
A Background

A.1 Meta-Learning

We present a unified perspective on meta-learning in the task-segmented setting, which allows
straightforward presentation of the algorithms used in this work as well as generalization to the
task-unsegmented case. The core idea of meta-learning is to directly optimize the few-shot learning
performance of a machine learning model over a distribution of learning tasks, rather than just a single
task, with the goal of this learning performance generalizing to other tasks from this distribution.
A meta-learning method consists of two phases: meta-training and online adaptation. Let ✓ be the
parameters of this model learned via meta-training. During online adaptation, the model uses context
data Dt = (x1:t,y1:t) from within one task to compute statistics

⌘t = f✓(Dt) (8)
where f is a function parameterized by ✓. For example, in MAML (Finn et al., 2017), the statistics
are the neural network weights after gradient updates computed using Dt. In neural processes
(Garnelo et al., 2018), the statistics are the aggregated context parameters computed via encoding and
aggregating the context data. For recurrent network-based meta-learning algorithms, these statistics
correspond to the hidden state of the network. For a simple nearest-neighbors model, ⌘ may simply be
the context data. The model then performs predictions by using these statistics to define a conditional
distribution on y given new inputs x,

y | x,Dt ⇠ p✓(y | x,⌘t).

Adopting a Bayesian perspective, we refer to p✓(y | x,⌘t) as the posterior predictive distribution.
The performance of this model on this task can be evaluated by considering how well this posterior
predictive distribution matches the true task data distribution,

L(Dt,✓) = D(p(y | x, Ti)kp✓(y | x, f✓(Dt)))

where D is a measure of the dissimilarity of the two distributions, e.g. the KL divergence, for which
this objective becomes standard negative log likelihood minimization.
Meta-learning optimizes the parameters ✓ such that the model performs well across a distribution of
tasks,

min
✓

ETi⇠p(T) [EDt⇠Ti [L(Dt,✓)]] .

Across most meta-learning algorithms, including all of those referenced above, both the update rule
and the prediction function are chosen to be differentiable operations, such that the parameters can be
optimized via stochastic gradient descent. Given a dataset pre-segmented into groups of data from
individual tasks, standard meta-learning algorithms operate via first sampling a group for which T is
fixed, treating part of that group as the context data Dt and sampling from the remainder to obtain test
points (x,y) from the same task. While this strategy can be very effective and produce expressive
models that are capable of few-shot learning in complex domains, it relies on task segmentation
which in many settings, especially continual learning, is not easily available.

A.2 Bayesian Online Changepoint Detection

To enable meta-learning without task segmentation, we extend prior work in changepoint detec-
tion. Specifically, we build on Bayesian online changepoint detection (Adams & MacKay, 2007),
an approach for detecting changepoints (i.e. task switches) originally presented in a streaming
unconditional density estimation context, which we review here.
BOCPD operates by maintaining a belief distribution over run lengths, i.e. how many of the past data
points yt correspond to the current task. At time t, run length of rt = ⌧ indicates that the task has
switched ⌧ timesteps ago, i.e. D�⌧ = yt�⌧ :t are all drawn from a shared task T . A belief that rt = 0
implies that there has been a task switch, and that the current datapoint yt was drawn from a new task
T 0 ⇠ p(T). We denote this belief distribution at time t as bt(rt) = p(rt | y1:t�1).
Given rt, we know the past rt data points all correspond to the same task, and thus the density
p(yt | y1:t�1, rt) corresponds to the posterior predictive density after conditioning on the past rt
data points. We can reason about the overall posterior predictive by marginalizing over the run length
rt according to bt(rt),

p(yt | y1:t�1) =
t�1X

rt=0

p(yt | y1:t�1, rt)bt(rt),

7

Algorithm 1 Meta-Learning via Online Changepoint Analysis: Training
Require: Training data x1:n,y1:n, number of training iterations N , initial model parameters ✓

1: for i = 1 to N do
2: Sample training batch x1:T ,y1:T from the full timeseries.
3: Initialize belief over run length b1(r1 = 0) = 1
4: Initialize posterior statistics ⌘0[r = 0] according to ✓
5: for t = 1 to T do
6: Observe xt
7: Compute bt(rt | xt) according to (2)
8: Predict p✓(ŷt | x1:t,y1:t�1) according to (6)
9: Observe yt

