
Meta-Learning of Structured Representation by
Proximal Mapping

Mao Li, Yingyi Ma, Xinhua Zhang
Department of Computer Science, University of Illinois at Chicago

Chicago, IL 60607
{mli206,yma36,zhangx}@uic.edu

Abstract

Underpinning the success of deep learning are the effective regularization tech-
niques that allow a broad range of structures in data to be compactly modeled in a
deep architecture. Examples include transformation invariances and correlations
between multiple modalities. However, most existing methods incorporate such
priors either by auto-encoders, whose result is used to initialize supervised learning,
or by augmenting the data with exemplifications of the transformations which,
despite the improved performance of supervised learning, leaves it unclear whether
the learned latent representation does encode the desired regularities. To address
these issues, this work proposes an end-to-end representation learning framework
based on meta-learning, which allows prior structures to be encoded explicitly in
the hidden layers, and to be trained efficiently in conjunction with the supervised
learning task. It extends meta-learning to unsupervised base learners. The resulting
technique is applied to generalize dropout and invariant kernel warping, and to
develop novel algorithms for multiview modeling and robust temporal learning.

1 Introduction

The success of deep learning relies on massive neural networks that often considerably out-scale
the training dataset, defying the conventional learning theory [1, 2]. Regularizations have been
shown to be essential and a variety of forms are available. Standard invariances to transformations
such as rotation and translation [3] have been extended beyond group-based diffeomorphisms to
indecipherable transformations only exemplified by pairs of views [4], e.g., sentences uttered by the
same person. Structural regularities are also commonly present a) within layers of neural networks,
such as sparsity [5], spatial invariance in convolutional nets, structured gradient that accounts for
data covariance [6], and manifold smoothness characterized by a graph [7]; and b) between layers of
representation, such as stability under dropout and adversarial perturbations of preceding layers [8],
contractivity between layers [9], and correlations in hidden layers among multiple views [10, 11].

Structural regularities can be captured in the context of both supervised and unsupervised learning.
Dataset augmentation, probably the most prevalent approach, generates new data to better exemplify
the classes in a supervised task [12–14]. Adversarial learning finds the attack that maximally impairs
classification, and virtual adversarial learning, despite the capability of using unlabeled data, relies
on the predicted class distribution to select adversarial examples [15, 16]. Although these methods
boost prediction performance, it is unclear whether this is due to the learned representation or due to
the improved classifier. For example, Figure 1a shows the two-moon dataset with only two labeled
examples and many unlabeled ones. Although finding the separating boundary is easy for graph-based
semi-supervised learning [17], it does not uncover any manifold-aware representation of the data.

This limitation has been well addressed by auto-encoders that extract the most salient features to
reconstruct the input, while also encoding a variety of latent structures such as layer-wise contractivity

3rd Workshop on Meta-Learning at NeurIPS 2019, Vancouver, Canada.

(a) Original two-moon dataset (b) Representation after MetaProx (c) Contour to � after prox-map

Figure 1: (a) The two-moon dataset with only two labeled examples ‘+’ and ‘−’ (left and right), but
abundant unlabeled examples that reveal the inherent structure; (b) Representation inferred from the
proximal map based on unsupervised gradient flatness (Equation 8 with Gaussian kernel); (c) contour
of distance to the leftmost point �, based on the representation from proximal mapping.

[9], noise resilience [18–20], correlations between views [10], sparsity in latent code [5], on-manifold
robustness [21], and graphical interconnections in node embeddings [22]. However most of these
methods are not amenable to end-to-end learning, and are used as an initialization for the subsequent
supervised task. Impeding the synergy of these two objectives is the contention between accurate
prediction and faithful input reconstruction, compelling model weights to make compromises.

The goal of this paper, therefore, is to learn representations that explicitly encode structural priors in an
end-to-end fashion. Our tool is meta-learning based on proximal mapping (hence the name MetaProx),
which has been extensively used in optimization to enforce structured solutions (e.g., sparsity) at
each iteration [23], but surprisingly not yet in modeling deep neural networks. Given a closed convex
set C ⊆ Rn and a convex function f : Rn → R, the proximal mapping Pf : Rn → Rn is defined as

Rn 3 z 7→ Pf (z) := arg minx∈C f(x) + λ
2 ‖x− z‖

2
, (1)

where the norm is L2. f and C can be nonconvex, making Pf (z) set valued [24–26], and we will only
need differentiation at one element. In essence, f and C promote the result of the mapping to capture
the desired structure, while staying close to the original z. For example, Figures 1b and 1c show the
resulting representation and distance metric of the two-moon data where f accounts for the underlying
manifold, making the classification problem trivial (see Section 2). In practice, this proximal layer can
be conveniently inserted into a deep network, proffering the favorable decoupling of regularization
and supervised learning—the structural regularization is encapsulated within the proximal layer and
the supervised learning signal originating from downstream layers can be backpropagated through it in
an end-to-end manner. This frees weight optimization from simultaneously catering for unsupervised
structures and supervised performance metrics, as in the conventional regularized risk minimization.

Motivated by meta-learning, z in (1) may consist of the embeddings of input objects in mini-batches,
where each mini-batch can be considered as a “task” (or dataset, episode, etc) in the standard
meta-learning terminology, and the structure-inducing transformation it undergoes corresponds to
the task-specific base learner inside each iteration of the meta learner. For example, [27–29] used
simple metric-based nearest neighbor, [30, 31] optimized standard learning algorithms iteratively,
and [32, 33] leveraged closed-form solutions for base learners. Explicit learning of learner’s update
rule was investigated in [34–36]. In this sense, MetaProx extends meta-learning to unsupervised base
learners. As a concrete example, we will instantiate MetaProx in the context of multiview learning in
Section 3, where f takes the form of the canonical correlation analysis objective. Efficient algorithms
for solving the resulting proximal mapping will be designed, and superior empirical performance will
be demonstrated in Section 4.

2 Proximal Mapping as a Primitive Construct in Deep Networks
Proximal map is highly general, encompassing most primitive operations in deep learning [23, 37].
For example, it is easy to verify that for any activation function σ with σ′(x) ∈ (0, 1] (e.g., sigmoid),
x 7→ σ(x) is indeed a proximal map with C = Rn and f(x) =

∫
σ−1(x) dx − 1

2x
2, which is

convex. The ReLu and hard tanh activations can be recovered by f = 0, with C = [0,∞) and
C = [−1, 1], respectively. Soft-max transfer Rn 3 x 7→ (ex1 , . . . , exn)>/

∑
i e
xi corresponds to

C = {x ∈ Rn+ : 1>x = 1} and f(x) =
∑
i xi log xi − 1

2x
2
i , which are convex. Batch normalization

maps x ∈ Rn to (x − µ1)/σ, where 1 is a vector of all ones, and µ and σ are the mean and
standard deviation of the elements in x, respectively. This mapping can be recovered by f = 0 and
C={x : ‖x‖ =

√
n,1>x = 0}. Although C is not convex, this Pf (x) must be a singleton for x 6= 0.

