
On Transfer Learning via Linearized Neural
Networks

Wesley J. Maddox∗1 Shuai Tang∗2 Pablo Garcia Moreno3
Andrew Gordon Wilson1 Andreas Damianou3

1 New York University, New York, NY
2 UCSD, San Diego, CA

3 Amazon, Cambridge, UK

Abstract

We propose to linearize neural networks for transfer learning via a first order Taylor
approximation. Making neural networks linear in this way allows the optimization
to become convex (or even closed form) across several tasks. Not only does this
vastly simplify the problem, but it allows us to rephrase transfer learning as sharing
hyper-parameters across Gaussian processes, which can be solved using standard
numerical linear algebra methods. Probabilistically, the framework is interpreted
as a Gaussian process model with finite Neural Tangent Kernels. Our aproach is
fast not only thanks to the linearization, but also because we leverage numerical
results from relating the Fisher Information Matrix to the NTK.

1 Introduction

Typical deep transfer learning approaches implicitly assume that features learned by the source task
model are relevant to the target tasks. Recent approaches collect such features by computing the
Jacobian matrix of the data with respect to the model’s parameters [11, 1]. Across several related
tasks, we then assume that the Jacobian for each specific task will be similar to the Jacobian for any
other task as each task is considered to be drawn from a distribution over tasks.

An interesting property of the Jacobian matrix is that it provides an approximate linearization to
even very non-linear models. This allows us to write down an approximate version of the non-linear
model as a (Bayesian) linear regression using the Jacobian matrix of the parameters as the features.
We can then compute in closed form the optimal solution (along with predictive variances) to this
problem by solving a system of equations. We show that this formulation is the dual parameter-space
view of the recently proposed neural tangent kernel (NTK) [7, 9], which argues that under gradient
descent training, many sufficiently wide neural networks evolve as if they were in fact linear models
(e.g. despite their obvious nonlinearities, the functions induced by neural networks evolve like they
are produced by linear models). We can then naturally pose the linearized problem as a degenerate
Gaussian process (GP) which is used as the probabilistic model in our approach.

Under the light of the aforementioned connections, our key idea is to enable fast, closed-form transfer
learning among different models by: (a) mapping each model to a linear system through linearization
with the Jacobian (b) embedding the approach into a probabilistic framework using degenerate GPs
with NTK kernel. In contrast to using similarities across features, solutions to the linearized systems
are obtained through fast iterative solves of linear systems. Our linearization framework opens up the
way for further speed-ups by leveraging numerical tricks. Specifically, we accelerate the required
matrix-vector multiplications with the Jacobian by transforming them into Fisher-vector products.

∗Work performed during an internship at Amazon. Correspondence to wjm363 AT nyu.edu

3rd Workshop on Meta-Learning at NeurIPS 2019, Vancouver, Canada.

The speed-up is obtained by approximating these products leveraging the connection of the Fisher
information matrix to the gradient of KL divergence.

2 Methods

2.1 Gaussian Processes from Linearized DNNs

Deep neural networks are arbitrarily compositions of simple functions. As such, they are highly
nonlinear. We define a deep neural network, f, as taking inputs, X ∈ Rd, and mapping it to an
output, y ∈ Ro, with parameters θ ∈ Rp, letting D = {X,y}. Although f is arbitrarily non-linear,
recent theoretical work, for example, [9] has argued that relatively wide neural networks evolve
as linear models under gradient descent training dynamics. That is, the functions produced by
wide neural networks change throughout training as if they were simply functions produced by
linear models. Following [9], we can linearize f around its parameters using the Jacobian matrix,
Jθ(x) = (∇θf(x))T , as fθ(x) ≈ Jθ(x)

T θ (a standard first order Taylor expansion). For n data
points of a training set, the Jacobian matrix is p× n× o. For regression o = 1.

To perform probabilistic modeling with the linearized model we then assume a likelihood, e.g.
y ∼ N (JTθ θ

′, σ2Ip) for regression, which uses the Jacobian matrix as the features. A basis function
linear model (in parameter space) is produced. Further, by assuming a Gaussian prior on the weights,
θ′ ∼ N(0, Ip), conjugacy can be exploited (see e.g. Chapter 2 of [16]) to give the posterior in
parameter space as, θ′ ∼ N ((JθJ

T
θ + σ2Ip)

−1JTθ y, (JθJ
T
θ + σ2Ip)

−1). The posterior predictive
distribution is then simply:

f∗|x∗,D ∼ N (J∗Tθ (JθJ
T
θ + σ2Ip)

−1JTθ y, σ
2J∗Tθ (JθJ

T
θ + σ2Ip)

−1J∗θ).

We can now clearly see that inference (and predictive variance computation) only involves inverting
a p× p matrix, e.g. solving the linear system (JθJ

T
θ + σ2Ip)x = b, with the Gram matrix, JθJTθ .