10: Incur NLL loss `t = � log p✓(yt | x1:t,y1:t�1)
11: Compute updated posteriors ⌘t[rt] for all rt according to (7)
12: Compute bt(rt | xt,yt) according to (3)
13: Compute updated belief over run length bt+1 according to (5) and (4)
14: end for
15: Compute r✓

Pk+T
t=k `t and perform gradient descent update to ✓

16: end for

where p(yt | y1:t�1, rt) is referred to as the underlying predictive model (UPM). BOCPD recursively
computes posterior predictive densities for each value of rt 2 {0, . . . , t� 1}, and then evaluates new
datapoints yt+1 under these posterior predictive densities to update the belief distribution b(rt). In
this work, we extend this approach of Adams & MacKay (2007) beyond Bayesian unconditional
density estimation to apply to general meta-learning models operating in the conditional density
estimation setting, and derive these update rules in more detail for our context.

B MOCA Details

B.1 Batch Training MOCA

In practice, we sample batches of length T from the full training time series, and train on these com-
ponents. While this artificially increases the observed hazard rate (as a result of the initial belief over
run length being 0 with probability 1), it substantially reduces the computational burden of training.
Because MOCA maintains a posterior for each possible run length, computational requirements grow
linearly with T . Iterating over the whole training time series without any hypothesis pruning can
be prohibitively expensive. While a variety of different pruning methods within BOCPD have been
proposed (Wilson et al., 2010; Saatci et al., 2010), we require a pruning method which does not break
model differentiability. Note that at test-time, we no longer require differentiability and so previously
developed pruning methods may be applied.
Empirically, we observe diminishing marginal returns when training on longer sequences. Fig. 3
shows the performance of MOCA for varying training sequence lengths (T). In all experiments
presented in the body of the paper, we use T = 100. As discussed, small T values artificially inflate
the observed hazard rate, so we expect to see performance improve with larger T values. Fig. 3
shows that this effect results in diminishing marginal returns, with little performance improvement
beyond T = 100. Longer training sequences lead to increased computation per iteration (as MOCA
is linear in the runlength), as well as an increased memory burden (especially during training, when
the computation graph must be retained by automatic differentiation frameworks). Thus, we believe
it is best to train on the shortest possible sequences, and propose T = 1/� (where � is the hazard
rate) as a rough rule of thumb.

C Making your MOCA: Model Instantiations

Thus far, we have presented MOCA at an abstract level, highlighting the fact that it can be used with
any meta-learning model that admits the probabilistic interpretation as an underlying predictive model.
However, there are several practical considerations in the choice of meta-learning algorithm which
can influence the computational efficiency and overall performance of MOCA. For the experiments
in this paper, we leverage two meta-learning algorithms which offer a clean Bayesian learning
interpretation, relatively low-dimensional posterior statistics, recursive updates for these statistics,
and computationally efficient likelihood evaluation under the posterior predictive. For regression
experiments, we use ALPaCA (Harrison et al., 2018); for classification experiments, we use a novel
algorithm based on similar Bayesian updates which we refer to as PCOC, for probabilistic clustering

8

Figure 3: Performance versus the training horizon (T)
for the sinusoid with hazard 0.01. The lowest hazard
was used to increase the effects of the short training
horizon. A minor decrease in performance is visible for
very small training horizons (around 20), but flattens
off around 100 and above. It is expected that these
diminishing marginal returns will occur for all systems
and hazard rates.

for online classification. For completeness, we offer a high level overview of these algorithms and
show how they fit into the MOCA framework in the following subsections.

C.1 ALPaCA: Bayesian Meta-Learning for Regression

ALPaCA (Harrison et al., 2018) is a meta-learning approach for which the base learning model is
Bayesian linear regression in a learned feature space y | x ⇠ N (KT�(x,w),⌃✏) where �(x,w) is
a feed-forward neural network with weights w mapping inputs x to a n�-dimensional feature space.
ALPaCA maintains a matrix-normal distribution over K, and thus, assuming Gaussian likelihood,
results in a matrix-normal posterior distribution over K. This posterior inference may be performed
exactly, and computed recursively. The matrix-normal distribution on the last layer results in a
Gaussian posterior predictive density.

