
Improved Training Speed, Accuracy, and Data
Utilization Through Loss Function Optimization

Santiago Gonzalez1,2 and Risto Miikkulainen1,2

1Cognizant Technology Solutions, San Francisco, California, USA
2Department of Computer Science, University of Texas at Austin, Austin, Texas, USA

Email: slgonzalez@utexas.edu, risto@cs.utexas.edu

Abstract

As the complexity of neural network models has grown, it has become increasingly
important to optimize their design automatically through metalearning. Methods
for discovering hyperparameters, topologies, and learning rate schedules have lead
to significant increases in performance. This paper shows that loss functions can
be optimized with metalearning as well, and result in similar improvements. The
method, Genetic Loss-function Optimization (GLO), discovers loss functions de
novo, and optimizes them for a target task. Leveraging techniques from genetic
programming, GLO builds loss functions hierarchically from a set of operators
and leaf nodes. These functions are repeatedly recombined and mutated to find an
optimal structure, and then a covariance-matrix adaptation evolutionary strategy
(CMA-ES) is used to find optimal coefficients. Networks trained with GLO loss
functions are found to outperform the standard cross-entropy loss on standard image
classification tasks. Training with these new loss functions requires fewer steps,
results in lower test error, and allows for smaller datasets to be used. Loss function
optimization thus provides a new dimension of metalearning, and constitutes an
important step towards AutoML.

1 Introduction

Much of the power of modern neural networks originates from their complexity, i.e. number of
parameters, hyperparameters, and topology. This complexity is beyond human ability to optimize,
and metalearning methods are needed; based on various methods such as gradient descent, simulated
annealing, reinforcement learning, Bayesian optimization, and evolutionary computation (EC) [5].

While a wide repertoire of work now exists for optimizing many aspects of neural networks, the
dynamics of training are still usually set manually without concrete, scientific methods. Particularly,
loss functions affect the training and final functionality of a neural network. Perhaps they could also
be optimized through metalearning?

The goal of this paper is to verify this hypothesis. A general framework for loss function met-
alearning, covering both novel loss function discovery and optimization, is developed and evaluated
experimentally. This framework, Genetic Loss-function Optimization (GLO), leverages Genetic
Programming to build loss functions represented as trees, and subsequently a Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) to optimize their coefficients. EC methods were chosen
because EC is arguably the most versatile of the metalearning approaches. It is a population-based
search method; allowing for extensive exploration, which often results in creative, novel solutions that
are not obvious at first [16]. EC has been successful in hyperparameter optimization and architecture
design in particular [18, 26, 22, 17]. It has also been used to discover mathematical formulas to
explain experimental data [23]. It is, therefore, likely to find creative solutions in the loss function
optimization domain as well.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Indeed, in the MNIST image classification benchmark, GLO discovered a surprising new loss
function, named Baikal for its shape. This function performs very well, presumably by establishing
an implicit regularization effect. Baikal outperforms the standard cross-entropy loss in terms of
training speed, final accuracy, and data requirements. Furthermore, Baikal was found to transfer to a
more complicated classification task, CIFAR-10, while carrying over its benefits.

2 Related Work

In addition to hyperparameter optimization and neural architecture search, new opportunities for
metalearning have recently emerged. In particular, learning rate scheduling and adaptation can have a
significant impact on a model’s performance. Learning rate schedules determine how the learning
rate changes as training progresses. This functionality tends to be encapsulated away in practice
by different gradient-descent optimizers, such as AdaGrad [4] and Adam [12]. While the general
consensus has been that monotonically decreasing learning rates yield good results, new ideas, such
as cyclical learning rates [24], have shown promise in learning better models in fewer epochs.

Metalearning methods have also been recently developed for data augmentation, such as AutoAug-
ment [3], a reinforcement learning based approach to find new data augmentation policies. In
reinforcement learning tasks, EC has proven a successful approach. For instance, in evolving policy
gradients [11], the policy loss is not represented symbolically, but rather as a neural network that
convolves over a temporal sequence of context vectors. In reward function search [20], the task is
framed as a genetic programming problem, leveraging PushGP [25].

In terms of loss functions, a generalization of the L2 loss was proposed with an adaptive loss parameter
[2]. This loss function is shown to be effective in domains with multivariate output spaces, where
robustness might vary across between dimensions. Specifically, the authors found improvements
in Variational Autoencoder (VAE) models, unsupervised monocular depth estimation, geometric
registration, and clustering.