2

Figure 2: Multi-view learning with a proximal layer for CCA based meta-learning.

Essentially, MetaProx falls in the differentiable optimization framework laid by OptNet [38] along
with [32, 33, 39–48], which provides recipes for differentiating through an optimization layer.
However, our focus is not on optimization, but on using MetaProx to model the prior structures
in the data, which typically involves an (inner) unsupervised learning task such as CCA. Detailed
discussions on the relationship between MetaProx and OptNet or related works are available in
Appendix C.
Kernelized deep neural networks. Clearly MetaProx can be extended to reproducing kernel
Hilbert spaces (RKHS), allowing non-vectorial data to be encoded [49], and some prior invariances
to be hard wired [50–52]. Assume the RKHS H is induced by a kernel k : X × X → R on input
space X . Given a convex functional L : H → R, the proximal map PL : H → H is defined as [53]

H 3 h 7→ PL(h) := arg minf∈C L(f) + λ
2 ‖f − h‖

2
H, where C ⊆ H is convex. (2)

An example of L that captures data manifold is the graph Laplacian L(f) :=
∑
ij wij(f(xi) −

f(xj))
2. Parameterizing images as I(α) where α is the degree of rotation, translation, etc, transfor-

mation invariance favors a small absolute value of L(f) := ∂
∂α |α=0f(I(α)). Figure 1b was obtained

simply with PL(k(x, ·)) where L(f) =
∑
i ‖∇f(xi)‖2, followed by kernel PCA. More details are

given in Appendix A, where MetaProx recovers the kernel warping for invariance modeling in [54].

3 MetaProx for Multiview Learning
In multiview learning, observations are available from a pair of views: {(xi, yi)}ni=1, and each pair is
associated with a label ci. In the deep canonical correlation analysis model [DCCA, 11], the x-view
is passed through a multi-layer neural network or kernel machine, leading to a hidden representation
f(xi). Similarly the y-views are transformed into g(yi). CCA aims to maximize the correlation
of these two views after projecting into a common k-dimensional subspace, through {ui}ki=1 and
{vi}ki=1 respectively. Denoting X = (f(x1), . . . , f(xn))H and Y = (g(y1), . . . , g(yn))H where
H = I − 1

n11
>, CCA finds U = (u1, . . . , uk) and V = (v1, . . . , vk) that maximize the correlation:

minU,V − tr(U>XY >V), s.t U>XX>U = I, V >Y Y >V = I, u>i XY
>vj = 0, ∀ i 6= j. (3)

Denote the optimal objective value as L(X,Y). DCCA directly optimizes it with respect to the
parameters in f and g, while DCCA autoencoder [DCCAE, 10] further reconstructs the input. They
both use the result to initialize a finer tuning of f and g, in conjunction with subsequent layers h for a
supervised target ci. We aim to improve this two-stage process with an end-to-end approach based on
proximal mapping, which, omitting regularizers, can be written as minf,g,h

∑
i `(h(pi, qi), ci) with

{(pi, qi)}ni=1 = PL(X,Y) := arg min
P,Q

λ
2 ‖P −X‖

2
F + λ

2 ‖Q− Y ‖
2
F + L(P,Q), (4)

where ‖·‖F stands for the Frobenious norm. The proximal mapping is performed in mini-batches,
and the entire framework is illustrated in Figure 2.
Optimization and BP. Although efficient closed-form solution is available to the CCA objective
in (3), none exists for the proximal mapping in (4). However, it is natural to take advantage of
this closed-form solution. In particular, assuming f(xi) and g(yi) have the same dimensionality,
then [11] shows that L(X,Y) = −

∑k
i=1 σi(T), where σi stands for the i-th largest singular value,

and T (X,Y) = (XX> + εI)−1/2(XY >)(Y Y > + εI)−1/2. Here ε > 0 is a small constant to
enable inversion. Then (4) can be easily solved by gradient descent or L-BFGS. The gradient of∑k
i=1 σi(T (P,Q)) is available from [11], which relies on SVD. But since the dimension of f and g

is low in practice (10 in our experiment and DCCA), the cost of SVD and computing T is small.

3

Table 1: Spearman’s correlation for word similarity
WS-353 WS-SIM WS-REL SimLex999

EN DE EN DE EN DE EN DE

Baseline 73.35 52.68 77.84 63.34 67.66 44.24 37.15 29.09
linearCCA 73.79 68.45 76.06 73.02 67.01 62.95 37.84 43.34
DCCA 73.86 69.09 78.69 74.13 66.57 64.66 38.78 43.29
DCCAE 72.39 69.67 75.74 74.65 65.96 64.20 36.72 41.81
MetaProx 75.38 69.19 78.28 75.40 70.97 66.81 39.99 44.23
CL-DEPEMB - - - - - - 35.60 30.60

BP requires that given ∂J
∂P and ∂J

∂Q where J is the ultimate objective value, compute ∂J
∂X and ∂J

∂Y . The
most general solution has been provided by OptNet [38], but the structure of our problem is amenable
to a simpler solution in [39]. With small ε > 0,

(
∂J
∂X ,

∂J
∂Y

)
≈ 1
ε

(
PL(X+ε ∂J∂P , Y +ε ∂J∂Q)−PL(X,Y)

)
.

4 Experiments
We evaluated the empirical performance of MetaProx for multiview learning on cross-lingual word
embedding. Details on dataset preprocessing, experiment setting, optimization parameters, and
additional results are available in Appendix E. Here we highlight the major results and experiment
setup for crosslingual/multilingual word embedding, where the goal is to learn word representations
that reflect word similarities, and the multiview approach tries to train on pairs of (English, German)
words, so as to transfer in the latent subspace.
Datasets. We obtained 36K English-German word pairs (training examples) from the parallel news
commentary corpora [WMT 2012-2018, 55] using the word alignment method from [56, 57]. Based
on the corpora we also built a bilingual dictionary, where each English word x is matched with the
(unique) German word that has been most frequently aligned to x. The raw word embedding (xi and
yi) used the pretrained monolingual 300-dimensional word vectors from fastText [58, 59].

The evaluation was conducted on two commonly used datasets [60, 61]. Multilingual WS353 contains
353 pairs of English words, and their translations to German, Italian and Russian, that have been
assigned similarity ratings by humans. It was further split into multilingual WS-SIM and multilingual
WS-REL which measure similarity and relatedness between word pairs, respectively. The second
dataset is multilingual SimLex999 which consists of 999 English word pairs and their translations.
Algorithms. We compared MetaProx with DCCA and DCCAE, and all of them used multilayer per-
ceptrons with ReLU activation. MetaProx used the CCA value as the ultimate objective. A validation
set was employed to select the hidden dimension h for f and g from {0.1, 0.3, 0.5, 0.7, 0.9} × 300,
the regularization parameter λ, and the depth and layer width from 1 to 4 and {256, 512, 1024, 2048},
respectively. We also compared with linear CCA [62]. At test time, the (English, German) word pairs
from the test set were fed to the four multivew based models, extracting the English and German
word representations. Then the cosine similarity can be computed between all pairs of monolingual
words in the test set (English and German), and we reported in Table 1 the Spearman’s correlation
between the model’s ranking and human’s ranking.