We fix the prior K ⇠ MN (K̄0,⌃✏,⇤
�1
0). In this matrix-normal prior, K̄0 2 Rn�⇥ny is the prior

mean and ⇤0 is a n� ⇥ n� precision matrix (inverse of the covariance). Given this prior and data
model, the posterior may be recursively computed as follows. First, we define Qt = ⇤�1

t K̄t. Then,
the one step posterior update is

⇤�1
t+1 = ⇤�1

t � (⇤�1
t �(xt+1))(⇤

�1
t �(xt+1))T

1 + �T (xt+1)⇤
�1
t �(xt+1)

Qt+1 = yt+1�
T (xt+1) +Qt (9)

and the posterior predictive distribution is

p✓(ŷt+1 | x1:t+1,y1:t) = N ((⇤�1
t Qt)

T�(xt+1), (1 + �T (xt+1)⇤
�1
t �(xt+1))⌃✏). (10)

In summary, ALPaCA is a meta learning model for which the posterior statistics are ⌘t = {Qt,⇤
�1
t },

and the recursive update rule h(x,y,⌘) is given by (9). The parameters that are meta-learned are the
prior statistics, the feature network weights, and the noise covariance: ✓ = {K̄0,⇤0,w,⌃✏}. Note
that, as is typical in regression, ALPaCA only models the conditional density p(y | x), implicitly
assuming that p(x) is independent of the underlying task.

C.2 PCOC: Bayesian Meta-Learning for Classification

In the classification setting, one can obtain a similar Bayesian meta-learning algorithm by performing
Gaussian discriminant analysis in a learned feature space. This is a novel approach to meta-learning
for classification which we term probabilistic clustering for online classification (PCOC, pronounced
“peacock”). We present a concise description of this algorithm here but defer to the appendix for a
more detailed discussion.
In PCOC we process labeled input/class pairs (xt, yt) by encoding the input through an embedding
network zt = �(xt;w), and performing Bayesian density estimation for every class. Specifically, we
assume a Categorical-Gaussian generative model in this embedding space, and impose the conjugate
Dirichlet prior over the class probabilities and a Gaussian prior over the mean for each class,

yt ⇠ Cat(p1, . . . , pny), p1, . . . , pny ⇠ Dir(↵0),

zt | yt ⇠ N (z̄yt ,⌃✏,yt), z̄yt ⇠ N (µyt,0,⇤
�1
yt,0).

Given labeled context data (xt, yt), the algorithm updates its belief over the Gaussian mean for
the corresponding class, as well as its belief over the probability of each class. As with ALPaCA,

9

these posterior computations can be performed through closed form recursive updates. Defining
qi,t = ⇤i,tµi,t, we have

↵t = ↵t�1 + 1yt qyt,t = qyt,t�1 + ⌃✏,yt�(xt) ⇤yt,t = ⇤yt,t�1 + ⌃✏,yt

where 1i denotes a one-hot vector with a one at index i. Terms not related to class yt are left
unchanged in this recursive update. Given this set of posterior parameters ⌘t = {↵t, q1:J,t,⇤1:J,t},
the posterior predictive density in the embedding space can be computed as

p(y) = ↵y,t/(
JX

i=1

↵i,t) p(z, y) = p(y)N (z;⇤�1
y,tqy,t,⇤

�1
y,t + ⌃✏,y)

where N (z;µ,⌃) denotes the Gaussian pdf with mean µ and covariance ⌃ evaluated at z. Applying
Bayes rule, the posterior predictive on yt+1 given xt+1 is

p(yt+1 = j | x1:t+1,y1:t) =
p(z = �(xt), y = j)

PJ
i=1 p(z = �(xt), y = i)

.

This generative modeling approach also allows computing p(zt+1 | ⌘t) by simply marginalizing out
y from the joint density of p(z, y),

p(zt+1 | ⌘t) =
JX

y=1

p(y)N (zt+1;µt,⇤
�1
y,t + ⌃✏,y)

As this only depends on the input x, we can use this likelihood within MOCA to update the run
length belief upon seeing xt and before predicting ŷt.
In summary, PCOC performs Bayesian Gaussian discriminant analysis for online classification,
and meta-learns the parameters ✓ = {↵0, q1:J,0,⇤1:J,0,w,⌃✏,1:J} for efficient few-shot online
classification. In practice, we assume that all the covariances are diagonal to limit memory footprint
of the posterior parameters. PCOC can be thought of a Bayesian analogue of prototypical networks
(Snell et al., 2017).