Naively, this requiresO(p3) time. Fortunately, we can flip to the dual function space [16], interpreting
Jθ as producing a degenerate Gaussian process with kernel matrix JTθ Jθ. This inner product is simply
the Neural Tangent Kernel (NTK) of [7]. Using Woodbury’s matrix identity, the posterior predictive
distribution can be re-written as

f∗|x∗,D ∼ N (J∗Tθ Jθ(J
T
θ Jθ + σ2In)

−1y, σ2J∗Tθ (Ip − Jθ(J
T
θ Jθ + σ2In)

−1JTθ)J
∗
θ).

Again, inference only requires solving the linear system (JTθ Jθ + σ2In)x = b, naively requiring
O(n3) time. Given the size of modern deep neural networks (i.e. number of parameters p is much
greater than the number of data points, n), solving this system is preferable. To conclude, by
linearization, we can either perform inference by solving linear systems in either function space
(n× n matrices) or parameter space (p× p matrices).

For transfer learning tasks, we will distinguish between the pre-trained parameters, θ, (assumed
fixed for now)2 and the parameters, θ′, arising from the linearization. Naturally, θ becomes the
hyper-parameters for the linear model, and are shared across tasks.

Reverse mode automatic differentiation (see Appendix for further details) allows computing matrix
vector products (Jθv, JTθ v) in linear (in the cost of evaluating the function) time. We can then use
iterative methods such as conjugate gradients and Lanczos to reduce the computational complexity
to O(p2r), where r is the number of steps used, and avoid ever forming the matrices explicitly
[17, 5, 15].

2.1.1 Why Linearize?

We next consider why we would wish to linearize non-linear models such as neural networks for
transfer learning. First, we wish to have a kernel space representation as this allows us to naturally
view transfer learning, for fixed parameters, in closed form. Using either representation, we get the
optimal set of (transfer) parameters for linear models (and only have to solve a convex optimization
problem for most other loss functions). This is an advantage of the kernel representation that is not
present in many other meta-learning algorithms.

2It is possible to backpropagate through the GP regression, as hyper-parameter training. See [16] and [5] for
the derivatives. However, we have not explored it yet.

2

2.2 Similarity of Jacobian Matrices Across Tasks

Empirical evidence has shown that features across neural networks are transferable - see e.g. [3] who
focused on the efficacy of unsupervised pre-training for transfer learning. Similarly, [21, 10] found
that features learned by neural networks, particularly in early convolutional layers, were transferable
across both tasks and architectures. For a given architecure (which will have the same parameters),
we may then expect that the Jacobian matrix, which is made up of the derivatives of features (a linear
transformation), will then have similar structure across tasks.

More recently, (diagonal) Fisher matrices for classifiers have been shown to be informative for esti-
mating similarity across tasks. In Task2vec, [1] proposed using the cosine similarity of different tasks’
Fisher information matrices to measure the similarity between tasks. Note that Fisher information
matrices can be approximated in explicit terms of the empirical distribution function (termed the
empirical Fisher information 3):

F(θ) = Ep(x)p(y|x)
(
∇θ log p(y|x, θ)∇θ log p(y|x, θ)T

)
= Ep(x)

(
Jθ(x)Hθ(X)Jθ(x)T

)
≈ nJθ(X)Hθ(X)Jθ(X)T , (1)

where n is the number of data points and Hθ(x) =
Ep(y|x,θ)(∇f log p(y|f(x; θ))∇f log p(y|f(x; θ))T). Note that Hθ is an expectation over the
derivatives over the last layer, by chain rule, and is both block-diagonal and can be computed in
closed form. Thus, by assuming that F(θ) is similar across different datasets, we are implicitly
assuming that Jθ is also similar across different tasks.

We focus on homoscedastic regression, where y ∼ N (f(x), σ2I) so that Hθ = In. Then, the Fisher
information matrix is nJθJTθ , while the neural tangent kernel (and the linearization) is JTθ Jθ. The
two matrices are then similar and have the same eigenvalues (up to a constant factor). See further
examples in the Appendix.

2.3 Probabilistic Model Over Tasks

Using the empirical evidence above, we can assume that transfer learning follows a hierarchical
model over datasets themselves - namely that the singular values of Jacobian matrices from similar
tasks will be closely related. First, we sample a task index, t, before sampling a dataset,Dt ∼ p(D|t),
given the task index. We then sample the Jacobians given this task before defining a linear model
(degenerate Gaussian process) for the specific response yt. See Appendix B for further details.

