
Improving Model Robustness via Automatically
Incorporating Self-supervision Tasks

Donghwa Kim
KAIST

donghwa.kim@kaist.ac.kr

Kangwook Lee
UW-Madison

kangwook.lee@wisc.edu

Changho Suh
KAIST

chsuh@kaist.ac.kr

Abstract

Robust deep learning models are of great practical importance. Hendrycks et
al. [12] have recently shown that one can train a robust deep learning model
by incorporating a self-supervision loss function while training. In this work,
we show that one can further improve the robustness by delicately incorporat-
ing multiple self-supervision tasks with the aid of AutoML. To this end, we first
study a variety of self-supervision tasks and show that each of them can be used
to improve the robustness of a trained model. We then propose an AutoML-
based algorithm that automatically strikes the right balance between multiple
self-supervision terms. Our experiments show that our AutoML algorithm, to-
gether with multiple self-supervision tasks, can achieve the best test accuracy on
CIFAR-10-C, a benchmark for robust image classification. The code is available at
https://github.com/storykim/robustness-self-supervision.

1 Introduction

While self-supervision is known to help learn representation with scarce labeled data [8, 5], it was
unclear whether it could further benefit supervised learning with a sufficiently large labeled data. In a
recent work by Hendrycks et al. [12], the authors show that one can improve the model robustness by
incorporating the self-supervision loss. More specifically, consider a scenario where one wants to
train a classifier. The main loss can be defined as the cross-entropy between the output probabilities
of the neural network and the labels, say Lmain(X,Y ; θc, θmain), where (X,Y ) is a labeled dataset,
θc is the parameter corresponding to the (common) lower part of a neural network, and θmain is the
parameter corresponding to the (task-specific) upper part of a neural network. Instead of minimizing
this loss term alone, the authors propose the use of an auxiliary task inspired by self-supervision.
More specifically, one simultaneously solves a self-supervision task with another neural network that
shares the lower part of the neural network with the main neural network. Without loss of generality,
the loss of a self-supervision task can be written as Laux(X; θc, θaux). Note that it does not involve Y
and involves the common parameter θ with the main loss term. Given these loss functions, they train
a model by solving the following optimization problem

min
θ,θmain,θaux

Lmain(X,Y ; θc, θmain) + λLaux(X; θc, θaux), (1)

where λ is a hyperparameter that determines the ratio between the two loss terms.

Since the authors of [12] mostly focus on the use of a single self-supervision task, it is not clear
whether or not one can further improve the robustness of a model by incorporating multiple self-
supervision tasks. This precisely sets the goal of our work. We first identify several self-supervision
tasks, each of which can improve the robustness of a model when used in conjunction with the main
loss. We then show one can incorporate multiple self-supervision tasks at the same time to further
improve the robustness of a model. To achieve this goal, we propose an AutoML-based algorithm that
automatically tunes the weights associated with different auxiliary tasks. Our experimental results
show that our AutoML-based approach can achieve superior robustness over the existing approaches.

3rd Workshop on Meta-Learning at NeurIPS 2019, Vancouver, Canada.

https://github.com/storykim/robustness-self-supervision


2 Related Work

Meta learning and AutoML: Meta-learning has made rapid progress in the past years. The goal
of meta-learning is learning to learn better based on data, and it can be used for systematically
improving the performance of transfer learning [6, 15], optimization/learning algorithms [1, 2, 17, 4],
deep learning models [22, 16, 18], data preprocessing/ augmentation [19, 3], and reinforcement
learning [7, 9, 20].

Self-supervision: Self-supervision is a technique that creates labels from unlabeled data and leverages
those self-labeled data to learn data representation. To be more concrete, consider an image dataset
without labels. One can generate a labeled dataset by manipulating these unlabeled images. For
instance, one can rotate an image by an angle ∈ {0◦, 90◦, 180◦, 270◦} and assign the image an angle
label [8]. Another representative example is autoencoders [13]. Here, an unlabeled example Xi is
labeled by itself, giving us a labeled example (Xi, Xi). A variety of self-supervision tasks have been
proposed in the literature, and self-supervision has been shown effective, particularly when labeled
data is scarce. While self-supervision has been known useful for learning representation with scarce
labeled data, it was not clear whether it has any value when one is equipped with a sufficient amount
of labeled data. Recently, Hendrycks et al. [12] show that self-supervision can be useful even in this
case as it can help us improve the robustness of deep learning models.

3 Single Self-supervision Task for Model Robustness

In this section, we show that the algorithm proposed in [12] indeed works not only with the rotation
task but also with various self-supervision tasks. Specifically, we examine the following seven
self-supervision tasks. See Fig. 1 for a visual illustration of the following self-supervision tasks.