D Related Work

Online Learning, Continuous Learning, and Concept Drift Adaptation. A substantial literature
exists on online, continual and lifelong learning (Hazan, 2016; Chen & Liu, 2016). While these
terms are often used interchangeably and inconsistently, they all roughly correspond to the problem
of learning within a streaming series of tasks, wherein it is desirable to re-use information from
previous tasks while avoiding negative transfer French (1999); Thrun & Pratt (2012). Typically,
continual learning assumes access to task segmentation information, whereas online learning does not
(Aljundi et al., 2019). Regularization approaches (Kirkpatrick et al., 2017; Hazan, 2016; Li & Hoiem,
2017) have been shown to be an effective method for avoiding forgetting in continual learning. By
augmenting the loss function for a new task with a penalty for deviation from the parameters learned
for previous tasks, the regularizing effects of a prior are mimicked; in contrast we explicitly learn
a prior over task weights that is meta-trained to be rapidly adaptive. Thus, MOCA is capable of
avoiding substantial negative transfer by detecting task change, and rapidly adapting to new tasks.
Aljundi et al. (2019) loosen the assumption of task segmentation in continual learning and operate
in a similar setting to that addressed herein, but their work still focuses on learning a single set of
parameters that perform well on all tasks; in contrast, we operate in the meta-learning setting, aiming
to learn parameters that accelerate online adaptation within a task.

Meta-Learning for Continuous and Online Learning. While continual learning techniques have
mitigated forgetting in changing problem settings, large learning models have been slow to adapt
to new tasks, due in part to the propensity of neural network models to overfit to small amounts of
data. In response to this, there has been substantial interest in applying ideas from meta-learning
to continual learning to enable rapid adaptation to new tasks. Indeed, some modern meta-learning
models such as MAML (Finn et al., 2017) may be interpreted as regularization methods (Grant et al.,
2018), wherein the regularization term is explicitly learned for fast adaptation. In the streaming data
setting, several works (Nagabandi et al., 2019a; He et al., 2019) use a sliding window approach,
wherein a small amount of recent data is used for conditioning. By not explicitly detecting task change
and choosing the window length in response, these models risk suffering from negative transfer.
Indeed, MOCA may be interpreted as an adaptive sliding window model, that actively infers the
optimal window length. Nagabandi et al. (2019b) and Jerfel et al. (2019) aim to detect task changes

10

via combining mean estimation of the dependent variable with MAML models. However, these
models are both less expressive than MOCA (which maintains a full Bayesian posterior) and are not
capable of task-unsegmented training. Instead, these models require pre-training with a meta-dataset
that is segmented by task, limiting their applicability relative to MOCA.

Empirical Bayes for Changepoint Models. The Bayesian online changepoint framework of
Adams & MacKay (2007) (which we leverage in this paper) and the similar, simultaneous work of
Fearnhead & Liu (2007) have generated a substantial body of follow-on work since their publication.
Due to the simplicity of these algorithms—in particular, the ability to compute closed-form posteriors
as opposed to being forced to turn to approximate methods such as MCMC—many practical modifi-
cations and extensions have been developed. Of particular relevance are two works that investigate
empirical Bayes for the underlying predictive model, which is a similar problem to that addressed
herein. In particular, Paquet (2007) develop a forward-backward algorithm that allows closed-form
max likelihood estimation of the prior for simple distributions via EM. Turner et al. (2009) derive
general-purpose gradients for hyperparameter optimization within the BOCPD model. This approach
is similar to our work, although we use neural network meta-learning models and rely on automatic
differentiation for gradient computation.

E Further Experimental Results

E.1 Test Time versus Train Time Task Segmentation

We investigate in isolation the effects of task-segmentation information when provided at train-time
and at test-time. To characterize the impact of test time segmentation, we train an oracle model and
at test time, remove task segmentation and replace it with MOCA’s run length estimation. We then
compare this to the oracle model tested with segmentation, so the only difference is availability of
test-time segmentation. Similarly, to characterize the impact of train time segmentation, we provide
a model trained using MOCA with task segmentation at test time and compare this to a the same
MOCA model when tested without segmentation.

