Hebbian
meta-learners [29, 30].

The task learner in all cases is an advantage actor-critic [46], where the actor and critic share an
underlying basic RNN, whose hidden state is projected into a policy and value function by two separate
linear layers. The RNN has a hidden state size of 100 and tanh non-linearities. Following [30], for
all benchmarks, we train the task learner using Adam with a learning rate of 1e − 3 for 200 000
steps using batches of 30 episodes, each of length 200. Meta-learning arises in this setting as each
episode encodes a different task, as the goal location moves, and by learning across episodes the
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RNN is encoding meta-information in its parameters that is can leverage during task adaptation (via
its hidden state [13, 46]). See [30] for further details.

We design a Warp-RNN by introducing a warp-layer in the form of an LSTM that is frozen for most
of the training process. Following [8], we use this meta-LSTM to modulate the task RNN. Given an
episode with input vector xt, the task RNN is defined by

ht = tanh
(
U2
h,tV U

1
h,t ht−1 + U2

x,tWU1
x,t xt + U bt b

)
, (15)

where W, V, b are task-adaptable parameters; each U ij,t is a diagonal warp matrix produced by
projecting from the hidden state of the meta-LSTM, U ij,t = diag(tanh(P ij zt)), where z is the
hidden-state of the meta-LSTM. See [8] for details. Thus, our Warp-RNN is a form of HyperNetwork
(see Figure 3, Appendix A). Because the meta-LSTM is frozen for most of the training process, task
adaptable parameters correspond to those of the baseline RNN.

To control for the capacity of the meta-LSTM, we also train a HyperRNN where the LSTM is updated
with every task adaptation; we find this model does worse than the WarpGrad-RNN. We also compare
the non-linear preconditioning that we obtain in our Warp-RNN to linear forms of preconditioning
defined in prior works. We implement a T-Nets-RNN meta-learner, defined by embedding linear
projections Th, Tx and Tb that are meta-learned in the task RNN, ht = tanh(ThV ht + TxWxt + b).
Note that we cannot backpropagate to these meta-parameters as per the T-Nets (MAML) framework.
Instead, we train Th, Tx, Tb with the meta-objective and meta-training algorithm we use for the
Warp-RNN. The T-Nets-RNN does worse than the baseline RNN and generally fails to learn.

We meta-train the Warp-RNN using the continual meta-training algorithm (Algorithm 3, see Ap-
pendix C for details), which accumulates meta-gradients continuously during training. Because task
training is a continuous stream of batches of episodes, we accumulating the meta-gradient using
the approximate meta-objective that detaches the inner task gradient. Both Lτtask and Lτmeta are the
advantage actor-critic objective. We and update warp-parameters on every 30th task parameter update.
We detail the meta-objective in Appendix D (see Eq. 13). Our implementation of a Warp-RNN can be
seen as meta-learning “slow” weights to facilitate learning of “fast” weights [43, 32]. Implementing
Warp-RNN requires four lines of code on top of the standard training script. The task-learner is the
same in all experiments with the same number of learnable parameters and hidden state size. Com-
pared to all baselines, we find that the Warp-RNN converges faster and achieves a higher cumulative
reward (Figure 2 and Figure 8).

K Meta-Learning for Continual Learning

Online SGD and related optimisation methods tend to adapt neural network models to the data
distribution encountered last during training, usually leading to what has been termed “catastrophic
forgetting” [9]. In this experiment, we investigate whether WarpGrad optimisers can meta-learn
to avoid this problem altogether and directly minimise the joint objective over all tasks with every
update in the fully online learning setting where no past data is retained.

Continual Sine Regression We propose a continual learning version of the sine regression meta-
learning experiment in [6]. We split the input interval [−5, 5] ⊂ R evenly into 5 consecutive
sub-intervals, corresponding to 5 regression tasks. These are presented one at a time to a task
learner, which adapts to each sub-task using 20 gradient steps on data from the given sub-task
only. Batch sizes were set to 5 samples. Sub-tasks thus differ in their input domain. A task
sequence is defined by a target function composed of two randomly mixed sine functions of the
form fai,bi(x) = ai sin(x − bi) each with randomly sampled amplitudes ai ∈ [0.1, 5] and phases
bi ∈ [0, π]. A task τ = (a1, b1, a2, b2, o) is therefore defined by sampling the parameters that specify
this mixture; a task specifies a target function fτ by

fτ (x) = αo(x)fa1,b1(x) + (1− αo(x))fa2,b2(x), (16)

where αo(x) = σ(x + o) for a randomly sampled offset o ∈ [−5, 5], with σ being the sigmoid
activation function.
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Figure 8: Mean cumulative return for maze navigation task, for 200000 training steps. Shading
represents inter-quartile ranges across 10 independent runs.†Simple modulation and ‡retroactive
modulation, respectively [30].