• Rotation: Each input image is rotated by an angle ∈ {0◦, 90◦, 180◦, 270◦}. The goal of this
self-supervision task is to correctly predict the rotation angle given a rotated image. The loss is
defined as the cross-entropy between the ground truth label and the prediction results.

• Coloring (Color): Each input images is converted into a grayscale image. The goal is to correctly
recover the color of each pixel. Here, we use the CIELAB representation of colors [21], in which
each color is represented by a three-dimensional vector (L,A,B). Roughly speaking, L denotes
the lightness, A denotes redness, and B denotes yellowness. The CIELAB representation is
known to better capture human visual perception. We drop the L value and quantize the values
of A and B into 32 bins. We then define the loss function for each pixel as the sum of two
cross-entropy terms, one for predicting A and the other for predicting B. Thus, the total loss
is 1

2Npixel

∑
pixel

∑
channel∈{A,B} CE(Ypixel,channel, Ŷpixel,channel), where CE is a shorthand term of

cross-entropy, Npixel is the number of pixels in an image, and Y, Ŷ ∈ {1, 2, . . . , 32}.
• Image reconstruction (IR): The goal is to correctly reconstruct the input image. The loss is defined

as the mean squared error over pixels. Note that this task is identical to autoencoders.

• Image deblurring (BIR): Same as above except that the input image is blurred. We call this task
BIR (blurred-image reconstruction) as it can be viewed as reconstructing blurred images.

• Inpainting (Inpaint): Same as above except that a central part of the input image is removed.

• Color-channel guessing (RGB guess): Each image’s RGB channels are randomly shuffled. The
goal is to identify the original color-shuffling pattern out of 3! = 6 possible ones. The loss is
defined as CE(Y, Ŷ ), where Y, Ŷ ∈ {1, 2, . . . , 6}.

• Jigsaw puzzle (Jigsaw): Each image is split into two by two pieces, and the four pieces are
randomly reordered. The goal is to identify the shuffling pattern out of 4! = 24 possible ones. The
loss is defined as CE(Y, Ŷ ), where Y, Ŷ ∈ {1, 2, . . . , 24}.

Each self-supervision task is solved by a neural network whose lower part is shared with the main
neural network and whose upper part is designed specifically for the corresponding task. See the
supplemental materials for more details about the network designs. We run the training algorithm
proposed in [12] in conjunction with each of the above self-supervision tasks and evaluate its
robustness. We minimize the overall loss function using SGD with momentum with the momentum
parameter of 0.9 on CIFAR-10 [14]. We also apply the weight decay with the decay factor of 0.0005.

2



Figure 1: Inputs generated for self-supervision tasks. From left to right: Original, rotation, coloring,
image deblurring, inpainting, color-channel guessing, jigsaw puzzle.

For learning rates, we use the cosine annealing with the initial value of 0.1 and the minimum value of
10−6. The hyperparameter λ is fixed as 0.5 for all tasks. We use minibatches of size 64 to estimate
the main loss/gradients. To measure the robustness of a model, we use CIFAR-10-C dataset [11]. The
CIFAR-10-C dataset contains 950,000 images which are algorithmically generated with 19 kinds of
corruption types and five levels of severity based on CIFAR-10 validation set. Summarized in Table 1
are our experimental results. One can see that all of the tested self-supervision tasks except the last
one helps us obtain a more robust model.

Table 1: Test accuracy on CIFAR-10-C
Baseline Rotation Color IR BIR Inpaint RGB guess Jigsaw

Acc. 74.07% 76.37% 75.06% 74.73% 75.84% 74.69% 74.15% 73.41%

4 An AutoML Algorithm for Incorporating Multiple Self-supervision Tasks

A natural question that arises is whether one can incorporate multiple self-supervision tasks
to further improve the robustness of the model. That is, one would like to incorporate k
self-supervision tasks and obtain a more robust model than those trained with a single self-
supervision task. This can be achieved by training a model with the following loss function
Lmain(X,Y ; θc, θmain) +

∑k
i=1 λiLaux,i(X; θc, θaux,i), where Laux,i is the ith auxiliary loss func-

tion, θaux,i is the parameter of each task-specific neural network, and λi is the hyperparameter that
determines the weight of the corresponding term. It is clear that one must carefully choose the value
of λi’s in order to obtain a robust model. For instance, if the values of λi’s are too low, the training
algorithm reduces to the standard supervised training, and hence one cannot expect the model to
perform well under robustness settings. On the other hand, if these values are chosen too high, the
main loss function will be ignored, making the main model perform poorly on the main prediction
task. Therefore, it is critical of importance to carefully optimize these hyperparameters. To this end,
we propose an AutoML algorithm that can automatically adjust these hyperparameters, striking a
balance between multiple self-supervision tasks.