Notably, no existing work in the metalearning literature automatically optimizes loss functions for
neural networks. As shown in this paper, evolutionary computation can be used in this role to improve
neural network performance, gain a better understanding of the processes behind learning, and help
reach the ultimate goal of fully automated learning.

3 The GLO Approach

The task of finding and optimizing loss functions can be framed as a functional regression problem.
GLO accomplishes this through the following high-level steps (shown in Figure ??): (1) loss function
discovery: using approaches from genetic programming, a genetic algorithm builds new candidate
loss functions, and (2) coefficient optimization: to further optimize a specific loss function, a
covariance-matrix adaptation evolutionary strategy (CMA-ES) is leveraged to optimize coefficients.
Information on implementation details is provided in the supplementary material.

GLO uses a population-based search approach, inspired by genetic programming, to discover new
optimized loss function candidates. Under this framework, loss functions are represented as trees, due
to their hierarchical nature, within a genetic algorithm. The loss function search space is defined by
the following tree nodes: Unary: log(. . .), . . .2 ,√. . ., Binary: +, ∗,−,÷, Leaf Nodes: x, y, 1,−1,
where x represents a true label, and y represents a predicted label.

The search space is further refined by automatically assigning a fitness of 0 to trees that don’t contain
both at least one x and one y. Generally, a loss function’s fitness within the genetic algorithm is
the validation performance of a network trained with that loss function. To expedite the discovery
process, and encourage the invention of loss functions that enable faster learning, training does not
proceed to convergence. Unstable training sessions that result in NaN values are assigned a fitness of
0. Fitness values are cached to avoid needing to retrain the same network twice. Information on the
initial population, recombination, and mutations is presented in the supplementary material.

Loss functions found by the above genetic algorithm can all be thought of having unit coefficients for
each node in the tree. This set of coefficients can be represented as a vector with dimensionality equal
to the number of nodes in a loss function’s tree. The coefficient vector is optimized independently and
iteratively using a covariance-matrix adaptation evolutionary strategy (CMA-ES). [8] The specific

2



variant of CMA-ES that GLO uses is (µ/µ, λ)-CMA-ES [9], and incorporates weighted rank-µ
updates [7] to reduce the number of objective function evaluations that are needed. The presented
GLO implementation uses an initial step size σ = 1.5. As in the discovery phase, the objective
function is the network’s performance on a validation dataset after a shortened training period.

4 Experimental Evaluation

Data

Test Accuracy Log Loss Baikal BaikalCMA

0.9898 0.9941 0.9945

0.9898 0.9937 0.9941

0.9902 0.9925 0.9949

0.9894 0.9932 0.995

0.9895 0.9935 0.9952

0.9905 0.9924 0.9956

0.9902 0.9937 0.9944

0.9896 0.9934 0.9944

0.9898 0.993 0.9944

0.9899 0.9935 0.9944

Mean Test Accuracy 0.9899 0.9933 0.9947

Standard Deviation 0.0003 0.0005 0.0005

T-Test Baikal vs Log 
Loss

2-Tailed 1-Tailed

Paired 0.000000185917 0.000000092958

Homoscedastic 0.000000000002 0.000000000001

Heteroscedastic 0.000000000024 0.000000000012

0.9800

0.9850

0.9900

0.9950

1.0000

Log Loss Baikal

Mean Test Accuracy

***

p = 0.000

M
ea

n 
Te

st
 A

cc
ur

ac
y

0.9800

0.9850

0.9900

0.9950

1.0000

Log Loss Baikal BaikalCMA

*** ***

T-Test BaikalCMA vs 
Baikal

2-Tailed 1-Tailed

Paired

Homoscedastic

Heteroscedastic 0.000008504450

�2

Figure 1: Mean testing accuracy
on MNIST, n = 10. Both Baikal
and BaikalCMA provide statisti-
cally significant improvements to
testing accuracy over the cross-
entropy loss.

This section provides an experimental evaluation of GLO, on
the MNIST and CIFAR-10 image classification tasks. Baikal, a
GLO loss function found on MNIST, is presented and evaluated
in terms of its resulting testing accuracy, training speed, training
data requirements, and transferability to CIFAR-10.

Experiments on GLO are performed using two popular image clas-
sification datasets, MNIST Handwritten Digits [15] and CIFAR-
10 [13]. Both datasets are well understood, and relatively quick
to train, allowing rapid iteration in the development of GLO and
time for more thorough experimentation. The selected model
architectures are simple, since achieving state-of-the-art accuracy
on MNIST and CIFAR-10 is not the focus of this paper, rather
the improvements brought about by using a GLO loss function
are. More information on the datasets, along with their corre-
sponding architectures and experimental setup is provided in the
supplementary material.