Results. Clearly, MetaProx always achieves the highest or close to highest Spearman’s correlation
on all test sets and for both English (EN) and German (DE). We also included a baseline which
only uses the monolingual word vectors. CL-DEPEMB is from [63], and the paper only provided
the results for SimLex999 while no code was made available. It can be observed from Table 1
that multiview based methods achieved more significant improvement over the baseline on German
data than on English data. This is not surprising, because the presence of multiple views offers
an opportunity to transfer useful information from other views/languages. Since the performance
on English is generally better than that of German, it is not surprising that more improvement was
achieved on German.
Extensions and conclusion. In Appendix F, one more instantiation of MetaProx will be demon-
strated for adversarial recurrent learning. Appendix B further shows dropout can also be cast as
proximal map. To summarize, motivated by meta-learning with unsupervised base learners, we pro-
posed using proximal mapping as a new primitive in deep learning, which explicitly encodes desired
structure. The new models for multiview and adversarial recurrent learning are shown effective.

4

References
[1] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires

rethinking generalization. In International Conference on Learning Representations (ICLR).
2017.

[2] D. Arpitz, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj, A. Fischer,
A. Courville, Y. Bengio, and S. Lacoste-Julien. A closer look at memorization in deep networks.
In International Conference on Machine Learning (ICML). 2017.

[3] P. Y. Simard, Y. A. LeCun, J. S. Denker, and B. Victorri. Transformation invariance in pattern
recognition – tangent distance and tangent propagation. In G. Montavon, G. B. Orr, and K.-R.
Müller, eds., Neural Networks: Tricks of the Trade: Second Edition, pp. 235–269. 2012.

[4] D. K. Pal, A. A. Kannan, G. Arakalgud, and M. Savvides. Max-margin invariant features from
transformed unlabeled data. In Advances in Neural Information Processing Systems (NeurIPS).
2017.

[5] A. Makhzani and B. Frey. k-Sparse autoencoders. In International Conference on Learning
Representations (ICLR). 2014.

[6] K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann. Adversarially robust training through
structured gradient regularization, 2018. ArXiv:1805.08736.

[7] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR). 2017.

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15:1929–1958, 2014.

[9] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit
invariance during feature extraction. In International Conference on Machine Learning (ICML).
2011.

[10] W. Wang, R. Arora, K. Livescu, and J. A. Bilmes. On deep multi-view representation learning.
In International Conference on Machine Learning (ICML). 2015.

[11] G. Andrew, R. Arora, J. A. Bilmes, and K. Livescu. Deep canonical correlation analysis. In
International Conference on Machine Learning (ICML). 2013.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems (NeurIPS), pp. 1097–
1105. 2012.

[13] T. Poggio and T. Vetter. Recognition and structure from one 2D model view: observations
on prototypes, object classes and symmetries. A.I. Memo No. 1347, Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, 1992.

[14] P. Niyogi, F. Girosi, and T. Poggio. Incorporating prior knowledge in machine learning by
creating virtual examples. Proceedings of the IEEE, 86(11):2196–2209, November 1998.

[15] T. Miyato, S. ichi Maeda, M. Koyama, K. Nakae, and S. Ishii. Distributional smoothing with
virtual adversarial training. In International Conference on Learning Representations (ICLR).
2016.

[16] T. Miyato, A. M. Dai, and I. Goodfellow. Adversarial training methods for semi-supervised text
classification. In International Conference on Learning Representations (ICLR). 2017.

[17] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and
harmonic functions. In International Conference on Machine Learning (ICML), pp. 912–919.
2003.

5

[18] N. Jaitly and G. Hinton. Learning a better representation of speech soundwaves using restricted
boltzmann machines. In 2011 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2011.

[19] J. Sietsma and R. J. F. Dow. Creating artificial neural networks that generalize. Neural Networks,
4(1):67–79, 1991.

[20] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust
features with denoising autoencoders. In International Conference on Machine Learning
(ICML). 2008.

[21] D. Stutz, M. Hein, and B. Schiele. Disentangling adversarial robustness and generalization.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[22] T. N. Kipf and M. Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

[23] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1(3):127–
239, 2014.

[24] W. Hare and C. Sagastizábal. Computing proximal points of nonconvex functions. Mathematical
Programming, 116(1):221–258, 2009.

[25] F. Bernard and L. Thibault. Prox-regularity of functions and sets in banach spaces. Set-Valued
Analysis, 12(1):25–47, Mar 2004.

[26] R. A. Poliquin and R. T. Rockafellar. Prox-regular functions in variational analysis. Transactions
of the American Mathematical Society, 348(5):1805–1838, 1996.

[27] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot image
recognition. In International Conference on Machine Learning (ICML). 2015.

[28] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for
one shot learning. In Advances in Neural Information Processing Systems (NeurIPS). 2016.

[29] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. In Advances
in Neural Information Processing Systems (NeurIPS). 2017.

[30] C. Finn and S. Levine. Meta-learning and universality: Deep representations and gradient
descent can approximate any learning algorithm. 2018.

[31] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning (ICML). 2017.

[32] L. Bertinetto, J. F. Henriques, P. H. Torr, and A. Vedaldi. Meta-learning with differentiable
closed-form solvers. In International Conference on Learning Representations (ICLR). 2019.

[33] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with differentiable convex
optimization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

[34] S. Hochreiter, A. S. Younger, and P. R. Conwell. Learning to learn using gradient descent. In
International Conference on Artificial Neural Networks. 2001.

[35] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford,
and N. de Freitas. Learning to learn by gradient descent by gradient descent. In Advances in
Neural Information Processing Systems (NeurIPS). 2016.

[36] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. 2017.

[37] P. L. Combettes and J. C. Pesquet. Deep neural network structures solving variational inequali-
ties. arXiv:1808.07526, 2018.

[38] B. Amos and J. Z. Kolter. OptNet: Differentiable optimization as a layer in neural networks. In
International Conference on Machine Learning (ICML). 2017.

6

[39] J. Domke. Implicit differentiation by perturbation. In Advances in Neural Information Process-
ing Systems (NeurIPS). 2010.

[40] J. Domke. Generic methods for optimization-based modeling. In International Conference on
Artificial Intelligence and Statistics (AISTATS). 2012.

[41] D. Belanger, B. Yang, and A. McCallum. End-to-end learning for structured prediction energy
networks. In International Conference on Machine Learning (ICML). 2017.

[42] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in
machine learning: A survey. Journal of Machine Learning Research, 18(1):5595–5637, 2017.

[43] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adversarial networks. In
International Conference on Learning Representations (ICLR). 2017.

[44] P. Brakel, D. Stroobandt, and B. Schrauwen. Training energy-based models for time-series
imputation. Journal of Machine Learning Research, 14:2771–2797, 2013.