Recall that the goal is to minimize the main task loss in conjunction with multiple self-supervision
tasks. Denote the concatenation of all model parameters by φ, i.e., φ = (θc, θmain, θaux,1, . . . , θaux,k).
Similarly, denote the concatenation of the model parameters associated with the main task by ψ, i.e.,
ψ = (θc, θmain). To automatically adjust the values of λi’s, we define the following metaloss.

Lmeta := Lmain

(
Xval, Yval;ψ − α

∂Lλ1,λ2,...,λk

∂ψ

)
. (2)

That is, the meta loss captures the performance of the updated model parameter of the main network
(ψ − α∂Lλ1,λ2,...,λk∂ψ ) on the validation data. Note that Lmeta is a function of {λ}.

With these definitions, one can apply the following AutoML algorithm to adjust the values of
{λ} while training the main model. In each iteration, we first compute Lλ1,λ2,...,λk and then
backpropagate it with respect to ψ, obtaining ∂Lλ1,λ2,...,λk

∂ψ . From this, one can compute the updated

model parameter ψ − α∂Lλ1,λ2,...,λk∂ψ . Then, one can compute the validation loss (of the main task)
of this updated model parameter, obtaining Lmeta. By differentiating Lmeta with respect {λ}, we
can calculate ∂Lmeta

∂λ1
, ∂Lmeta
∂λ2

, . . . , ∂Lmeta
∂λk

. Using these, we accordingly update the values of λi’s, i.e.,
λi ← λi − β ∂Lmeta

∂λi
for all i ∈ {1, 2, . . . , k}, where β is the learning rate for meta updates. Once we

have updated the λi’s, we now compute the gradient of the original loss function with respect to

3



Baseline Single task [8] Four tasks Four tasks
+ AutoML

0.21

0.22

0.23

0.24

0.25

0.26

Te
st

er
ro

r

(a) Test error on CIFAR-10-C

0 20 40 60 80 100

0.4

0.6

0.8

1.0

La
m

bd
a

va
lu

e

Rotation
Color

BIR
IR

(b) The evolution of λ’s

Figure 2: Experimental results with multiple self-supervision tasks + AutoML

all model parameters φ using the updated values of λ’s and then update all the model parameters.
While we assumed the simple stochastic gradient descent when computing the meta loss, one may
actually update the main model with other algorithms such as Adam. To further stabilize the training
procedure, we train the model with fixed λ’s without learning meta updates for the first τ epochs,
which we call the warm-up period. Our algorithm is summarized in Algorithm 1.

Algorithm 1 AutoML algorithm for incorporating multiple self-supervision tasks

Input: Initial model parameter φ, LR schedule αt, meta LR β, warm-up period τ
repeat
Lλ1,λ2,...,λk ← Lmain(Xtrain, Ytrain;φ) +

∑k
i=1 λiLaux,i(Xtrain; θc, θaux,i)

if epoch count > τ then
Compute ∂Lλ1,λ2,...,λk

∂ψ via backpropagation

Lmeta ← Lmain

(
Xval, Yval;ψ − αt

∂Lλ1,λ2,...,λk
∂ψ

)
{Compute meta loss}

Compute ∂Lmeta
∂λ1

, ∂Lmeta
∂λ2

, . . . , ∂Lmeta
∂λk

via backpropagation {Compute meta gradients}

λi ← λi−β ∂Lmeta
∂λi

for all i ∈ {1, 2, . . . ,K} {Update λ’s}

Lλ1,λ2,...,λk ← Lmain(Xtrain, Ytrain;φ) +
∑k
i=1 λiLaux,i(Xtrain; θc, θaux,i) {With updated λ’s}

end if
Compute ∂Lλ1,λ2,...,λk

∂φ via backpropagation

φ← φ− αt · SGD
(
φ,

∂Lλ1,λ2,...,λk
∂φ

)
until φ converges

We now apply our approach with the self-supervision tasks identified in the previous section. Here,
we run our AutoML algorithm with the four most effective self-supervision tasks–rotation, image
deblurring, coloring, and image reconstruction–and compare its performance with that without
AutoML. Most of the experimental settings remain the same. We use the warm-up period of τ = 5
epochs and use minibatches of size 25 to estimate the meta loss/gradients. For the validation dataset,
we use 1% of the CIFAR-10-C dataset, consisting of 100 random samples from each category.

Shown in Figure 2a are our experimental results. The baseline algorithm that does not involve any
self-supervision tasks achieves the test error of 25.93%, and the model trained with a single self-
supervision task (rotation) gives us the error rate of 23.63%. By incorporating four self-supervision
tasks together with AutoML, the test error becomes 21.32%, reducing the error rate of the existing
approach by 9.7%. Figure 2b show how the values of λ’s change during the training procedure.
During the warm-up period, the values of λ’s remain the same, and after the warm-up period, they
start evolving according to the meta updates.

