
Continuous Meta-Learning without Tasks

James Harrison, Apoorva Sharma, Chelsea Finn, Marco Pavone
{jharrison, apoorva, cbfinn, pavone}@stanford.edu

Stanford University, Stanford, CA

1 Introduction
Meta-learning methods have recently shown promise as an effective strategy for enabling efficient
few-shot learning in complex domains from image classification to nonlinear regression (Finn et al.,
2017; Snell et al., 2017). These methods leverage an offline “meta-training” phase, in which they use
data from a distribution of tasks to optimize learning performance on new tasks. These algorithms
have focused on settings with task segmentation, where the learning agent knows when tasks change.
At meta-train time, these algorithms assume access to a meta-dataset of datasets from individual
tasks, and at meta-test time, the learner is evaluated on a single task. However, there are many
applications where task segmentation is unavailable, which have thus far been under-addressed in the
meta-learning literature.
In this work, we present MOCA, an approach to enable meta-learning in task-unsegmented settings.
MOCA operates directly on time series in which the latent task undergoes discrete, unobserved
switches, rather than requiring a pre-segmented meta-dataset. MOCA integrate a Bayesian change-
point estimation scheme with existing meta-learning approaches, allowing the algorithm to reason
about whether or not the task has changed in a time series. Thus, we enable a standard meta-learning
algorithm, which is designed for the task segmented setting, to be both trained and tested directly on
time series data without the need for task segmentation.

Problem statement. Our goal is to apply meta-learning tools to the problem of task-unsegmented
continual learning, in which an agent is presented sequentially with input xt, asked to make a
(probabilistic) prediction p(ŷt | xt), and is then given the true label yt, and can thus ideally
improve its predictions by learning from the labeled examples. Following the terminology of
meta-learning, we assume that these data are drawn from a distribution according to some latent
task Tt, p(xt,yt | Tt) = p(xt | Tt)p(yt | xt, Tt). We will write x,y ⇠ Tt as shorthand for
x,y ⇠ p(x,y | Tt). We assume a distribution over tasks, which we write p(T ), and that the initial
task T1 ⇠ p(T ). At each timestep, the task is either re-sampled from p(T ) with some probability �

(which we refer to as the hazard rate), or remains the same.
Our goal is to optimize a learning agent to perform well in this setting. Let p✓(ŷt | x1:t,y1:t�1)
by the agent’s prediction for yt given input xt and the past labeled examples. We will evaluate the
learner’s performance through a negative log likelihood loss, and our objective is as follows:

min
✓

E
" 1X

t=1

� log p✓(yt | x1:t,y1:t�1)

#

subject to xt,yt ⇠ Tt, Tt =
⇢
Tt�1 w.p. 1� �

Tt,new w.p. � T1 ⇠ p(T ), Tt,new ⇠ p(T )

(1)

We assume that we have access to a representative time series generated in the same manner from the
same distribution of tasks, and use this time series to optimize ✓ in an offline, meta-training phase.

2 MOCA: Meta-Learning via Online Changepoint Analysis
MOCA uses Bayesian changepoint detection to enable the application of meta-learning algorithms to
settings without task segmentation, both at train and test time. We extend Bayesian online changepoint
detection (BOCPD) framework (Adams & MacKay, 2007) to derive a recursive Bayesian filtering
algorithm for run length in the conditional and joint density estimation setting, and leverage a
base meta-learning algorithm with parameters ✓ to provide an underlying predictive model when
conditioned on a run length. Specifically, we define the run length, rt, as the number of timesteps
since the current (at time t) task was sampled. We write ⌘t[r] to denote the posterior statistics at
time t associated with a run length of r. More specifically, a meta-learning algorithm updates some
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initialization based on the previous r samples, and ⌘t[r] refers to these updated parameters. A review
of BOCPD and a unifying perspective on meta-learning in terms of posterior statistics is presented in
the appendix. In the following subsections, we first derive MOCA’s Bayesian filtering updates, and
then outline how the full framework can be used to both train and evaluate meta-learning models on
time series without task segmentation.

2.1 Bayesian Run-length Filtering

As in BOCPD, MOCA maintains a belief over possible run lengths rt. Throughout this paper, we
use bt to refer to the updated belief before observing data at that timestep, (xt,yt). Note that bt is a
discrete distribution with support over rt 2 {0, ..., t� 1}.