[45] B. Amos, I. Rodriguez, J. Sacks, B. Boots, and J. Kolter. Differentiable mpc for end-to-end
planning and control. In Advances in Neural Information Processing Systems (NeurIPS). 2018.

[46] V. Stoyanov, A. Ropson, and J. Eisner. Empirical risk minimization of graphical model
parameters given approximate inference, decoding, and model structure. In International
Conference on Artificial Intelligence and Statistics (AISTATS). 2011.

[47] I. Goodfellow, M. Mirza, A. Courville, and Y. Bengio. Multi-prediction deep boltzmann
machines. In Advances in Neural Information Processing Systems (NeurIPS). 2013.

[48] S. Gould, B. Fernando, A. Cherian, P. Anderson, R. S. Cruz, and E. Guo. On differenti-
ating parameterized argmin and argmax problems with application to bi-level optimization.
arXiv:1607.05447, 2016.

[49] P. Laforgue, S. Clémençon, and F. d’Alché-Buc. Autoencoding any data through kernel
autoencoders. In International Conference on Artificial Intelligence and Statistics (AISTATS).
2019.

[50] J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. Convolutional kernel networks. In Advances
in Neural Information Processing Systems (NeurIPS). 2014.

[51] J. Mairal. End-to-end kernel learning with supervised convolutional kernel networks. In
Advances in Neural Information Processing Systems (NeurIPS). 2016.

[52] A. Bietti and J. Mairal. Group Invariance, Stability to Deformations, and Complexity of
Deep Convolutional Representations. In Advances in Neural Information Processing Systems
(NeurIPS). 2017.

[53] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. Springer, 2011.

[54] Y. Ma, V. Ganapaman, and X. Zhang. Learning invariant representation with kernel warping. In
International Conference on Artificial Intelligence and Statistics (AISTATS). 2019.

[55] News commentary corpus. http://www.statmt.org/wmt18.

[56] C. Dyer, V. Chahuneau, and N. A. Smith. A simple, fast, and effective reparameterization of
ibm model 2. In HLT-NAACL. 2013.

[57] Fast align toolbox. https://github.com/clab/fast_align.

[58] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov. Learning word vectors for
157 languages. In Proceedings of the International Conference on Language Resources and
Evaluation (LREC 2018). 2018.

[59] Pretrained fasttext word vectors. https://fasttext.cc/docs/en/crawl-vectors.html.

7

http://www.statmt.org/wmt18
https://github.com/clab/fast_align
https://fasttext.cc/docs/en/crawl-vectors.html

[60] I. Leviant and R. Reichart. Separated by an un-common language: Towards judgment language
informed vector space modeling. arXiv:1508.00106, 2015.

[61] Multilingual simlex999 and wordsim353 datasets. http://leviants.com/ira.leviant/
MultilingualVSMdata.html.

[62] M. Faruqui and C. Dyer. Improving vector space word representations using multilingual
correlation. In EACL. 2014.

[63] I. Vulić. Cross-lingual syntactically informed distributed word representations. In European
Chapter of the Association for Computational Linguistics. 2017.

[64] A. Bietti and J. Mairal. Group invariance, stability to deformations, and complexity of deep
convolutional representations. Journal of Machine Learning Research, 20(25):1–49, 2019.

[65] E. Kreyszig. Introductory Functional Analysis with Applications. Wiley, 1989.

[66] I. Steinwart and A. Christmann. Support Vector Machines. Information Science and Statistics.
2008.

[67] C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In
Advances in Neural Information Processing Systems (NeurIPS). 2000.

[68] S. Wager, S. I. Wang, and P. Liang. Dropout training as adaptive regularization. In Advances in
Neural Information Processing Systems (NeurIPS). 2013.

[69] S. I. Wang and C. D. Manning. Fast dropout training. In International Conference on Machine
Learning (ICML). 2013.

[70] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012.

[71] L. Kantorovitch. On the translocation of masses. Management Science, 5(1):1–4, 1958.

[72] J. A. Bagnell and D. M. Bradley. Differentiable sparse coding. In Advances in Neural Informa-
tion Processing Systems (NeurIPS). 2008.

[73] J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34(4):791–804, 2012.

[74] S. Wang, S. Fidler, and R. Urtasun. Proximal deep structured models. In Advances in Neural
Information Processing Systems (NeurIPS). 2016.

[75] J. T. Zhou, K. Di, J. Du, X. Peng, H. Yang, S. J. Pan, I. W.-H. Tsang, Y. Liu, Z. Qin, and R. S. M.
Goh. Sc2net: Sparse lstms for sparse coding. In National Conference of Artificial Intelligence
(AAAI). 2018.

[76] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In European
Conference on Computer Vision (ECCV), pp. 630–645. 2016.

[77] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep
neural networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2017.

[78] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng. Dual path networks. In Advances in Neural
Information Processing Systems (NeurIPS). 2017.

[79] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang. Random erasing data augmentation.
arXiv:1708.04896, 2017.

[80] L. van der Maaten and G. E. Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, (9):2579–2605, 2008.

[81] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected convolutional networks. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

8

http://leviants.com/ira.leviant/MultilingualVSMdata.html
http://leviants.com/ira.leviant/MultilingualVSMdata.html

[82] A. Lu, W. Wang, M. Bansal, K. Gimpel, and K. Livescu. Deep multilingual correlation
for improved word embeddings. In HLT: Conference of the North American Chapter of the
Association for Computational Linguistics (HLT-NAACL). 2015.

[83] M. Shimbo, M. Kudo, and J. Toyama. Multidimensional curve classification using passing-
through regions. Pattern Recognition Letters, 20:1103, 1999.

[84] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz. A public domain dataset for
human activity recognition using smartphones. In European Symposium on Artificial Neural
Networks. 2013.

[85] N. Hammami and M. Bedda. Improved tree model for arabic speech recognition. In International
Conference on Computer Science and Information Technology. 2010.

9

A Generalizing Multi-layer Invariant Kernel Warping by Proximal
Mapping

We will review in the next two sections two existing techniques in deep learning, revealing new
insights by connecting them to proximal mapping. [50, 51, 64] introduced multi-layer transformations
of convolutional kernel descriptors, and [54] proposed warping kernels to incorporate a broad variety
of data-dependent invariances that supersede transformation, if the invariances can be represented
by a bounded linear functional. Our first new insight is that kernel warping is indeed a proximal
mapping, which, as a result, allows invariances to be significantly extended to nonlinear functionals.

Analogous to the multi-layer transformation of vectors in deep nets, it has been proposed that the
latent representations can be extended to functions in a reproducing kernel Hilbert space (RKHS).
This allows non-vectorial data to be encoded [49], and some prior invariances to be hard wired
[50–52]. It is different from the conventional motivation of using kernels for enriching the feature
space, which is already facilitated by deep nets. [54] further developed kernel warping to incorporate
data-dependent invariances at each layer, leveraging the feasibility of differentiation or integration of
function representations that is not available to simple vectors.

