
Supplementary Material244

×
×

-1

log

xi

yi

}×
×

-1
xi

1
÷

ex

log yi

xi

ex

(1) Loss function discovery genetic algorithm. (2) Coefficient optimization via CMA-ES.

×
×

-1

log

xi

yi
1

1

1

1

1

1

1 1 11 1 1[]

ℒ = −1
n

n

∑
i= 0

xi log(yi) ℒ = −1
n

n

∑
i= 0

c1(c2xi * c3 log(c4yi))

1.1 0.8 1.41.2 1 1.2[]

Figure 4: Genetic Loss Optimization (GLO) overview. A genetic algorithm constructs candidate
loss functions as trees. The best loss functions from this set then has its coefficients optimized using
CMA-ES. GLO loss functions are able to train models more quickly and more accurately.

Initial population, recombination, and mutation245

The initial population is composed of randomly generated trees with a maximum depth of 2. Re-246

cursively starting from the root, nodes are randomly chosen from the allowable operator and leaf247

nodes using a weighting (where log(...), x, y are three-times as likely and p
... is two-times as likely248

as +, ⇤,�,÷, 1,�1), this can impart a bias and prevent, for example, the integer 1 from occurring249

too frequently. The genetic algorithm has a population size of 80, incorporates elitism with 6 elites250

per generation, and uses roulette-sampling.251

Recombination is accomplished by randomly splicing two trees together. For a given pair of parent252

trees, a random element is chosen in each as a crossover point. The two subtrees, whose roots are the253

two crossover points, are then swapped with each other. Both resultant trees become part of the next254

generation. Recombination occurs with a probability of 80%.255

To introduce variation into the population, the genetic algorithm has the following mutations, applied256

in a bottom-up fashion: integer scalar nodes are incremented or decremented with a 5% probability,257

nodes are replaced with a weighted-random node with the same number of children with a 5%258

probability, nodes (and their children) are deleted and replaced with a weighted-random leaf node259

with a 5% ⇤ 50% = 2.5% probability, leaf nodes are deleted and replaced with a weighted-random260

element (and weighted-random leaf children if necessary) with a 5% ⇤ 50% = 2.5% probability.261

MNIST experimental setup262

The first target task used for evaluation was the MNIST Handwritten Digits dataset [15], a widely263

used dataset where the goal is to classify 28 ⇥ 28 pixel images as one of ten digits. The MNIST264

dataset has 55,000 training samples, 5,000 validation samples, and 10,000 testing samples.265

A simple CNN architecture with the following layers is used: (1) 5⇥ 5 convolution with 32 filters,266

(2) 2⇥ 2 stride-2 max-pooling, (3) 5⇥ 5 convolution with 64 filters, (4) 2⇥ 2 stride-2 max-pooling,267

(5) 1024-unit fully-connected layer, (6) a dropout layer [10] with 40% dropout probability, and (7) a268

softmax layer. ReLU [19] activations are used. Training uses stochastic gradient descent (SGD) with269

a batch size of 100, a learning rate of 0.01, and, unless otherwise specified, for 20,000 steps.270

CIFAR-10 experimental setup271

To further validate GLO, the more challenging CIFAR-10 dataset [13] (a popular dataset of small,272

color photographs in ten classes) was used as a medium to test the transferability of loss functions273

found on a different domain. CIFAR-10 consists of 50,000 training samples, and 10,000 testing274

samples.275

A simple CNN architecture, taken from [6] (and itself inspired by AlexNet [14]), with the following276

layers is used: (1) 5⇥ 5 convolution with 64 filters and ReLU activations, (2) 3⇥ 3 max-pooling277

7

with a stride of 2, (3) local response normalization [14] with k = 1,↵ = 0.001/9,� = 0.75,278

(4) 5⇥ 5 convolution with 64 filters and ReLU activations, (5) local response normalization with279

k = 1,↵ = 0.001/9,� = 0.75, (6) 3⇥3 max-pooling with a stride of 2, (7) 384-unit fully-connected280

layer with ReLU activations, (8) 192-unit fully-connected, linear layer, and (9) a softmax layer.281

Inputs to the network are sized 24 ⇥ 24 ⇥ 3, rather than 32 ⇥ 32 ⇥ 32 as provided in the dataset;282

this enables more sophisticated data augmentation. To force the network to better learn spatial283

invariance, random 24⇥ 24 croppings are selected from each full-size image, which are randomly284

flipped longitudinally, randomly lightened or darkened, and their contrast is randomly perturbed.285