At time t, the agent first observes the input xt, then makes a prediction p(ŷt | x1:t,y1:t�1), and
subsequently observes yt. Generally, the latent task can influence both the marginal distribution of
the input, p(xt | x1:t�1,y1:t�1) as well as the conditional distribution p(yt | x1:t,y1:t�1). Thus,
the agent can update its belief over run lengths once after observing the input xt, and again after
observing the label yt. We will use bt(rt | xt) = p(rt | x1:t,y1:t�1) to represent the updated belief
over run length after observing only xt, and bt(rt | xt,yt) = p(rt | x1:t,y1:t) to represent the fully
updated belief over rt after observing yt. Finally, we will propagate this forward in time according to
our assumptions on task dynamics to compute bt+1(rt+1), which is used in the subsequent timestep.
To derive the Bayesian update rules, we start by noting that the updated posterior is proportional to
the joint density,

bt(rt | xt) = p(rt | x1:t,y1:t�1) = Z
�1

p(rt,xt | x1:t�1,y1:t�1)

= Z
�1

p(xt | x1:t�1,y1:t�1, rt)p(rt | x1:t�1,y1:t�1)

= Z
�1

p✓(xt | ⌘t�1[rt])bt(rt) (2)

where the normalization constant Z can be computed by summing over the finite support of bt�1(rt).
Importantly, this update requires p✓(xt | ⌘t�1[rt]), the base meta-learning algorithm’s posterior
predictive density over the inputs. Within classification, this density is available for generative models,
and thus a generative approach is favorable to a discriminative approach within MOCA. In regression,
it is uncommon to estimate the distribution of the independent variable. We take the same approach
in this work and assume that xt is independent of the task for regression problems, in which case
bt(rt | xt) = bt(rt). We discuss the specific choice of underlying meta-learning models in the
regression and classification settings in the appendix.
Next, upon observing yt, we can similarly factor the belief over run lengths for the next timestep,

bt(rt | xt,yt) = Z
�1

p✓(yt | xt,⌘t�1[rt])bt(rt | xt). (3)

Again, the normalization constant can be computed via a sum over the support of rt.
Finally, we must propagate this belief forward in time to obtain bt+1(rt+1):

bt+1(rt+1) = p(rt+1 | x1:t,y1:t) =
X

rt

p(rt+1, rt | x1:t,y1:t)

=
X

rt

p(rt+1 | rt,x1:t,y1:t)p(rt | x1:t,y1:t) =
X

rt

p(rt+1 | rt)bt(rt | xt,yt).

where we have exploited the assumption that the changes in task, and hence the evolution of run length
rt, happen independently of the data generation process. The conditional run-length distribution
p(rt+1 | rt) is defined by our model of task evolution.
Recall that we assume that the task switches with fixed probability �, the hazard rate. Thus, for all rt,
p(rt+1 = 0 | rt) = �, implying

bt+1(rt+1 = 0) =
X

rt

�bt(rt | xt,yt) = �. (4)

Conditioned on the task remaining the same, rt+1 = k > 0 and rt = k � 1. Thus, p(rt+1 = k |
rt) = (1� �)1{rt = k � 1} implying

bt+1(rt+1 = k) = (1� �)bt(rt = k � 1 | xt,yt). (5)

Equations (4) and (5) together define bt+1 over its support rt+1 2 {0, . . . , t}
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Figure 1: Performance of MOCA versus baselines in sinusoid regression (left; lower is better), Rainbow MNIST
(center; higher is better), and miniImageNet (right; higher is better), versus hazard rate. Note that for both
problems, MOCA always outperforms the baselines and the performance degrades only slightly from the
performance of the oracle. In contrast, sliding window methods result in severely degraded performance.
2.2 Meta Learning without Task Segmentation

By taking a Bayesian filtering approach to changepoint detection, we avoid hard assignments of
changepoints and instead perform a soft selection over run lengths. In this way, MOCA is able to
backpropagate through the changepoint detection and directly optimize the underlying predictive
model, which may be any meta-learning model that admits a probabilistic interpretation.
MOCA processes a time series sequentially. We initialize b1(r1 = 0) = 1, and initialize the posterior
statistics for ⌘0[r1 = 0] as specified by the parameters ✓ of the meta-learning algorithm. Then, at
timestep t, we first observe inputs xt and update our belief over run length accordingly, computing
bt(rt | xt) according to (2). Next, we marginalize over this belief to make a probabilistic prediction
for the label yt,

p✓(ŷt | x1:t,y1:t�1) =
t�1X

rt=0

bt(rt | xt)p✓(ŷt | xt,⌘t�1[rt]) (6)

We then observe the true label yt and incur the corresponding negative log likelihood loss. We
can then use this observation to update both the belief over run length, computing bt(rt | xt,yt)
according to (3), as well as update the posterior statistics for all the run lengths using the labeled
example. A recursive update rule for ⌘ allows these parameters to be computed efficiently using the
past values of ⌘

⌘t[r] = h(xt,yt,⌘t�1[r � 1]) 8 r = 1, . . . , t. (7)