3 Experiments

Transferring across Sinusoids: In this experiment, we transfer across learning tasks by directly
using the neural tangent kernel as the prior for different regression settings. In Figure 1, we view
each successive task as an independent draw from a Gaussian process with a neural tangent kernel.
We replicate the generative process of [8], with different periods for the sine curves. We generate
10 datasets using this process and train only on the first dataset (the red points), using a three layer
MLP with Tanh activations. In the Appendix, we show similar predictive means using the parameter
space approximation (along with ReLU activations); however, it is slower for larger networks due to
performing inverses in parameter space, rather than function space.

The network’s predictions are shown as the blue line across Figure 1 while the corresponding GP
posterior mean and confidence region from the NTK is shown in green. Each of the panels additionally
shows the 10 context points (in purple) and the training points (orange) from evaluating the observed
function values as the new training set. No parameter updating was performed - only calls to the
NTK. We can see that for related functions - here sinusoids with different periods, the features learned
by a MLP are transferable across tasks, and that the NTK representation gives reasonable posterior
predictive distributions.

Precipitation Experiments: To demonstrate the importance of including predictive variances in
regression, we next perform few shot learning on a real world climate time series dataset of averaged

3Not to be confused with the observed Fisher information, which is defined directly as JθJTθ . In regression,
the two matrices do correspond.

3

−6 −4 −2 0 2 4 6
x

−10

−8

−6

−4

−2

0

2

4

y

Network Pred

Transfer Prediction

Train Data

Transfer Data

−6 −4 −2 0 2 4 6
x

−6

−4

−2

0

2

4

6

y

−6 −4 −2 0 2 4 6
x

−6

−4

−2

0

2

4

6

8

y

NTK Function Space Predictions

Figure 1: Posterior predictions on a few shot regression task produced with the NTK as the kernel.

0 100 200 300
Day

−3

−2

−1

0

1

2

D
e-

M
ea

n
ed

A
vg

.
P

re
ci

p
it

at
io

n

PANA 3E, IL, 116579

Testing

Training Data (Shelbyville, KY)

Transferred RBF

Indepdendent RBF

NTK

ABLR

Figure 2: Posterior distributions for the NTK
as compared to an RBF kernel trained on the
source task, independently trained RBF GPs,
and ABLR [14] on a selected transfer task (pre-
cipitation in Pana, IL). We additionally show the
training data (on which the base neural network
is trained).

0 2500 5000 7500 10000
Number of Validation Points

0.010

0.012

T
es

t
E

rr
or

Error on Held-Out Set

Blind

NTK

Retrained Last Layer

Figure 3: Error on held out set for infection
rate of Plasmodium falciparium among African
children. The NTK improves its accuracy on
the held-out set as the number of validation
data points from 2016 are given to it, while
re-training the last layer stagnates.

daily precipitation from the publicly available US Historical Climatology Network [12]. We train
on the first 10 months of single time series, before using the learned parameters as parameters for
the prior Jacobian matrix for each successive time series, visualizing the results. Finally, for all time
series, we test on the last 2 months of the year, showing visually the results (against independently
trained models) in Figure 2. We show further plots in the Appendix, including the source task.

Malaria Dataset Inspired by Cutajar et al. [4], Balandat et al. [2], we used data describing the
infection rate of Plasmodium falciparium (a parasite known to cause malaria) drawn from the Malaria
Global Atlas4 in a transfer learning set-up. We trained a heteroscedastic neural network with three
layers on 2000 data points from the 2012 map, before testing on 5000 data points from the 2016 map.
We considered no re-training (Blind), the finite neural tangent kernel (NTK), and retraining the final
layer as function of the validation points given from the 2016 map in Figure 3. It is possible to see
that the performance of the finite NTK as a transfer model improves as a number of data points, while
the re-trained last layer stagnates.

4 Conclusion

We have embedded into a degenerate GP probabilistic model finite Neural Tangent Kernels and
utilized the standard parameters of neural networks as the shared hyper-parameters across tasks. The
whole framework is fast not only thanks to the linearization, but also because we leverage numerical
results from relating the Fisher Information Matrix to the Neural Tangent Kernel. Future work will
extend this method to classification via approximate likelihood approaches such as [13], alongside
extending the method to be fully differentiable (enabling meta-learning) - as the GP derivatives are
already closed form even when using conjugate gradients [5].

4Extracted from https://map.ox.ac.uk.

4

https://map.ox.ac.uk

Acknowledgements

WJM was supported by an NSF Graduate Research Fellowship under Grant No. DGE-1650441.
AGW was supported by an Amazon Research Award, Facebook Research, NSF IIS-1563887, and
NSF IIS-1910266. We would like to thank Jacob Gardner and Alex Wang for GPytorch discussions
and Tim Rudner for helpful discussions.

5

References
[1] A. Achille, M. Lam, R. Tewari, A. Ravichandran, S. Maji, C. Fowlkes, S. Soatto, and P. Perona. Task2vec:

Task Embedding for Meta-Learning. arXiv:1902.03545 [cs, stat], Feb. 2019. URL http://arxiv.org/
abs/1902.03545.