Let us assume that the input space X is a compact metric space, and a kernel k : X × X → R is a
continuous and positive definite function. The RKHS induced by k is denoted asH, and more details
on RKHS can be found in [65, 66]. Recall that a linear functional L from a normed space V to R
is bounded, if ‖L‖ := supf∈V:‖f‖V=1 |L(f)| is finite. Clearly proximal maps can be extended to
RKHS [53]: given a convex functional L : H → R, the proximal map PL : H → H is defined as in
(2), which we copy here for convenience:

H 3 h 7→ PL(h) := arg minf∈C L(f) + λ
2 ‖f − h‖

2
H, where C ⊆ H is convex. (5)

Finite approximation (FA). Although this optimization can often be solved when favorable struc-
tures are available (e.g., representer theorem), Backpropagation through it can still be hard. Therefore
we resort to Nyström approximations of functions inH [67]. Using p samples W := {ωi}pi=1 drawn
i.i.d. from X , we derive an FA of f as follows, ensuring that 〈f̃ , h̃〉 ≈ 〈f, h〉H for all f, h ∈ H:

f̃ := K
−1/2
W fW , where KW := (k(ωi, ωj))ij ∈ Rp×p, fW := (f(ω1), . . . , f(ωp))

> ∈ Rp.

Therefore, if L(f) can be represented as a g({〈zi, f〉H}mi=1) where m ≤ ∞ and zi ∈ H, then PL(f)

can be approximated by minimizing g({z̃>i f̃}mi=1) + λ
2 ||f̃ − h̃||

2 over an FA of C, e.g., ||f̃ || ≤ 1.

Kernel warping for invariance modeling. The graph Laplacian on a function f is∑
ij wij(f(xi)− f(xj))

2, where f(xi)− f(xj) is a bounded linear functional. Parameterizing
images as I(α) where α is the degree of rotation, tran slation, etc, transformation invariance favors
a small absolute value of ∂

∂α |α=0f(I(α)), which is a bounded linear functional. Local averaging
compares f(xi) with the neighborhood:

∫
f(τ)ρ(xi− τ) dτ , where ρ is a distribution peaked at zero.

The difference is also a bounded linear functional, which, by Riesz representation theorem, can be
written as 〈zi, f〉H for some zi ∈ H.

In order to respect the desired invariances, [54] proposed a warped RKHSH◦ consisting of the same
functions in the original RKHSH, but redefining the norm and the corresponding kernel by

‖f‖2H◦ := ‖f‖2H +
∑m

i=1
〈zi, f〉2H ⇔ k◦(x1, x2) = k(x1, x2)− z(x1)>KZz(x2), (6)

where z(x) = (z1(x), . . . , zm(x))>. Then replacing k(x, ·) by k◦(x, ·) results in a new invariant
representation. Such a warping can be applied to all layers of the network, e.g., deep convolutional
kernel network [CKNs, 50, 64], instilling invariance to the preceding layer’s output.

The major limitation of this method, however, is that the invariances have to be modeled by 〈zi, f〉2H
in order to make ‖f‖2H+

∑m
i=1 〈zi, f〉

2
H a norm square, precluding many interesting invariances such

as total variation. In addition, the change of RKHS creates conceptional and practical complications,
and it will be much more convenient if we retainH and just change k(x, ·).

Kernel warping as MetaProx. Interestingly, both of these desirabilities can be achieved by simply
reformulating kernel warping into a proximal mapping. Since H and H◦ share the same function

10

space but endow different meanings, we will avoid ambiguity by considering the FA of k◦(x, ·) in
H◦ [54], which can be written as:

(I + Z̃Z̃>)−1/2ϕ̃(x), where Z̃ = (z̃1, . . . , z̃m), and ϕ̃(x) is the FA of k(x, ·) inH. (7)

Simply setting L(f) := 1
2

∑m
i=1 〈zi, f〉

2
H in the proximal map (2) to measure invariance, we derive

PL(k(x, ·)) = arg min
f∈H

1
2

∑m

i=1
〈zi, f〉2H + 1

2 ‖f − k(x, ·)‖2H. (8)

Using FA z̃i for zi and ϕ̃(x) for k(x, ·), we obtain the FA of PL(ϕ(x)) as (I + Z̃Z̃>)−1ϕ̃(x), which
is almost the same as that from kernel warping in (7), except for the exponent on I + Z̃Z̃>. In
practice, we observed that it led to little difference, and the result of proximal mapping using Gaussian
kernel and gradient flatness invariance is shown in Figure 1. Trivially, now the regularizer L in (8) can
be extended to nonlinear (convex) functionals, such as total variation f 7→

∫
|f ′(x)|dx. In hindsight,

(8) is very natural: shift k(x, ·) into a new representation f ∈ H with small deviation while better
respecting the invariances. It broadens the invariances encodable in multi-layer CKNs [54].

B Dropout Training as a Proximal Mapping

Another interesting but unheeded instance of proximal map is the well-known dropout. Although
connection with adaptive regularization has been unraveled by [68, 69] for a single layer, extensions
to multiple layers have been left unclear. We will achieve this by proximal mapping.

The underlying rationale of dropout is to introduce a blackout noise ε to a hidden layer x ∈ Rh
[70], so that the subsequent layer’s output f is robust to it, as quantified by a metric D. For better
generality, we let f lie in an RKHS as in the previous section. Denote the noised x as xε, which can
be i) x+ ε for additive Gaussian noise with εi ∼ N (µ, σ2), and ii) x� ε for dropout noise, where �
stands for elementwise multiplication, and εi = 0 with probability δ, and εi = (1− δ)−1 otherwise.

In [68], a target variable y is endowed with a conditional distribution p(y|x) = exp(yf(x)−A(f(x))),
and the metricD is defined using the sensitivity of p(y|x) with respect to x. HereA is the log-partition
function, which equals log(ez + e−z) for logistic regression. Formally,

D(f, x) = Eε[log p(y|x)− log p(y|xε)] = Eε[A(f(xε))]−A(f(x)). (9)

Taking expectation over the empirical distribution p̃ yields D̃(f) := Ex∼p̃D(f, x). By specializing to
a linear function fβ : x 7→ β>x and applying a Taylor expansion on A about f(x), [68] showed that
when y|x is logistic, D̃(fβ) is proportional to the following terms with px := (1 + exp(−f(x)))−1

‖β‖2Ex∼p̃[px(1− px)] (additive noise), and
∑

j
ajβ

2
j (dropout noise). (10)

Here aj = Ex∼p̃[px(1−px)x2j]. So the key advantage of dropout lies in permitting βj to take a larger
magnitude if xj is generally small (so is aj), hence favoring rare but discriminative features that are
common in text data. It also encourages more committed px, with a lower value of px(1− px).