Regression. Fig. 4 shows the performance of MOCA when augmented with task segmentation
at test time (violet), compared to unsegmented (blue), as well as the oracle model without test
segmentation (teal) compared to with test segmentation (grey). We find that as the hazard rate
increases, both the value of segmentation in training and value of segmentation at test time increases
steadily. Because our regression version of MOCA is not performing density estimation for the
independent variable, it is not able to detect a changepoint before incurring the loss associated with
an incorrect prediction. Thus, for high hazard rates, considerable loss is incurred, increasing the
value of task segmentation. Interestingly and counter-intuitively, the model trained with MOCA
outperforms the model trained with oracle supervision, when both are given oracle supervision at test
time. The MOCA training results in a small “curriculum” effect due to the non-zero weight on placed
on the prior for every training iteration; in comparison, for the oracle model, a missed prediction
with a highly concentrated yet incorrect posterior occasionally results in a very large loss than may
destabilize training. When the oracle model is trained with a small belief weight on the prior (even
down to e.g. 10�16), the performance matches the MOCA model. This suggests that MOCA may be
beneficial in training by acting as a form of curriculum.

Classification. The relative effect of the MOCA train and test is apparent for Rainbow MNIST. For
high hazard rates, as expected, MOCA at test time performs slightly worse than the oracle model.
The majority of performance degradation is thus due to MOCA training. Performance degradation
due to MOCA training is largest for this experiment, compared to the sinusoid and miniImageNet.
Because the changing digit color results in a relatively clear indicator of changepoints, and MOCA
performs a belief update based on both the image and the label, MOCA performs comparably to the
oracle model at test time.
On miniImageNet, in contrast to the Rainbow MNIST experiment, there is a large and constant (with
respect to hazard rate) performance decrease moving from oracle to MOCA at test time. Interestingly,
one would expect the performance decrease with respect to hazard rate to be attributable primarily to
lack of task segmentation at test time—in fact, it appears that the trend is primarily a consequence of
MOCA training. This also holds for the Rainbow MNIST experiments. This is likely a consequence
of the limited amount of data, as the trend is not apparent for the sinusoid experiment.

11

Figure 4: Performance change from augmenting a model trained with MOCA with task supervision at test time
(violet) and from using changepoint estimation at test time for a model trained with task-supervision (teal), for
sinusoid (left), Rainbow MNIST (center), and miniImageNet (right).

Figure 5: Test negative log likelihood of
MOCA on the sinusoid problem with partial
task segmentation. The partial segmentation
during training results in negligible perfor-
mance increase, while partial supervision at test
time uniformly improves performance. Note
that each column corresponds to one trained
model, and thus the randomly varying perfor-
mance across train supervision rates may be ex-
plained by simply results of minor differences
in individual models.

E.2 MOCA with Partial Task Segmentation

Since MOCA explicitly reasons about a belief over run-lengths, it can operate anywhere in the
spectrum of the task-unsegmented case as presented so far, to the fully task-segmented setting of
standard meta-learning. At every time step t, the user can override the belief bt(rt) to provide a
degree of supervision. At known changepoints, for example, the user can override bt(rt) to have
all its mass on rt = 0. If the task is known not to change at the given time, the user can set the
hazard probability to 0 when updating the belief for the next timestep. If a user applies both of
these overrides, it amounts to effectively sidestepping the Bayesian reasoning over changepoints and
revealing this information to the meta-learning algorithm. If the user only applies the former, the user
effectively indicates to the algorithm when known changepoints occur, but the algorithm is free to
propagate this belief forward in time according to the update rules, and detect further changepoints
that were not known to the user. Finally, the Bayesian framework allows a supervisor to provide their
belief over a changepoint, which may not have probability mass entirely at rt = 0. Thus, MOCA
flexibly incorporates any type of task supervision available to a system designer.
Fig. 5 shows the performance of partial task segmentation at both train and test for the sinusoid
problem, for the hazard rate 0.2. This problem was chosen as the results were highly repeatable and
thus the trend is more readily observed. Here, we label a changepoint with some probability, which
we refer to as the supervision rate. We do not provide supervision for any non-changepoint timesteps,
and thus a supervision rate of 1 corresponds to labeling every changepoint but is not equivalent to
the oracle. Specifically, the model may still have false positive changepoints, but is incapable of
false negatives. This figure shows that the performance monotonically improves with increasing
train supervision rate, but is largely invariant under varying train supervision. This performance
improvement agrees with Fig. 4, which shows that for the sinusoid problem, performance is improved
by full online segmentation. Indeed, these results show that training with MOCA results in models
with comparable test performance to those with supervised changepoints, and thus there is little
marginal value to task segmentation during training.