[2] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy. Botorch:
Programmable bayesian optimization in pytorch. arXiv preprint arXiv:1910.06403, 2019.

[3] Y. Bengio. Deep Learning of Representations for Unsupervised and Transfer Learning. In Workshop on
Unsupervised and Transfer Learning, volume 27, page 21. PMLR W&CP, 2012.

[4] K. Cutajar, M. Pullin, A. Damianou, N. Lawrence, and J. González. Deep gaussian processes for
multi-fidelity modeling. In Bayesian Deep Learning Workshop at NeurIPS, 2018. arXiv preprint
arXiv:1903.07320.

[5] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. GPyTorch: Blackbox Matrix-
Matrix Gaussian Process Inference with GPU Acceleration. In Advances in Neural Information Processing
Systems, volume arXiv:1809.11165 [cs, stat], Sept. 2018. URL http://arxiv.org/abs/1809.11165.

[6] G. H. Golub and V. Pereyra. The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems
Whose Variables Separate. SIAM Journal on Numerical Analysis, 10(2):413–432, Apr. 1973. ISSN 0036-
1429, 1095-7170. doi: 10.1137/0710036. URL http://epubs.siam.org/doi/10.1137/0710036.

[7] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. In Advances in neural information processing systems, pages 8571–8580, 2018.

[8] T. Kim, J. Yoon, O. Dia, S. Kim, Y. Bengio, and S. Ahn. Bayesian Model-Agnostic Meta-Learning. In
Advances in Neural Information Processing Systems, volume arXiv:1806.03836 [cs, stat], June 2018. URL
http://arxiv.org/abs/1806.03836.

[9] J. Lee, L. Xiao, S. S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington. Wide Neural
Networks of Any Depth Evolve as Linear Models Under Gradient Descent. arXiv:1902.06720 [cs, stat],
Feb. 2019. URL http://arxiv.org/abs/1902.06720.

[10] Y. Li, J. Yosinski, J. Clune, H. Lipson, and J. Hopcroft. Convergent Learning Do different neural networks
learn the same representations? In The 1st International Workshop on Feature Extraction: Modern
Questions and Challenges, volume 44, page 17. PMLR W&CP, 2015.

[11] T. Liang, T. Poggio, A. Rakhlin, and J. Stokes. Fisher-rao metric, geometry, and complexity of neural
networks. In Artificial Intelligence and Statistics, volume arXiv preprint arXiv:1711.01530, 2017.

[12] M. Menne, C. Williams Jr, and R. Vose. The United States Historical Climatology Network (USHCN)
Main Page. 2009. URL https://cdiac.ess-dive.lbl.gov/epubs/ndp/ushcn/ushcn.

[13] D. Milios, R. Camoriano, P. Michiardi, L. Rosasco, and M. Filippone. Dirichlet-based
Gaussian Processes for Large-scale Calibrated Classification. In Advances in Neural In-
formation Processing Systems, page 11, 2018. URL https://papers.nips.cc/paper/
7840-dirichlet-based-gaussian-processes-for-large-scale-calibrated-classification.

[14] V. Perrone, R. Jenatton, M. W. Seeger, and C. Archambeau. Scalable Hyperparameter Transfer Learning.
In Advances in Neural Information Processing Systems, page 11, 2018. URL https://papers.nips.
cc/paper/7917-scalable-hyperparameter-transfer-learning.

[15] G. Pleiss, J. R. Gardner, K. Q. Weinberger, and A. G. Wilson. Constant-Time Predictive Distributions
for Gaussian Processes. In Artificial Intelligence and Statistics, volume arXiv:1803.06058 [cs, stat], Mar.
2018. URL http://arxiv.org/abs/1803.06058.

[16] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. Adaptive computation
and machine learning. MIT Press, Cambridge, Mass., 3. print edition, 2008. ISBN 978-0-262-18253-9.

[17] Y. Saad. Iterative methods for sparse linear systems. SIAM, Philadelphia, Pa, 2. ed edition, 2003. ISBN
978-0-89871-534-7.

[18] A. Tosi. Visualization and Interpretability in Probabilistic Dimensionality Reduction Models. PhD Thesis,
Universitat Politecnica de Catalunya, 2014.

[19] A. Tosi, S. Hauberg, A. Vellido, and N. D. Lawrence. Metrics for Probabilistic Geometries. In Uncertainty
in Artificial Intelligence, Nov. 2014. URL http://arxiv.org/abs/1411.7432.