While MOCA could be used with an algorithm which didn’t admit such a recursive update rule, this
would require storing data online and running the non-recursive posterior computation (8) on D�rt
for every rt, which involves t operations using datasets of sizes from 0 to t, and thus can be an O(t2)
operation. In contrast, the recursive updates involve t operations involving just the latest datapoint,
yielding O(t) complexity. Finally, we propagate the belief over run length forward in time according
to (4) and (5) to obtain bt(rt+1) to be ready to process the next data point.
Since all these operations are differentiable, given a training time series in which there are task
switches x1:n,y1:n, we can run this procedure, sum the NLL losses incurred at each step, and use
backpropagation within a standard deep learning framework to optimize the parameters of the base
learning algorithm ✓. Algorithm 1 outlines this training procedure. In practice, we sample shorter
time-series of length T from the training data to ease computational requirements during training;
we discuss implications of this in the appendix. If available, a user can input various levels of
knowledge on task segmentation by manually updating b(rt) at any time; further details on this task
semi-segmented use case are provided in the appendix.

3 Experimental Results and Conclusions
We investigate the performance of MOCA in three problem settings: one in regression and two in
classification. Our primary goal is to characterize the impact on performance of using MOCA to
move from the standard task-segmented meta-learning setting to the task-unsegmented case. To
this end, we investigate the performance of MOCA versus an “oracle” model that uses the same
base meta-learning algorithm, but has access to exact task segmentation at train and test time. We
additionally compare against baseline sliding window models of various window lengths, which
again use the same meta-learning algorithm, but always condition on the last n data points. These
baselines are a competitive approach to learning in time-varying data streams (Gama et al., 2014)
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Figure 2: The performance of MOCA on the sinusoid regression problem. Right: The belief over run length
versus time. The intensity of each point in the plot corresponds to the belief in run length at the associated time.
The red lines show the true changepoints. Left: Visualizations of the posterior predictive density corresponding
to the blue dotted lines in the figure on the right. The red line denotes the current function (task), and red points
denote samples from that function. Green points denote data from previous tasks, where more faint points are
older. a) A visualization of the posterior at an arbitrary time. b) The visualization of the posterior for a case in
which MOCA did not successfully detect the changepoint. In this case, it is because the pre- and post-change
function (corresponding to figure a and b) are highly similar. c) An instance of a multimodal posterior. d) The
changepoint is initially missed due to the data generated from the post-change function being highly likely under
the previous posterior. e) After an unlikely data point, the model increases its uncertainty as the changepoint is
detected.
and have been used effectively for meta-learning in time-varying settings (see e.g. Nagabandi et al.
(2019a)). Finally, we compare to a “train on everything” model, which only learns a prior and does
not adapt online, corresponding to a standard supervised learning approach. Performance of MOCA
versus baselines is presented in Fig. 1 for all problem domains. In addition, we investigate in isolation
the effects of task-segmentation information when provided at train-time and at test-time and under
partial task supervision. Due to space constraints, we defer this to the appendix.

Regression. To characterize MOCA in the regression setting, we investigate the performance on a
switching sinusoid problem adapted from (Finn et al., 2017), in which a task change corresponds to a
re-sampled sinusoid phase and amplitude. Qualitative results are visualized for the sinusoid in Fig. 2,
as well as a visualization of the belief over run length at each time. Qualitatively, MOCA is capable
of accurate and calibrated posterior inference with only a handful of data points, and is capable of
identifying task change extremely rapidly. Typically, it identifies task change in one timestep, if
the generated data does not happen to have high likelihood under the previous task as in Fig. 2d.
Quantitatively, MOCA achieves performance close to the oracle model and substantially outperforms
the sliding window approaches for all hazard rates.

Classification. In the classification setting, we apply MOCA to the Rainbow MNIST dataset
of Finn et al. (2019) and the miniImageNet benchmark task (Vinyals et al., 2016). In Rainbow
MNIST, MNIST digits have been perturbed via a color transformation, rotation, and scaling, and each
task corresponds to a unique combination of these transformations. miniImagenet consists of 100
ImageNet categories (Deng et al., 2009), each with 600 RGB images of resolution 84⇥ 84. In our
continual learning setting, we associate each class with a semantic label that is consistent between
tasks. Specifically, we split the miniImageNet dataset in to five approximately balanced high level
classes, which we refer to as super-classes, as five-way classification is standard for miniImageNet
(Vinyals et al., 2016; Snell et al., 2017); details are provided in the appendix. Then, a new task
corresponds to sampling a new class within each super-class, and the problem is to classify an
image as belonging to a specific super-class. This enables knowledge re-use between classes, and
corresponds to a continual learning scenario in which each super-class experiences distributional
shift. Note that this is somewhat different from the typical task in few-shot learning, where classes
have no a priori semantic meaning. In both experiments, MOCA outperforms baselines for all hazard
rates. On Rainbow MNIST, MOCA approaches oracle performance, likely due in part to the fact that
task change can usually be detected via a change in digit color.
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