Both of these tasks, being classification problems, are traditionally framed with the standard cross-
entropy loss (sometimes referred to as the log loss): LLog = − 1

n

∑n
i=0 xi log(yi), where x is sampled

from the true distribution, y is from the predicted distribution, and n is the number of classes. The
cross-entropy loss is used as a baseline in this paper’s experiments.

4.1 The Baikal loss function

Figure 2: Binary classification loss functions at x0 =
1. Correct predictions lie on the right side of the graph.
The log loss is shown to be monotonically decreasing,
while Baikal and BaikalCMA present counterintuitive,
sharp increases in loss as predictions, approach the
true label. This provides regularization by preventing
the model from being too confident in its predictions.

The most notable loss function that GLO
discovered against the MNIST dataset (with
2,000-step training for candidate evaluation)
is the Baikal loss (named as such due to its
similarity to the bathymetry of Lake Baikal
when its binary variant is plotted in 3D):

LBaikal = −
1

n

n∑
i=0

log(yi)−
xi
yi
,

where x is from the true distribution, y is
from the predicted distribution, and n is the
number of classes. Additionally, after coef-
ficient optimization, GLO arrived at the fol-
lowing version of the Baikal loss (simplified):

LBaikalCMA = − 1

n

n∑
i=0

2.7279

(
0.9863 ∗ log(1.5352 ∗ yi)− 1.8158

xi
yi

)
.

This loss function, BaikalCMA, was selected for having the highest validation accuracy out of the
population. The Baikal and BaikalCMA loss functions had validation accuracies at 2,000 steps equal
to 0.9838 and 0.9902, respectively. For comparison, the cross-entropy loss had a validation accuracy
at 2,000 steps of 0.9700. Models trained with the Baikal loss on MNIST and CIFAR-10 (to test
transfer) are the primary vehicle for validating GLO’s efficacy, as detailed in subsequent sections.

Testing accuracy Figure 1 shows the increase in testing accuracy that Baikal and BaikalCMA
provide on MNIST over models trained with the cross-entropy loss. Over 10 trained models each, the

3



mean testing accuracies for cross-entropy loss, Baikal, and BaikalCMA were 0.9899, 0.9933, and
0.9947, respectively. This increase in accuracy from Baikal over cross-entropy loss is statistically
significant, with a p-value of 2.4× 10−11, in a heteroscedastic, two-tailed T-test, with 10 samples
from each distribution. With the same significance test, the increase in accuracy from BaikalCMA
over Baikal was statistically significant, with a p-value of 8.5045× 10−6.

Figure 3: Training curves for different loss
functions on MNIST. Baikal and BaikalCMA
result in faster and smoother training com-
pared to the cross-entropy loss.

Training speed Training curves for networks
trained with the cross-entropy loss, Baikal, and
BaikalCMA are shown in Figure 3. Each curve rep-
resents 80 testing dataset evaluations spread evenly
(i.e., every 250 steps) throughout 20,000 steps of
training on MNIST. Networks trained with Baikal
and BaikalCMA both learn significantly faster than
the cross-entropy loss. Interestingly, the Baikal and
BaikalCMA training curves are both smoother than
the cross-entropy loss curve, implying that their loss
surfaces have fewer or less detrimental local min-
ima. These phenomena make Baikal a compelling
loss function for fixed time-budget training, where
the improvement in accuracy over the cross-entropy
loss becomes most evident.

Training data requirements Experiments were
performed to ascertain the effects of dataset size on networks trained with cross-entropy loss, Baikal,
and BaikalCMA. For each training dataset portion size, five individual networks were trained for
each loss function. The degree by which Baikal and BaikalCMA outperform cross-entropy loss
increases as the training dataset becomes smaller. This provides evidence of less overfitting when
training a network with Baikal or BaikalCMA. As expected, BaikalCMA outperforms Baikal at all
tested dataset sizes. The size of this improvement in accuracy does not grow as significantly as the
improvement over cross-entropy loss, leading to the belief that the overfitting characteristics of Baikal
and BaikalCMA are very similar.

Loss function transfer to CIFAR-10 The Baikal loss was applied to CIFAR-10, as a means to test
transferability. In a collection of 18 separate tests on CIFAR-10, Baikal outperforms cross-entropy
across all training durations, with the difference becoming more prominent for shorter training
periods. These results present an interesting use case for GLO, where a loss function that is found on
a simpler dataset can be transferred to a more complex dataset while still maintaining performance
improvements. This provides a particularly persuasive argument for using GLO loss functions in
fixed time-budget scenarios.