6

http://arxiv.org/abs/1902.03545
http://arxiv.org/abs/1902.03545
http://arxiv.org/abs/1809.11165
http://epubs.siam.org/doi/10.1137/0710036
http://arxiv.org/abs/1806.03836
http://arxiv.org/abs/1902.06720
https://cdiac.ess-dive.lbl.gov/epubs/ndp/ushcn/ushcn
https://papers.nips.cc/paper/7840-dirichlet-based-gaussian-processes-for-large-scale-calibrated-classification
https://papers.nips.cc/paper/7840-dirichlet-based-gaussian-processes-for-large-scale-calibrated-classification
https://papers.nips.cc/paper/7917-scalable-hyperparameter-transfer-learning
https://papers.nips.cc/paper/7917-scalable-hyperparameter-transfer-learning
http://arxiv.org/abs/1803.06058
http://arxiv.org/abs/1411.7432

[20] J. Townsend. A new trick for calculating Jacobian vector products. June 2017. URL http://j-towns.
github.io/2017/06/12/A-new-trick.html.

[21] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks?
In Advances in Neural Information Processing Systems, page 9, 2014. URL http://papers.nips.cc/
paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf.

7

http://j-towns.github.io/2017/06/12/A-new-trick.html
http://j-towns.github.io/2017/06/12/A-new-trick.html
http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf
http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf

A Computational Considerations for Jacobian Matrices

Exact computation requires O(N) backwards passes (and it is not known in closed form); however, we can
explicitly compute Jacobian vector products (e.g. Jv) (pearlmutter ref) with tape based autograd as implemented
in most modern automatic differentiation software 5

However, it is also necessary to compute vector products with the transpose of the Jacobian matrix, e.g. JT v. It
is in fact possible to do this with a second backwards call in forward mode autograd software [20]. Succinctly,
this vector product consists of a first Jacobian vector product of the function with respect to ones, keeping the
computation graph open, before a second backwards call against the output of the Jacobian vector product.

Thus, by stacking two Jacobian vector products (one against the Jacobian and one against the transpose), it
is possible to efficiently compute JTJv in just three backwards calls from the network. Given matrix-vector
multiplies, we can now use efficient implementations of conjugate gradients and stochastic Lanczos quadrature as
implemented in GPytorch [5] for efficient inference. That is, we never have to explicitly form either JTJ or
JJT in order to perform inference in either weight or function space. As demonstration of this capability,
in Figure 4, we show the computation time for log probabilities with the NTK plotted against the number of data
points for a four-layer MLP (5-200-2000-200-1) with > 800, 000 parameters on a single GPU.

103 104 105

Number of Data Points

100

101

102

T
im

e
(s

)

Test Time Prediction

Function Space

Parameter Space

Figure 4: Scaling time of log probability calculation for an MLP using the NTK. Note the nearly
linear computation time for this model. Memory issues in the forwards pass become the bottleneck to
hold more data. Note that function space inference uses Jacobian vector products while parameter
space inference uses Fisher vector products (see Appendix D).

The only limit here is the maximum size of the batch that can be used with the neural network. The Jacobian
vector products can alternatively be batched, requiring O(B2) backwards calls which can be done in parallel.

B Probabilistic Model over Tasks

In our probabilistic model over tasks we assume that tasks are drawn in the following way. First, we sample a
task index, t, before sampling a dataset, Dt ∼ p(D|t), given the task index. For each individual task and dataset,
D, we have the likelihood p(yt|Xt) = p(yt|fθt(Xt)). Further, we linearize the neural network by defining a
fixed basis function approximation, ft ≈ Jθ(Xt)θ

′
t + µ(Xt), where Jθ(X) = (∇θf(X))T ∈ Rp×on, and θ′t

are the parameters of the (Bayesian) linearized model. Notice that the Jacobian computation depends only on the
parameters θ of the pre-trained network. This allows us to represent the functions ft (for other tasks) in a way
that does not involve a new non-convex optimization.

To complete the probabilistic model, for each task we further assume a prior distribution θ′t ∼ N (0, I), resulting
in the following hierarchical model:

θ′t ∼ p(θ′t)

ft = Jθ(Xt)
T θ′t + µt

yt|ft ∼ p(yt|ft), (2)

indexing each task by t and including a bias term, µ, in the model. If we assume a Gaussian likelihood
yt ∼ N(JTθ θ

′
t, σ

2
t In), where we have used the shorthand Jθ = Jθ(Xt), the posterior over θ′t is also Gaussian

5e.g. Pytorch, Tensorflow.

8

Algorithm 1 Fast Adaptation Procedure
Input: Data (X1, Y1), Initial parameters θ0
Compute θMLE with data (X1,y1).
for i = 1 to Ntasks do

Compute p(θ′t|Dt) using JXt
, yt, and Eq. 3 .