We now show that a similar regularization can be achieved in a nontrivial fashion through proximal
mapping. Naturally we instantiate the L in (2) by D̃(f) to induce invariance to dropout, amounting to

PL(k(x, ·)) = arg min
f∈H

1
2D̃(f) + λ

2 ‖f − k(x, ·)‖2H. (11)

If we hypothetically suppress the dependency of px in (10) on β, PL(k(x, ·)) admits a closed form
under dropout noise and linear kernel with f(z) = f>z: PL(x) = b� x where bj + λ(λ+ aj)

−1.
Letting the output layer be x 7→ α>x, the regularized risk for loss ` can be written as

min
α
E(x,y)∼p̃[`(α

>PL(x), y)] + c ‖α‖2 ⇔ min
β
E(x,y)∼p̃[`(β

>x, y)] +
c

λ2

∑
j
(aj + λ)2β2

j .

Thus, as long as λ is small and c is set proportionally to λ2, the regularizer on β almost recovers∑
j ajβ

2
j in (10), modulo the squaring of aj . However, one should be mindful that the above

expression of PL(x) takes px in aj as a constant, while in practice it depends on f in the optimization
of (11). Fortunately, our simulations show that this does not result in a significant difference.

11

The proximal map in (11) can be readily extended to nonlinear kernels, calling for Nyström approx-
imation of D̃(f). The robustness measure D̃ and D may enjoy even more flexibility. The current
assignment in (9) essentially uses the curvature ofA◦f to quantify the impact of noise. Other choices
that measure the discrepancy between the distribution of A(f(xε)) and the singleton A(f(x)) can
also be used, e.g., Wasserstein distance [71]. To summarize Sections A and B, proximal mapping
provides a compact framework that allows us to efficiently model the invariance to perturbations in
both input and hidden layer output. We will next leverage this tool to develop two novel algorithms.

C Relationship with OptNet and Implicit Differentiation Based Learning

Given a prediction model such as linear model, energy-based model, kernel function, deep neural
network, etc, a loss function is needed to measure the quality of its prediction against the given
ground truth. Although surrogate losses had been popular in making the loss convex, recently it
is often observed that directly comparing the prediction of the model, typically computed through
an argmin optimization (or argmax), against the ground truth under the true loss of interest can be
much more effective. The error signal is originated from the last step through the argmin, and then
backpropagated through the model itself for training. For example, Amos et al used it to train input
convex neural networks at ICML 2017, [41] used it to train a structured prediction energy network,
and [44] used it to train an energy-based model for time-series imputation. Other works include
[46, 47], etc. A number of implicit and auto-differentiation algorithms have been proposed for it, e.g.,
[38–40, 42, 48].

Other uses of such differentiable optimization have been found in meta-learning to differentiate
through the learning algorithm in the middle [32, 33], or to train the generator in a generative
adversarial model by optimizing out the discriminator [43], or for end-to-end planning and control
[45]. In all these cases, differentiable optimization is used as an algorithm to train a given component
within a multi-component learning paradigm. But each component itself has its own pre-fixed model
and parameterization.

To the best of our knowledge, OptNet [38] proposed for the first time using optimization as a layer
of the deep neural network, hence extending the model itself. However, it focused on efficient
algorithms for differentiation, and the general framework of optimization layer was demonstrated by
using standard operations such as total variation denoising, which bears resemblance to task-driven
dictionary learning [72, 73]. It remains unclear how to leverage the general framework of OptNet to
flexibly model a broad range of structures, while reusing the existing primitives in deep learning (like
our extension of LSTM in Section F).

This is achieved by MetaProx. Although MetaProx also inserts a new layer, it provides concrete
and novel ways to model structured priors in data through proximal mapping. Most aforementioned
works use differentiable optimization as a learning algorithm for a given model, while MetaProx uses
it as a first-class modeling construct within a deep network. Designing the potential function f in
(1) can be highly nontrivial, as we have demonstrated in the examples of dropout, kernel warping,
multiview learning, and LSTM.

We note that despite the similarity in titles, [74] differs from our work as it applies proximal mapping
in a solver to perform inference in a graphical model, whose cliques are neural networks. The
optimization process happens to be analogous to a recurrent net, interlaced with proximal maps,
and similar analogy has been drawn between the ISTA optimization algorithm and LSTM [75]. We
instead use proximal map as a first-class construct/layer of meta-learning in a deep network.

D Backpropagation Through Time for Adversarial LSTM

To concentrate on backpropagation, we assume that the ultimate objective J only depends only on the
output of the last time step T , i.e., hT . Extension can be easily made to the case where each step also
contributes to the overall loss. From the final layer, we get ∂J

∂hT
. Then we can get ∂J

∂hT−1
and ∂J

∂cT−1

as in the standard LSTM (GT in the final layer can be ignored and ∂J
∂cT

= 0). In order to compute the
derivatives with respect to the weights W in the LSTMs, we need to recursively compute ∂J

∂ht−1
and

12

∂J
∂ct−1

, given ∂J
∂ht

and ∂J
∂ct

. Once they are available, then

∂J

∂W
=

T∑
t=1


∂J

∂ht︸︷︷︸
by (13)

∂

∂W
ht(ct−1, ht−1, xt)︸ ︷︷ ︸

standard LSTM

+
∂J

∂ct︸︷︷︸
by (15)

∂

∂W
ct(ct−1, ht−1, xt)︸ ︷︷ ︸

standard LSTM

 , (12)

where the two ∂
∂W on the right-hand side are identical to the standard operations in LSTMs. Here

we use the Jacobian matrix arrangement for partial derivatives, i.e., if f maps from Rn to Rm, then
∂f(x)
∂x ∈ Rm×n.

Given ∂J
∂ct

, we can first compute ∂J
∂st

and ∂J
∂Gt

based on the proximal map, and the details will be
provided in Section D.1. Given their values, we now compute ∂J

∂ht−1
and ∂J

∂ct−1
. Firstly,

∂J

∂ht−1
=

∂J

∂ht︸︷︷︸
by recursion

∂ht
∂ht−1︸ ︷︷ ︸
std LSTM

+
∂J

∂Gt

∂Gt
∂ht−1︸ ︷︷ ︸

by (14)

+
∂J

∂st︸︷︷︸
by (20)

∂st
∂ht−1︸ ︷︷ ︸
std LSTM

. (13)

The terms ∂ht

∂ht−1
and ∂st

∂ht−1
are identical to the operations in the standard LSTM. The only remaining

term is in fact a directional second-order derivative, where the direction ∂J
∂Gt

can be computed from
from (29):

∂J

∂Gt

∂Gt
∂ht−1

=
∂J

∂Gt

∂2

∂xt∂ht−1
st(ct−1, ht−1, xt) =

∂

∂ht−1

〈
∂J

∂Gt︸︷︷︸
by (29)

,
∂

∂xt
st(ct−1, ht−1, xt)

〉
.