Model We define a task learner as 4-layer feed-forward networks with hidden layer size 200 and
ReLU non-linearities to learn the mapping between inputs and regression targets, h(·, θ, φ). For
each task sequence τ , a task learner is initialised from a fixed random initialisation θ0 (that is not
meta-learned). Each non-linearity is followed by a residual warping block consisting of 2-layer
feed-forward networks with 100 hidden units and tanh non-linearities, with meta-learned parameters
φ which are fixed during the task adaptation process.

Continual learning as task adaptation The task target function fτ is partition into 5 sets of sub-
task. The task learner sees one partition at a time and is given n = 20 gradient steps to adapt, for
a total of K = 100 steps of online gradient descent updates for the full task sequence; recall that
every such sequence starts from a fixed random initialisation θ0. The adaptation is completely online
since at step k = 1, . . . ,K we sample a new mini-batch Dk

task of 5 samples from a single sub-task
(sub-interval). The data distribution changes after each n = 20 steps with inputs x coming from the
next sub-interval and targets form the same function fτ (x). During meta-training we always present
tasks in the same order, presenting intervals from left to right. The online (sub-)task loss is defined
on the current mini-batch Dk

task at step k:

Lτtask

(
θτk , D

k
task;φ

)
=

1

2| Dktask |

∑
x∈Dktask

(
h(x, θτk ;φ)− fτ (x)

)2
. (17)

Adaptation to each sub-task uses sub-task data only to form task parameter updates θτk+1 ← θτk −
α∇Lτtask

(
θτk , D

k
task;φ

)
. We used a constant learning rate α = 0.001. Warp-parameters φ are fixed
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across the full task sequence during adaptation. They are meta-learned across random samples of
task sequences, which we describe next.

Meta-learning an optimiser for continual learning To investigate the ability of WarpGrad to
learn an optimiser for continual learning that mitigates catastrophic forgetting, we fix a random
initialisation prior to meta-training that is not meta-learned; every task learner is initialised with
these parameters. To meta-learn an optimiser for continual learning, we need a meta-objective that
encourages such behaviour. Here, we take a first step towards a framework for meta-learned continual
learning. We define the meta-objective Lτmeta as incremental multitask objective that, for each sub-task
τt in a given task sequence τ , averages the validation sub-task losses (Eq. 17) for the current and
every preceding loss in the task sequence. The task meta-objective is defined by summing over all
sub-tasks in the task sequence. For some sub-task parameterisation θτt , we have

Lτmeta

(
θτt ;φ

)
=

t∑
i=1

1

n(T − t+ 1)
Lτtask

(
θτi , Di

val;φ

)
. (18)

As before, the full meta-objective is an expectation over the joint task parameter distribution (Eq. 3);
for further details on the meta-objective, see Appendix D, Eq. 14. This meta-objective gives equal
weight to all the tasks in the sequence by averaging the regression step loss over all sub-tasks where a
prior sub-task should be learned or remembered. For example, losses from the first sub-task, defined
using the interval [−5,−3], will appear nT times in the meta-objective. Conversely, the last sub-task
in a sequence, defined on the interval [3, 5], is learned only in the last n = 20 steps of task adaptation,
and hence appers n times in the meta-objective. Normalising on number of appearances corrects for
this bias. We trained warp-parameters using Adam and a meta-learning rate of 0.001, sampling 5
random tasks to form a meta-batch and repeating the process for 20 000 steps of meta-training.

Results Figure 9 shows a breakdown of the validation loss across the 5 sequentially learned tasks
over the 100 steps of online learning during task adaptation. Results are averaged over 100 random
regression problem instances. The meta-learned WarpGrad optimiser reduces the loss of the task
currently being learned in each interval while also largely retaining performance on previous tasks.
There is an immediate relatively minor loss of performance, after which performance on previous
tasks is retained. We hypothesise that this is because the meta-objectives averages over the full
learning curve, as opposed to only the performance once a task has been adapted to. As such, the
WarpGrad optimiser may allow for some degree of performance loss. Intriguingly, in all cases, after
an initial spike in previous sub-task losses when switching to a new task, the spike starts to revert
back some way towards optimal performance, suggesting that the WarpGrad optimiser facilitates
positive backward transfer, without this being explicitly enforced in the meta-objective. Deriving a
principled meta-objective for continual learning is an exciting area for future research.

(a) Task order as seen during meta-training. (b) Random task order.

Figure 9: Continual learning regression experiment. Average log-loss over 100 randomly sampled
tasks. Each task contains 5 sub-tasks learned (a) sequentially as seen during meta-training or (b) in
random order [sub-task 1, 3, 4, 2, 0]. We train on each sub-task for 20 steps, for a total of K = 100
task adaptation steps.
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(a) Task order seen during meta-training. (b) Random task order.

Figure 10: Continual learning regression: evaluation after partial task adaptation. We plot the ground
truth (black), task learner prediction before adaptation (dashed green) and task learner prediction
after adaptation (red). Each row illustrates how task learner predictions evolve (red) after training
on sub-tasks up to and including that sub-task (current task illustrate in plot). (a) sub-tasks are
presented in the same order as seen during meta-training; (b) sub-tasks are presented in random order
at meta-test time in sub-task order [1, 3, 4, 2 and 0].
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