Compute p(f∗t |Dt) =
∫
p(f∗|θ′t)p(θ′t|Dt)dθ′

end for

and can be computed in closed form:

θ′t|Dt, θ ∼ N ((JθJ
T
θ + σ2

t Ip)
−1JTθ (yt − µt),

σ2
t (JθJ

T
θ + σ2

t Ip)
−1). (3)

For other likelihoods, we need to resort to approximate inference.

Thus, our procedure will require training a network on an initial task to get parameters θ.6 Then, across the
successive tasks, we will compute the Jacobian matrix of the trained network on the new data and compute the
posterior predictive distribution in closed form (since θ′ is derived analytically from equation equation 3). This
procedure is explained in Algorithm 1.

C Relationship of the FIM and the finite NTK for General Losses:

C.1 Relating the Fisher Information Matrix to the NTK

Regression: An interesting example is given by homoscedastic regression, where y ∼ N (f(x), σ2I). In
this case, Hθ = In. Then, the empirical Fisher information matrix is 1

n
JθJ

T
θ , while the neural tangent kernel

(and the linearization) is JTθ Jθ. The Fisher information and the NTK then have the same eigenvalues (up to a
constant factor of n) as they are similar matrices7.

General Losses: For general losses, it is still possible to relate the Fisher information matrix to either the
Gram matrix or the NTK. Note that Hθ(x) is block-diagonal and positive definite if the likelihood can be written
to factorize across data points (e.g. the responses are i.i.d). We can parameterize the empirical Fisher in terms
of the eigen-decomposition, F(θ) ≈ JθHθJ

T
θ = SΛST , and noting that Hθ = LLT (its root or Cholesky

decomposition). From before, we can follow the same trick, writing JθL = SΛ1/2QT , where Q is another
basis. Then Jθ = SΛ1/2Q̃T , with Q̃ = L−TQ, giving that

JTθ Jθ = Q̃ΛQ̃T = LTQΛQTL

and that
JθJ

T
θ = SΛ1/2QTH−1

θ QΛ1/2ST .

For practical usage, it may be difficult to compute the basis Q without requiring further Fisher vector or Jacobian
vector products. One intriguing possibility is a randomized SVD on JθL, possibly computing L in closed form;
however, we leave this for future work.

C.2 Structure of Fisher Information over Multiple Tasks

Naturally, the generative process over datasets given in Eq. 2 explicitly codifies our beliefs that multiple tasks
are related to each other. While it would be possible to infer a posterior distribution over tasks via a generative
modelling approach, this is not necessary (and could be quite intractable). Instead, assuming this probabilistic
generative model, we can assume that parameters of f are shared across tasks, e.g. that θt = θ. This allows us
to write down the Fisher information of the probabilistic model as an expectation across tasks, and so that the
multi-task empirical Fisher information will simply be the average across all tasks, F(θ) ≈ 1

T

∑T
t=1 Femp,t(θ).

We can define this multi-task Fisher information as a probabilistic metric tensor (e.g. Tosi et al. [19], Tosi [18])
over several different tasks, which are simply random samples (random metric tensors) from a distribution over
random positive semi definite matrices. Then, the local geometry of each task is driven by the components of
this random metric tensor, the task specific Fisher information, Femp,t(θ).

6Note that in theory, there is no need to train the network at all. We found that it is practically useful to train
the network to learn good representations.

7Note that similar connections between the Jacobian and the Fisher information matrix are utilised by Tosi
et al. [19], and the connection seems to originate in the generalized Gauss-Newton decomposition of Golub and
Pereyra [6].

9

D Fast Fisher Vector Products

We now describe how to compute Fisher matrix vector products calls in simply two backwards calls. We can use
directional derivatives to approximate a Fisher vector product. The second order Taylor expansion between two
distributions is given by:

DKL(p(y | θ)||p(y | θ′)) =
1

2
(θ − θ′)TF(θ)(θ − θ′) +O(θ − θ′)3.

Evaluating the derivative at θ′ = θ + εv gives:

∇DKL(p(y | θ)||p(y | θ′))|θ′=θ+εv = εF(θ)v +O{ε2||v||}, (4)

which can therefore be used to compute Fisher vector products.

10−6 10−5 10−4 10−3 10−2 10−1 100

Epsilon

10−3

10−2

10−1

100

R
el

at
iv

e
E

rr
or

of
F

D

Error of FD vs AG for PreResNet56

Epoch
25

50

75

100

125

150

175

200

Figure 5: Accuracy of Fisher-vector products
as a function of tuning parameter ε for Finite
Differences (FD) versus AutoGrad (AG).

ALEXNET

PreR
esN

et5
6

PreR
esN

et1
10

PreR
esN

et1
64

W
ideR

esN
et2

8x10

0.1

1.0

10

T
im

e
p

er
M

V
M

(s
)

Speedup of FD Fisher-Vector Product

AG

FD

Figure 6: Speedup of finite differences
(FD) Fisher-vector products through au-
tograd (AG) for AlexNet, PreResNets
of varying depth, and WideResNet on
CIFAR10.