12

Figure 6: Time per iteration versus iteration number at test
time. Note that the right hand side of the curve shows the
expected linear complexity expected of MOCA. Note that
for these experiments, no hypothesis pruning was performed,
and thus at test time performance could be constant time as
opposed to linear. This figure shows 95% confidence intervals
for 10 trials, but the repeatability of the computation time is
consistent enough that they are not visible.

E.3 Computational Performance

Fig. 6 shows the computational performance at test time on the sinusoid problem. Note that the
right hand side of the curve shows a linear trend that is expected from the growing run length belief
vector. However, even for 25000 iterations, the execution time is approximately 7ms for one iteration.
These experiments were performed on an Nvidia Titan Xp GPU. Interestingly, on the left hand side
of the curve, the time per iteration is effectively constant until the number of iterations approaches
approximately 4500. Based on our code profiling, we hypothesize that this is an artifact of overhead
in matrix multiplication computations done on the GPU.

F Experimental Details

F.1 Sinusoid

To test the performance of the MOCA framework combined with ALPaCA for the regression setting,
we investigate a switching sinusoid regression problem. The standard sinusoid regression problem,
in which randomly sampled phase and amplitude constitute a task, is a standard benchmark in
meta-learning (Finn et al., 2017). Moreover, a switching sinusoid problem is a popular benchmark
in continuous learning (He et al., 2019; Javed & White, 2019). Each task consists of a randomly
sampled phase in the range [0,⇡] and amplitude in [0.1, 5]. This task was investigated for varying
hazard rates. For the experiments in this paper, samples from the sinusoid had additive zero-mean
Gaussian noise of variance 0.05.

F.2 Rainbow MNIST

The Rainbow MNIST dataset (introduced in Finn et al. (2019)) contains 56 different
color/scale/rotation transformations of the MNIST dataset, where one transformation constitutes a
task. We split this dataset into a train set of 49 transformations and a test set of 7. For hyperparameter
optimization, we split the train set into a training set of 42 transformations and a validation of 7.
However, because the dataset represents a fairly small amount of tasks (relative to the sinusoid
problem, which has infinite), after hyperparameters were set we trained on all 49 tasks. We found
this notably improved performance. Note that the same approach was used in Snell et al. (2017).

F.3 miniImageNet

We use the miniImageNet dataset of Vinyals et al. (2016), a standard benchmark in few-shot learning.
However, the standard few-shot learning problem does not require data points to be assigned to a
certain class label. Instead, given context data, the goal is to associated the test data with the correct
context data. We argue that this problem setting is implausible for the continual learning setting:
while observing a data stream, you are also inferring the set of possible labels. Moreover, after a
task change, there is no context data to associate a new point with. Therefore we instead assume a
known set of classes. We group the 100 classes of miniImageNet in to five super-classes, and perform
five-way classification given these. These super-classes vary in intra-class diversity of sub-classes:
for example, one of the super-class is entirely composed of sub-classes that are breeds of dogs, while
another corresponds to buildings, furniture, and household objects. Thus, the strength of the prior
information for each super-class varies. Moreover, the intra-class similarities are quite weak, and
thus generalization from the train set to the test set is difficult and few-shot learning is still necessary
and beneficial. The super-classes are detailed in table ??.