(14)

Such computations are well supported in most deep learning packages, such as PyTorch. Secondly,

∂J

∂ct−1
=

∂J

∂ht︸︷︷︸
by recursion

∂ht
∂ct−1︸ ︷︷ ︸

std LSTM

+
∂J

∂Gt

∂Gt
∂ct−1︸ ︷︷ ︸

by (16)

+
∂J

∂st︸︷︷︸
by (20)

∂st
∂ct−1︸ ︷︷ ︸

std LSTM

. (15)

The terms ∂ht

∂ct−1
and ∂st

∂ct−1
are identical to the operations in the standard LSTM. The only remaining

term is in fact a directional second-order derivative:

∂J

∂Gt

∂Gt
∂ct−1

=
∂J

∂Gt

∂2

∂xt∂ct−1
st(ct−1, ht−1, xt) =

∂

∂ct−1

〈
∂J

∂Gt︸︷︷︸
by (29)

,
∂

∂xt
st(ct−1, ht−1, xt)

〉
. (16)

D.1 Gradient Derivation for the Proximal Map

We now compute the derivatives involved in the proximal operator, namely ∂J
∂st

and ∂J
∂Gt

. For clarify,
let us omit the step index t, set δ =

√
λ without loss of generality, and denote

J = f(c), where c := c(G, s) := (I +GG>)−1s. (17)

We first compute ∂J/∂s which is easier.

∆J := f(c(G, s+ ∆s))− f(c(G, s)) = ∇f(c)>(c(G, s+ ∆s)− c(G, s)) + o(‖∆s‖) (18)

= ∇f(c)>(I +GG>)−1∆s+ o(‖∆s‖). (19)

Therefore,

∂J

∂s
= ∇f(c)>(I +GG>)−1. (20)

We now move on to ∂J/∂G. Notice

∆J := f(c(G+ ∆G, s))− f(c(G, s)) = ∇f(c)>(c(G+ ∆G, s)− c(G, s)) + o(‖∆G‖). (21)

13

Since

c(G+ ∆G, s) = (I + (G+ ∆G)(G+ ∆G)>)−1s (22)

=
[
(I +GG>)

1
2

(
I + (I +GG>)−

1
2 (∆GG> +G∆G>)(I +GG>)−

1
2

)
(I +GG>)

1
2

]−1
s

(23)

=(I +GG>)−
1
2

(
I − (I +GG>)−

1
2 (∆GG> +G∆G>)(I +GG>)−

1
2 + o(‖∆G‖)

)
(I +GG>)−

1
2 s

(24)

=c(G, s)− (I +GG>)−1(∆GG> +G∆G>)(I +GG>)−1s+ o(‖∆G‖), (25)

we can finally obtain

∆J = −∇f(c)>(I +GG>)−1(∆GG> +G∆G>)(I +GG>)−1s+ o(‖∆G‖) (26)

= − tr
(
∆G>(I +GG>)−1

(
∇f(c)s> + s∇f(c)>

)
(I +GG>)−1G

)
+ o(‖∆G‖). (27)

So in conclusion,

∂J

∂G
= −(I +GG>)−1

(
∇f(c)s> + s∇f(c)>

)
(I +GG>)−1G (28)

= −(ac> + ca>)G, where a = (I +GG>)−1∇f(c). (29)

E Detailed and Self-contained Experimental Result

E.1 Crosslingual/Multilingual Word Embedding

In this task, we learned representation of English and German words from the paired (English,
German) word embeddings for improved semantic similarity.

Dataset. We first built a parallel vocabulary of English and German from the parallel news com-
mentary corpora [WMT 2012-2018 55] using the word alignment method from [56, 57]. Then we
selected 36K English-German word pairs, in descending order of frequency, for training. Based
on the vocabulary we also built a bilingual dictionary for testing, where each English word xi is
matched with the (unique) German word yi that has been most frequently aligned to xi. Unlike the
setup in [10, 62], where word embeddings are trained via Latent Semantic Analysis (LSA) using
parallel corpora, we used the pretrained monolingual 300-dimensional word embedding from fastText
[58, 59] as the raw word embeddings (xi and yi).

To evaluate the quality of learned word representation, we experimented on two different benchmarks
[60, 61] that have been widely used to measure word similarity. Multilingual WS353 contains
353 pairs of English words, and their translations to German, Italian and Russian, that have been
assigned similarity ratings by humans. It was further split into Multilingual WS-SIM and Multilingual
WS-REL which measure the similarity and relatedness between word pairs respectively. Multilingual
SimLex999 is a similarity-focused dataset consisting of 666 noun pairs, 222 verb pairs, 111 adjective
pairs, and their translations from English to German, Italian and Russian.

Baselines. We compared our method with the monolingual word embedding (baseline method)
from fastText to show that MetaProx learned a good word representation through the proximal layer.
Since our method is mainly based on CCA, we also chose three competitive CCA-based models for
comparison, including:

• linearCCA [62], which applied a linear projection on the two languages’ word embedding
and then projected them into a common vector space such that aligned word pairs should be
maximally correlated.

• DCCA [82], which, instead of learning linear transformations with CCA, learned nonlinear
transformations of two languages’ embedding that are highly correlated.

• DCCAE [10], which noted that there is useful information in the original inputs that is not
correlated across views. Therefore, they not only projected the original embedding into
subspace, but also reconstructed the inputs from the latent representation.

14

Figure 3: A proximal LSTM layer

• CL-DEPEMB [63], a novel cross-lingual word representation model which injects syntactic
information through dependency-based contexts into a shared cross-lingual word vector
space.

Implementation details. We first used the fastText model to embed the 36K English-German word
pairs into vectors. Then we normalized each vector to unit `2 norm and removed the per-dimension
mean and standard deviation of the training pairs.

To build an end-to-end model, we followed the same intuition as DCCAE but rather than using the
latent representation from the encoder to reconstruct the inputs, we used the outputs of proximal layer,
which is a proximal approximation of latent representation from the encoder, to do the reconstruction.
Note line 279 mentioned that the ultimate optimization objective is the CCA value. This was indeed
used in a previous versions of the experiment, and later on we discovered that using the input
reconstruction error as the ultimate objective is more effective, and the results reported in the paper
are all based on it. We will update line 279 in later revisions.

We implemented the encoder (feature mapping f and g) by using multilayer perceptrons with ReLU
activation and the decoder by using a symmetric architecture of encoder. We tuned the hidden
dimension h for f and g among {0.1, 0.3, 0.5, 0.7, 0.9} × 300, the regularization parameter λ from
{0.001, 0.01, 0.1, 1, 10}, and the depth and layer width from 1 to 4 and {256, 512, 1024, 2048},
respectively. For optimization, we used SGD with momentum 0.99, a weight decay of 0.0005, and a
learning rate 0.1 which was divided by 10 after 100 and 200 epochs.

At test time, for numerical stability, we combined the word vectors from bilingual dictionary and
the test set to build paired vocabulary for each language. We applied the same data preprocessing
(normalize to unit norm, remove the mean/standard deviation of the training set) on test vocabularies
(English and German word vectors). Then we fed paired test vocabularies into the models and
obtained the word representation of the test data. We projected the output of the proximal layer
to the subspace where each paired word representation was maximally correlated. The projection
matrices were calculated from the 36K training set through the standard CCA method. We computed
the cosine similarity between the final word vectors in each pair, ordered the pairs by similarity, and
computed the Spearman’s correlation between the model’s ranking and human’s ranking.