Illustrative Experiment: We demonstrate the approximation error between this directional derivative and
the exact Fiv computed using the standard second order autograd; this is shown in Figure 5. We used a modern
neural network architecture, PreResNet56, on the benchmark CIFAR10 dataset and computed the relative error
as a function of ε:

||(Fi∇f(x))AG − (Fi∇f(x))FD(ε)||
||(Fi∇f(x)AG||

,

through various stages of the standard training prodcedure with stochastic gradient descent. Crucially, we
note that the relative error produced by this approximation is on the order of 1e− 3 and stays nearly constant
throughout training, suggesting a simple procedure for tuning this hyper-parameter at the beginning of training.
In Figure 6, we demonstrate that the directional derivative Fisher vector product is typically at least 25×
faster than the autograd Fisher vector product on modern DNN architectures including AlexNet, three types of
PreResNets of varying depth, and a WideResNet on the same CIFAR10 dataset.

E Further Results with the NTK on Few Shot Regression

10

−6 −4 −2 0 2 4 6
x

−10

−5

0

5
y

Network Pred

Transfer Prediction

Train Data

Transfer Data

−6 −4 −2 0 2 4 6
x

−5.0

−2.5

0.0

2.5

5.0

y

−6 −4 −2 0 2 4 6
x

−5

0

5

y

−6 −4 −2 0 2 4 6
x

−5.0

−2.5

0.0

2.5

5.0

y

−4 −2 0 2 4 6
x

−5

0

5

10

y

−6 −4 −2 0 2 4 6
x

−5.0

−2.5

0.0

2.5

5.0

7.5

y

−6 −4 −2 0 2 4 6
x

−4

−2

0

2

y

−6 −4 −2 0 2 4 6
x

−10

−5

0

5
y

−6 −4 −2 0 2 4 6
x

−4

−2

0

2

4

6

y

NTK Function Space Predictions

Figure 7: Posterior predictions on a few shot regression task produced with the NTK as the kernel.

−5.0 −2.5 0.0 2.5 5.0 7.5
x

−10

−5

0

5

10

y

Network Pred

Transfer Prediction

Train Data

Transfer Data

−5.0 −2.5 0.0 2.5 5.0
x

−10

0

10

y

−5.0 −2.5 0.0 2.5 5.0
x

−10

0

10

20

y

−7.5 −5.0 −2.5 0.0 2.5 5.0
x

−20

−10

0

10

y

−4 −2 0 2 4 6
x

−10

0

10

y

−5.0 −2.5 0.0 2.5 5.0
x

−10

0

10

y

−5 0 5
x

−20

−10

0

10

y

−5.0 −2.5 0.0 2.5 5.0
x

−20

−10

0

10

y

−7.5 −5.0 −2.5 0.0 2.5 5.0
x

−20

−10

0

10

y

Relu Activation: NTK Function Space Predictions

Figure 8: Posterior predictions on a few shot regression task produced with the NTK as the kernel
using a network with ReLU activations.

11

−5.0 −2.5 0.0 2.5 5.0 7.5
x

−7.5

−5.0

−2.5

0.0

2.5

5.0

y
Network Pred

Transfer Prediction

Train Data

Transfer Data

−5.0 −2.5 0.0 2.5 5.0
x

−5.0

−2.5

0.0

2.5

5.0

y

−5.0 −2.5 0.0 2.5 5.0
x

−5

0

5

10

y

−5.0 −2.5 0.0 2.5 5.0
x

−5.0

−2.5

0.0

2.5

5.0

y

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
x

−7.5

−5.0

−2.5

0.0

2.5

5.0

y
−5.0 −2.5 0.0 2.5 5.0

x

−5

0

5

y

−5.0 −2.5 0.0 2.5 5.0
x

−5

0

5

y

−5.0 −2.5 0.0 2.5 5.0 7.5
x

−5.0

−2.5

0.0

2.5

5.0

y

−5.0 −2.5 0.0 2.5 5.0
x

−2

−1

0

1

2

y

Approximate FVP: Parameter Space

Figure 9: Posterior predictions on a few shot regression task produced with the NTK as the kernel
using a network with ReLU activations.

0 100 200 300
Day

20

25

30

35

40

A
vg

.
D

ai
ly

P
re

ci
p

.

Source: SHELBYVILLE 1 E, KY, 157324

Training Data

Test Data

Transfer RBF GP

NTK GP

0 100 200 300
Day

0

10

20

30

A
vg

.
D

ai
ly

P
re

ci
p

.