5 Conclusion

In this work, we first show that there exist diverse self-supervision tasks, each of which can improve
the robustness of a deep learning model. Based on this observation, we propose an AutoML-based
algorithm which can automatically balance the weights of multiple self-supervision losses, achieving
the state-of-the-art robustness performance on CIFAR-10-C.

4



References
[1] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,

Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient descent. In
NeurIPS, 2016.

[2] Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V. Le. Neural optimizer search with reinforcement
learning. In PMLR, 2017.

[3] Ekin Dogus Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. Autoaugment:
Learning augmentation policies from data. In CVPR, 2019.

[4] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, and Alistair Stewart. Sever:
A robust meta-algorithm for stochastic optimization. In ICML, 2019.

[5] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discriminative
unsupervised feature learning with convolutional neural networks. In NeurIPS, 2014.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In JMLR, 2017.

[7] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for reinforce-
ment learning agents. In PMLR, 2018.

[8] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by predicting
image rotations. In ICLR, 2018.

[9] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-reinforcement
learning of structured exploration strategies. In NeurIPS. 2018.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016.

[11] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. In ICLR, 2019.

[12] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learning can
improve model robustness and uncertainty. In NeurIPS, 2019.

[13] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 2006.

[14] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s thesis,
Department of Computer Science, University of Toronto, 2009.

[15] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-learning for
domain generalization. In AAAI, 2018.

[16] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In ECCV, 2018.

[17] Luke Metz, Niru Maheswaranathan, Jonathon Shlens, Jascha Sohl-Dickstein, and Ekin D. Cubuk. Using
learned optimizers to make models robust to input noise. In ICML Workshop on Uncertainty and Robustness
in Deep Learning, 2019.

[18] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via
parameters sharing. In PMLR, 2018.

[19] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for robust
deep learning. In ICML, 2018.

[20] Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning. In NeurIPS.
2018.

[21] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In ECCV, 2016.

[22] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR, 2017.

5



A Supplemental Materials

A.1 Neural network architectures

Here, we provide the details of the neural network architectures used in our experiments.

• Common part (θc): 40-2 WideResNet [10]. The size of input image is (32× 32× 3), and that of the output
is (128).

• Main task (θmain): FC(128, 10)

• Rotation (θaux,rot): FC(128, 4)

• Coloring (Color) (θaux,color): TransposedConv(channels=256, kernel=4, stride=1, padding=0) – BatchNorm –
ReLU – TransposedConv(channels=128, kernel=4, stride=2, padding=1) – BatchNorm – ReLU – Transposed-
Conv(channel=64, kernel=4, stride=2, padding=1) – BatchNorm – ReLU – TransposedConv(channel=64,
kernel=4, stride=2, padding=1). The output tensor is of size (32 × 32 × (32 · 2)). Each tensor of size
(1× 1× (32 · 2)) is viewed as the concatenation of 32-way classification results for A value and that for B
value for a certain pixel. See Figure 3 for a visual illustration.

• Image reconstruction (IR) (θaux,IR): TransposedConv(channels=256, kernel=4, stride=1, padding=0) –
BatchNorm – ReLU – TransposedConv(channels=128, kernel=4, stride=2, padding=1) – BatchNorm –
ReLU – TransposedConv(channel=64, kernel=4, stride=2, padding=1) – BatchNorm – ReLU – Transposed-
Conv(channel=3, kernel=4, stride=2, padding=1). The output tensor is of size (32× 32× 3), corresponding
to the reconstructed image.

• Image deblurring (BIR) (θaux,BIR): Same as above.

• Inpainting (Inpaint) (θaux,inpaint): TransposedConv(channels=64, kernel=4, stride=1, padding=0) – BatchNorm
– ReLU – TransposedConv(channels=3, kernel=4, stride=2, padding=1) – Sigmoid. The output tensor is of
size (8× 8× 3), corresponding to the inpainting result.

• Color-channel guessing (RGB guess) (θaux,RGB): FC(128, 6)

• Jigsaw puzzle (Jigsaw) (θaux,jigsaw): FC(128, 24)

32

32

64

32

32

32

32

32

(1,1)

(32,32)

32-way classification 
result for�
A value of pixel 
(1,32)

32-way classification 
result for�
B value of pixel 
(1,32)

32

Figure 3: A visual illustration of θaux,color.

6


	Introduction
	Related Work
	Single Self-supervision Task for Model Robustness
	An AutoML Algorithm for Incorporating Multiple Self-supervision Tasks
	Conclusion
	Supplemental Materials
	Neural network architectures