13

Class Description Train/Val/Test Synsets

1 Non-dog
animals

Train n01532829, n01558993, n01704323, n01749939,
n01770081, n01843383, n01910747, n02074367,
n02165456, n02457408, n02606052, n04275548

Validation n01855672, n02138441, n02174001
Test n01930112, n01981276, n02129165, n02219486,

n02443484

2 Dogs, foxes,
wolves

Train n02089867, n02091831, n02101006, n02105505,
n02108089, n02108551, n02108915, n02111277,
n02113712, n02120079

Validation n02091244, n02114548
Test n02099601, n02110063, n02110341, n02116738

3
Vehicles,
musical
instruments,
nature/outdoors

Train n02687172, n02966193, n03017168, n03838899,
n03854065, n04251144, n04389033, n04509417,
n04515003, n04612504, n09246464, n13054560

Validation n02950826, n02981792, n03417042, n03584254,
n03773504, n09256479

Test n03272010, n04146614

4
Food, kitchen
equipment,
clothing

Train n02747177, n02795169, n02823428, n03047690,
n03062245, n03207743, n03337140, n03400231,
n03476684, n03527444, n03676483, n04596742,
n07584110, n07697537, n07747607, n13133613

Validation n03770439, n03980874
Test n03146219, n03775546, n04522168, n07613480

5
Building,
furniture,
household
items

Train n03220513, n03347037, n03888605, n03908618,
n03924679, n03998194, n04067472, n04243546,
n04258138, n04296562, n04435653, n04443257,
n04604644, n06794110

Validation n02971356, n03075370, n03535780
Test n02871525, n03127925, n03544143, n04149813,

n04418357

Table 1: Our super-class groupings for miniImageNet experiments.

The super-classes are roughly balanced in terms of number of classes contained. Each task correspond
to sampling a class from within each super-class, which was fixed for the duration of that task. Each
super-class was sampled with equal probability.

F.4 Baselines

Three baselines were used, described below:
• Train on Everything: This baseline consists of ignoring task variation and treating the train-

ing timeseries as one dataset. Note that many datasets contain latent temporal information
that is ignored, and so this approach is effectively common practice.

• Oracle: In this baseline, the same ALPaCA and PCOC models were used as in MOCA,
but with exact knowledge of the task switch times. Note that within a regret setting, one
typically compares to the best achievable performance. The oracle actually outperforms the
best achieveable performance in this problem setting, as it takes at least one data point (and
the associated prediction, on which loss is incurred) to become aware of the task variation.

• Sliding Window: The sliding window approach is commonly used within problems that
exhibit time variation, both within meta-learning (Nagabandi et al., 2019a) and continual
learning (He et al., 2019; Gama et al., 2014). In this approach, the last n data points are used
for conditioning, under the expectation that the most recent data is the most predictive of
the observations in the near future. Typically, some form of validation is used to choose the
window length, n. As MOCA is performing a form of adaptive windowing, it should ideally
outperform any fixed window length. We compare to three window lengths (n = 5, 10, 50),
each of which are well-suited to part of the range of hazard rates that we consider.

F.5 Training Details

Sinusoid. A standard feedforward network consisting of two hidden layers of 128 units was
used with ReLU nonlinearities. These layers were followed by a 32 units layer and another tanh
nonlinearity. Finally, the output layer (for which we learn a prior) was of size 32 ⇥ 1. The same
architecture was used for all baselines. This is the same architecture for sinusoid regression as was

14

used in Harrison et al. (2018) (with the exception of using ReLU nonlinearities instead of all tanh
nonlinearities). The following parameters were used for training:

• Optimizer: Adam (Kingma & Ba, 2015)
• Learning rate: 0.02
• Batch size: 50
• Batch length: 100
• Train iterations: 7500

Batch length here corresponds to the number of timesteps in each training batch. Note that longer
batch lengths are necessary to achieve good performance on low hazard rates, as short batch lengths
artificially increase the hazard rate as a result of the assumption that each batch begins with a new
task. The learning rate was decayed every 1000 training iterations.
We allowed the noise variance to be learned by the model. This, counter-intuitively, resulted in
a substantial performance improvement over a fixed (accurate) noise variance. This is due to a
curriculum effect, where the model early one increases the noise variance and learns roughly accurate
features, followed by slowly decreasing the noise variance to the correct value.