F MetaProx for Adversarial Learning in Recurrent Neural Networks

Our second novel instance of MetaProx tries to invariantize LSTM to perturbations on inputs xt at
each step. Adversarial training has been proposed in this context [16], but not for representation
learning.

The dynamics of hidden states ct in an LSTM can be compactly represented by ct = f(ct−1, ht−1, xt),
with outputs ht updated by ht = g(ct−1, ht−1, xt). Our goal is to encourage that the hidden state
ct stays invariant, when each xt is perturbed by δt whose norm is bounded by δ. To this end, we
introduce an intermediate step st = st(ct−1, ht−1, xt) that computes the original LSTM hidden state,
and then applies proximal mapping so that the next state ct remains in the proximity of st, while also
favoring the null space of the variation of st under the perturbations on xt. Formally,

15

Table 2: Summary of datasets for adversarial LSTM training
Dataset Training Validation Test Length Attributes Classes

JV 225 45 370 7-26 12 9
HAR 6127 1225 2974 128 9 6
AD 5500 1100 2200 4-93 13 10

ct := arg min
c

λ
2 ‖c− st‖

2
+ 1

2 max
δt:‖δt‖≤δ

〈c, st(ct−1, ht−1, xt)− st(ct−1, ht−1, xt + δt)〉2

≈ arg min
c

λ

2
‖c− st‖2 +

1

2
max

δt:‖δt‖≤δ

〈
c,

∂

∂xt
st(ct−1, ht−1, xt)δt

〉2

(30)

= arg min
c

λ
2 ‖c− st‖

2
+ δ2

2

∥∥c>Gt∥∥2∗, where Gt := ∂
∂xt

st(ct−1, ht−1, xt), (31)

and ‖·‖∗ is the dual norm. The diagram is shown in Figure 3. Using the L2 norm, we obtain a closed-
form solution for ct: (I + λ−1δ2GtG

>
t)−1st, and BP can be reduced to second-order derivatives

(see Appendix D). A key advantage of this framework is the generality and ease in inserting proximal
layers into the framework, almost oblivious to the underlying building blocks, be it LSTM or GRU.
The implementation only needs to directly invoke their second-order derivatives as a black box.

Datasets. To demonstrate the effectiveness of using proximal mapping, we tested on 3 different
sequence datasets. Janpanese Vowels (JV) dataset [83]contains time series data where 9 male speakers
uttered Japanese Vowels successively, the task is to classify speakers. Human Activity Recognition
(HAR) dataset [84] is used to classify what a person is doing (sitting, walking, etc.) based on a trace
of their movement using sensors. Arabic Digits dataset (AD) [85] contains times series corresponding
to spoken Arabic digits by native speakers, the task is to classify digits. Details of each dataset were
summarized in Table 2.

Algorithms. We compared ProxLSTM with two baselines: vanilla LSTM and the adversarial
training of LSTM [16], which we will refer to as AdvLSTM. All these models are preceded by a
CNN layer, and succeeded by a fully connected layer. The CNN layer consists of kernels sized 3,8,3
and contains 32, 64, 64 filters for the JV, HAR, AD datasets, respectively. LSTM used 64, 128, 64
hidden units for these three datasets, respectively. All these parameters were tuned to optimize the
performance of vanilla LSTM, and then shared with ProxLSTM and AdvLSTM for a fair comparison.
We first trained the vanilla LSTM to convergence, and used the resulting model to initialize AdvLSTM
and ProxLSTM. All settings were evaluated 10 times to report mean and standard deviation.

Preprocessing. Normalization was the only preprocessing applied on all datasets. For those datasets
who contain various length sequences, sequences were zero padded to the same size of the longest
sequence in batch. To reduce the effect of padding, we first sorted all sequences by length, so that
sequences with similar length were assigned to the same batch.

Results. From Table 3, it is clear that adversarial training improves the test accuracy, and ProxLSTM
promotes the performance even more than AdvLSTM. Since the accuracy gap is lowest on the HAR
set, we also plotted the t-SNE embedding of the features from the last time step for the HAR set.
As Figure 4 shows (best viewed in color), the representations learned from ProxLSTM (left) appear
better clustered than that of AdvLSTM (right), especially the yellow class. This further indicates that
ProxLSTM can learn better latent representations than AdvLSTM by applying proximal mapping.

Baseline models: To show the impact of applying proximal mapping on LSTM, we compared our
method with 2 baselines. The basic model structure is composed of 1 CNN layer followed by a
LSTM layer, then a fully connected layer is applied. CNN layer is constructed with kernel size 3,8,3
and contains 32, 64, 64 filters for JV, HAR, AD dataset respectively. For LSTM layer, the number of
hidden units used in these three datasets are 64, 128, 64 respectively. This basic structure is denoted
as LSTM in Table 3. On top of this basic structure, we compareed 2 different adversarial training
methods. AdvLSTM is the adversarial training method in [16], we reimplemented their method in
Pytorch. Following their work, perturbation is added to the input of LSTM layer. ProxLSTM denote
our method described in section F, here we replace LSTM cell in basic structure to ProxLSTM cell.

16

JV HAR AD

LSTM 94.02 ±0.72 89.75 ±0.59 96.32 ±0.55

AdvLSTM 94.96 ±0.44 92.01 ±0.18 97.45 ±0.38

ProxLSTM 95.52 ±0.63 92.08 ±0.23 97.99 ±0.29

Table 3: Test accuracy for sequence classification Figure 4: t-SNE embedding of the HAR dataset

Figure 5: t-SNE embedding of the JV dataset Figure 6: t-SNE embedding of the AD dataset

Training: While training, we first train baseline LSTM to convergence, then apply AdvLSTM and
ProxLSTM as fine tunning. We use Adam optimizer with learning rate 10−3, weight decay 10−4.
All settings were evaluated 10 times to report mean and standard deviation. The results were all
summmarized in Table 3. Figure 4 shows the t-SNE embedding of extracted features from the last
time step’s hidden state of HAR test set. ProxLSTM on the left, AdvLSTM on the right.

Results: According to table 3, it’s clear that applying adversarial training improves the performance.
ProxLSTM even promotes the performance more than AdvLSTM. Though this gap is subtle on some
datasets, Figure 4 ilustrates embedded features from ProxLSTM gather more compact than that of
AdvLSTM (e.g. yellow class). t-SNE plot of other datasets are available in Figures 5 and 6. This
further indicates that ProxLSTM can learn better latent representation than AdvLSTM by applying
proximal mapping.

17

	Introduction
	Proximal Mapping as a Primitive Construct in Deep Networks
	MetaProx for Multiview Learning
	Experiments
	Generalizing Multi-layer Invariant Kernel Warping by Proximal Mapping
	Dropout Training as a Proximal Mapping
	Relationship with OptNet and Implicit Differentiation Based Learning
	Backpropagation Through Time for Adversarial LSTM
	Gradient Derivation for the Proximal Map

	Detailed and Self-contained Experimental Result
	Crosslingual/Multilingual Word Embedding

	MetaProx for Adversarial Learning in Recurrent Neural Networks