Furthermore, to attain quicker convergence, an image’s mean pixel value and variance are subtracted286

and divided, respectively, from the whole image during training and evaluation. CIFAR-10 networks287

were trained with SGD, L2 regularization with a weight decay of 0.004, a batch size of 1024, and an288

initial learning rate of 0.05 that decays by a factor of 0.1 every 350 epochs.289

Implementation details290

Due to the large number of partial training sessions that are needed for both the discovery and291

optimization phases, training is distributed across the network to a cluster of dedicated machines that292

use Condor [27] for scheduling. Each machine in this cluster has one NVIDIA GeForce GTX Titan293

Black GPU and two Intel Xeon E5-2603 (4 core) CPUs running at 1.80GHz with 8GB of memory.294

Training itself is implemented with TensorFlow [1] in Python. The primary components of GLO (i.e.,295

the genetic algorithm and CMA-ES) are implemented in Swift. These components run centrally on296

one machine and asynchronously dispatch work to the Condor cluster over SSH. Code is available at:297

http://bit.ly/neurips2019_GLO_code298

Analysis299

This section presents a symbolic analysis of the Baikal loss function, followed by experiments that300

attempt to elucidate why Baikal works better than the cross-entropy loss. A likely explanation is that301

Baikal results in implicit regularization.302

Binary classification303

Loss functions used on the MNIST dataset, being a 10-dimensional classification problem, are304

difficult to plot and visualize graphically. In this section, loss functions are analyzed in the context of305

binary classification; where n = 2, the Baikal loss expands to:306

LBaikal2D = �1

2

✓
log(y0)�

x0

y0
+ log(y1)�

x1

y1

◆
/ � log(y0)+

x0

y0
� log(1�y0)+

1� x0

1� y0
, (1)

since vectors x and y sum to 1, by consequence of being passed through a softmax function, for307

binary classification x = [x0, 1 � x0] and y = [y0, 1 � y0]. This constraint simplifies the binary308

Baikal loss to a function of two variables (x0 and y0). This same methodology can be applied to the309

cross-entropy loss and BaikalCMA.310

Figure 5: Binary classification loss functions at
x0 = 1. Correct predictions lie on the right
side of the graph, and vice versa. The log loss
is shown to be monotonically decreasing, while
Baikal and BaikalCMA present counterintuitive,
sharp increases in loss as predictions, approach the
true label.

In practice, true labels are assumed to be correct311

with certainty, thus, x0 is equal to either 0 or312

1. The specific case where x0 = 1 is plotted in313

Figure 5 for the cross-entropy loss, Baikal, and314

BaikalCMA. The cross-entropy loss is shown to315

be monotonically decreasing, while Baikal and316

BaikalCMA counterintuitively show an increase317

in the loss value as the predicted label, y0, ap-318

proaches the true label x0. Section 5 provides319

reasoning for this unusual phenomenon.320

As also seen in Figure 5, the minimum for the321

Baikal loss where x = 1 lies around 0.71, while322

the minimum for the BaikalCMA loss where323

x = 1 lies around 0.77. This, along with the324

more pronounced slope around y = 0.5 is likely325

8

http://bit.ly/neurips2019_GLO_code

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

Log Loss Input Activation Strength

Q
ua
nt
ity

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

BaikalCMA Input Activation Strength

Q
ua
nt
ity

Figure 6: Loss function input activation strength histograms for cross-entropy loss and BaikalCMA.
The peaks are likely shifted with BaikalCMA due to implicit regularization. These histograms match
those from a network trained with a confidence regularizer [21].

a reason why BaikalCMA performs better than326

Baikal.327

Implicit regularization328

The Baikal and BaikalCMA loss functions are unusual in that they are not monotonically decreasing329

(see the previous section for more details). At first glance, this behavior may seem undesirable;330

however, this may be an advantageous trait that implicitly provides a form of regularization (enabling331

better generalization). This is strongly supported by [21], where researchers built a confidence332

regularizer, on top of cross-entropy loss, that penalizes low entropy prediction distributions. The333

bimodal distribution of output probabilities that the researchers found on MNIST is nearly identical334

to that which can be found on a network trained with Baikal or BaikalCMA.335

Histograms of the output probability distributions of network trained with the cross-entropy loss and336

BaikalCMA on the test dataset, after 15,000 steps of training on MNIST, are shown in Figure 6. Note337

that the abscissae in Figures 5 and 6 correspond with each other, thus one can qualitatively see how338

the channel-shaped curves for BaikalCMA may contribute to the shift in histogram peaks.339

Furthermore, the improved behavior under small-dataset conditions described in Section 4.1 backs340

this theory of implicit regularization, since less overfitting was observed when using Baikal and341

BaikalCMA.342

9

	Introduction
	Related Work
	The GLO Approach
	Experimental Evaluation
	The Baikal loss function

	Conclusion