5 Conclusion

This paper proposes Genetic Loss-function Optimization (GLO) as a general framework for dis-
covering and optimizing loss functions for a given task. A surprising new loss function, Baikal,
was discovered in the experiments, and shown to outperform the cross-entropy loss on MNIST and
CIFAR-10 in terms of accuracy, training speed, and data requirements. Further analysis (provided in
the supplementary material) suggests that Baikal’s improvements result from implicit regularization
that reduces overfitting to the data. GLO can be combined with other aspects of metalearning in the
future, paving the way to robust and powerful AutoML.

In the future, GLO can be applied to other machine learning datasets and tasks. The approach is
general, and could result in discovery of customized loss functions for different domains, or even
specific datasets. GLO could also leverage co-evolution, where multiple interacting solutions are
developed simultaneously. For instance, GLO could be combined with techniques like CoDeepNEAT
[18] to learn jointly-optimal network structures, hyperparameters, learning rate schedules, data
augmentation, and loss functions simultaneously. Such approaches require significant computing
power, but they may also discover and utilize interactions between the design elements that result in
higher complexity and better performance than is currently possible.

4



References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,

M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), pages 265–283, Savannah, GA,
2016. USENIX Association.

[2] J. T. Barron. A general and adaptive robust loss function. arXiv preprint arXiv:1701.03077, 2017.

[3] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. Autoaugment: Learning augmentation
policies from data. arXiv preprint arXiv:1805.09501, 2018.

[4] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[5] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. arXiv preprint
arXiv:1808.05377, 2018.

[6] S. Gonzalez, J. Landgraf, and R. Miikkulainen. Faster training by selecting samples using embeddings. In
2019 International Joint Conference on Neural Networks (IJCNN), 2019.

[7] N. Hansen and S. Kern. Evaluating the CMA evolution strategy on multimodal test functions. In
International Conference on Parallel Problem Solving from Nature, pages 282–291. Springer, 2004.

[8] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions in evolution strategies:
The covariance matrix adaptation. In Proceedings of IEEE international conference on evolutionary
computation, pages 312–317. IEEE, 1996.

[9] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolution-
ary computation, 9(2):159–195, 2001.

[10] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[11] R. Houthooft, Y. Chen, P. Isola, B. Stadie, F. Wolski, O. J. Ho, and P. Abbeel. Evolved policy gradients. In
Advances in Neural Information Processing Systems, pages 5400–5409, 2018.

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[13] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural
networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[15] Y. LeCun, C. Cortes, and C. Burges. The MNIST dataset of handwritten digits, 1998.

[16] J. Lehman et al. The surprising creativity of digital evolution: A collection of anecdotes from the
evolutionary computation and artificial life research communities. arXiv preprint arXiv:1803.03453, 2018.

[17] I. Loshchilov and F. Hutter. CMA-ES for hyperparameter optimization of deep neural networks. arXiv
preprint arXiv:1604.07269, 2016.

[18] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju, H. Shahrzad,
A. Navruzyan, N. Duffy, et al. Evolving deep neural networks. In Artificial Intelligence in the Age
of Neural Networks and Brain Computing, pages 293–312. Elsevier, 2019.

[19] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of
the 27th international conference on machine learning (ICML-10), pages 807–814, 2010.

[20] S. Niekum, A. G. Barto, and L. Spector. Genetic programming for reward function search. IEEE
Transactions on Autonomous Mental Development, 2(2):83–90, 2010.

[21] G. Pereyra, G. Tucker, J. Chorowski, Ł. Kaiser, and G. Hinton. Regularizing neural networks by penalizing
confident output distributions. arXiv preprint arXiv:1701.06548, 2017.

[22] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier architecture
search. arXiv preprint arXiv:1802.01548, 2018.

5



[23] M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data. Science, 324(5923):81–
85, 2009.

[24] L. N. Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 464–472. IEEE, 2017.

[25] L. Spector, E. Goodman, A. Wu, W. B. Langdon, H. m. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk,
M. Garzon, E. Burke, and M. Kaufmann Publishers. Autoconstructive evolution: Push, pushgp, and
pushpop. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), 05 2001.

[26] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen. Designing neural networks through neuroevolu-
tion. Nature Machine Intelligence, 1(1):24–35, 2019.

[27] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the condor experience.
Concurrency and computation: practice and experience, 17(2-4):323–356, 2005.

6


	Introduction
	Related Work
	The GLO Approach
	Experimental Evaluation
	The Baikal loss function

	Conclusion