Target: ITHACA CORNELL UNIV, NY, 304174

Training Data

Test Data

Transfer RBF GP

NTK GP

Independent RBF GP

0 100 200 300
Day

10

15

20

25

A
vg

.
D

ai
ly

P
re

ci
p

.

Target: HEBER, UT, 423809
Training Data

Test Data

Transfer RBF GP

NTK GP

Independent RBF GP

Figure 10: Posterior distributions for the NTK as compared to an RBF kernel trained on the source
task, and independently trained RBF GPs. The NTK markedly improves the fit of the neural network
on the source task, while additionally providing both uncertainty on this validation set and on one of
the two randomly chosen transfer tasks, failing when the climate pattern is not related.

0 100 200 300
Day

10

20

30

A
vg

.
D

ai
ly

P
re

ci
p

.

Target: CIRCLEVILLE, OH, 331592

Training Data

Test Data

Transfer RBF GP

NTK GP

Independent RBF GP

0 100 200 300
Day

10

20

30

40

A
vg

.
D

ai
ly

P
re

ci
p

.

Target: RIDGWAY, PA, 367477

Training Data

Test Data

Transfer RBF GP

NTK GP

Independent RBF GP

0 100 200 300
Day

20

40

60

A
vg

.
D

ai
ly

P
re

ci
p

.

Target: SEDAN, KS, 147305

Training Data

Test Data

Transfer RBF GP

NTK GP

Independent RBF GP

Figure 11: Posterior distributions for the NTK as compared to an RBF kernel trained on the source
task, and independently trained RBF GPs. Here, we can see the effectiveness of sharing the NTK
across multiple related tasks.

12

F Experimental Details

Sinusoidal Regression The generative process matches the generative process of [8], where we generate
x ∼ N (0, I10) and then yi = A sin(wxi + b) + εi, where A ∼ U(0.1, 5.), w ∼ U(0, 2π) and ε ∼
N (0, 0.01A).

For the sinusoidal regression tasks, we follow the setup of [8], and utilize neural networks with two hidden layers
and 40 hidden units and tanh activations (or ReLU for Figure 8). On the first task, we train the network with
batch sizes of 3 for 2500 epochs using stochastic gradient descent with a learning rate of 1e-3 and momentum =
0.9. We then incorporate this into a NTK model and either solve the system and cache the predictive variances
(as in [5]) using either function or parameter space.

For Figure 9, we use the approximate Fisher vector product describe in Appendix D on the regression loss with
ε = 1e− 4. We found that ε was very stable for regression losses.

Precipitation Experiments For the precipitation experiments, we randomly chose a location of the 1209
locations (for a total of 362,700 data points seen as validation and 78585 data points seen as testing), trained
using a single layer neural network with Tanh activations and 400 hidden units to approximate RBF kernel
Gaussian processes. We standardized both the inputs and features to have zero mean and small variance for ease
of training. To train the neural network, we ran SGD with momentum with batch sizes of 100 for 1000 epochs
with a learning rate of 1e-4 and momentum = 0.9.

To train the RBF Gaussian processes, we fit using BoTorch’s [2] scipy minimizer 8, again using fast predictive
variances in GPyTorch for prediction. For the RBF GP shared across all tasks, we reset the training data for each
successive task.

These experiments were performed on a single Nvidia Tesla V100 GPU.

Malaria Experiment For the Malaria global atlas experiment, we trained a single neural network with
three hidden layers (2 - 500 - 500 -2) and tanh activations on 2000 randomly selected datapoints of the 2012
map in Nigeria (similar to Balandat et al. [2]), training with a heteroscedastic loss, so that the likelihood model
was (y|µθ(x), 1e− 5 + softplus(σθ(x))). We trained using SGD with momentum with batch sizes of 200 for
500 epochs decaying the initial learning rate from 1e-3 by a factor of 10 every 100 epochs. For the fine-tuned
final layer, we continued training for 100 more epochs using the same procedure; we note that slightly better
performance was acheived by training for 1000 epochs; however, this rapidly becomes an unfair comparison due
to the increased training time. After all, if training for 1000 epochs, why not just train a full model?

This experiment was performed on a single Nvidia Tesla 1080 GPU, along with all other timing related
experiments.

8https://botorch.org/docs/optimization

13

https://botorch.org/docs/optimization

	Introduction
	Methods
	Gaussian Processes from Linearized DNNs
	Why Linearize?

	Similarity of Jacobian Matrices Across Tasks
	Probabilistic Model Over Tasks

	Experiments
	Conclusion
	Computational Considerations for Jacobian Matrices
	Probabilistic Model over Tasks
	Relationship of the FIM and the finite NTK for General Losses:
	Relating the Fisher Information Matrix to the NTK
	Structure of Fisher Information over Multiple Tasks

	Fast Fisher Vector Products
	Further Results with the NTK on Few Shot Regression
	Experimental Details