Rainbow MNIST. In our experiments, we used the same architecture as was used as in Snell
et al. (2017); Vinyals et al. (2016). It is often unclear in recent work on few-shot learning whether
performance improvements are due to improvements in the meta-learning scheme or the network
architecture used (although these things are not easily disentangled). As such, the architecture we use
in this experiment provides fair comparison to previous few-shot learning work. This architecture
consists of four blocks of 64 3⇥ 3 convolution filters, followed by a batchnorm, ReLU nonlinearity
and 2⇥ 2 max pool. On the last conv black, we removed the batchnorm and the nonlinearity. For
the 28⇥ 28 Rainbow MNIST dataset, this encoder leads to a 64 dimensional embedding space. For
the “train on everything” baseline, we used the same architecture followed by a fully connected layer
and a softmax. This architecture is standard for image classification and has a comparable number of
parameters to our model.
We used a diagonal covariance factorization within PCOC, substantially reducing the number of
terms in the covariance matrix for each class and improving the performance of the model (due to the
necessary inversion of the posterior predictive covariance). We learned a prior mean and variance for
each class, as well as a noise covariance for each class (again, diagonal). We also fixed the Dirichlet
priors to be large, effectively imbuing the model with the knowledge that the classes were balanced.
The following parameters were used for training:

• Optimizer: Adam
• Learning rate: 0.02
• Batch size: 10
• Batch length: 100
• Train iterations: 5000

The learning rate was decayed every 1500 training iterations.

miniImageNet. Finally, for miniImageNet, we used six convolution blocks, each as previous
described. This resulted in a 64 dimensional embedding space. We initially attempted to use the
same four-conv backbone as for Rainbow MNIST, but the resulting 1600 dimensional embedding
space had unreasonable memory requirements for batches lengths of 100. Again, for the “train on
everything” baseline, we used the same architectures with one fully connected layer followed by a
softmax. The following parameters were used for training:

• Optimizer: Adam
• Learning rate: 0.002
• Batch size: 10
• Batch length: 100
• Train iterations: 3000

The learning rate was decayed every 1000 training iterations. We used the validation set to monitor
performance, and as in Chen et al. (2019), we used the highest validation accuracy iteration for test.
We also performed data augmentation as in Chen et al. (2019) by adding random reflections and color
jitter to the training data.

F.6 Test Details

For all problems, a test horizon of 400 was used. Again, the longest possible test horizon was used to
avoid artificial distortion of the test hazard rate. Both both problems, a batch of 200 evaluations was
performed, and all confidence intervals correspond to 95%.

15

G Future Work

While MOCA addresses a continual learning problem setting, we have not formulated MOCA as
an online learning algorithm. Specifically, MOCA meta-trains on an offline time-series, and keeps
the parameters ✓ fixed online, whereas an online learning algorithm would not have this train/test
distinction, and would consider updating ✓ continuously (Hazan, 2016). However, in order to do
this with MOCA, we would need to keep a running buffer of all data observed so far and to use as
training data to update ✓, which may be expensive in real-world domains where large volumes of data
(e.g. high definition video from a large collection of cameras on an autonomous vehicle). Extending
MOCA toward either strictly online training or a scheme to maintain an efficient replay buffer (Mnih
et al., 2013; Vitter, 1985), is a promising direction of future work. Indeed, it may be possible to use
MOCA’s changepoint analysis to inform which data to save.
Beyond the continual learning extension, data efficiency may be improved by re-using information
from previous tasks or modeling task evolution dynamics. Previous work (Nagabandi et al., 2019b;
Jerfel et al., 2019; Knoblauch & Damoulas, 2018) has addressed the case in which tasks reoccur
in both meta-learning and the BOCPD framework, and thus knowledge (in the form of a posterior
estimate) may be re-used. In this work, we address the case in which tasks are sampled i.i.d. from a
(typically continuous) distribution, and thus knowledge re-use is often impractical or adds marginal
value. Broadly, moving beyond the assumption of i.i.d. tasks to task having associated dynamics
(Al-Shedivat et al., 2018) represents a promising future direction.

16

	Introduction
	MOCA: Meta-Learning via Online Changepoint Analysis
	Bayesian Run-length Filtering
	Meta Learning without Task Segmentation

	Experimental Results and Conclusions
	Background
	Meta-Learning
	Bayesian Online Changepoint Detection

	MOCA Details
	Batch Training MOCA

	Making your MOCA: Model Instantiations
	ALPaCA: Bayesian Meta-Learning for Regression
	PCOC: Bayesian Meta-Learning for Classification

	Related Work
	Further Experimental Results
	Test Time versus Train Time Task Segmentation
	MOCA with Partial Task Segmentation
	Computational Performance

	Experimental Details
	Sinusoid
	Rainbow MNIST
	miniImageNet
	Baselines
	Training Details
	Test Details

	Future Work

