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Abstract

We propose a novel meta-learning method for combined algorithm selection and
hyperparameter optimization with Bayesian optimization that leverages the sur-
rogate models learned on prior tasks to more efficiently perform model selection
for new tasks. It creates an ensemble of both prior and new algorithm-specific
surrogate models, able to transfer configurations across similar tasks and efficiently
select both algorithms and their hyperparameters for the new task. Empirical results
show that this approach quickly identifies near-optimal models, outperforming the
current state-of-the-art.

1 Introduction

Automating the process of choosing the best algorithms and hyperparameters for a given machine
learning task has been an active research topic over the past years [5]. Some of the most efficient
techniques rely on meta-learning. Similarly to how machine learning experts leverage prior knowledge
acquired by solving earlier machine learning tasks, meta-learning techniques leverage information
gathered through evaluating learning algorithms on earlier tasks [11].

Meta-learning has recently been leveraged in combination with Bayesian optimization techniques
for hyperparameter optimization [14, 13, 1]. Bayesian optimization can efficiently search large
hyperparameter spaces by constructing a probabilistic (surrogate) model of the performance of
learning algorithms, and then using this model together with an acquisition function to decide
which hyperparameter configuration to evaluate next [10]. Hence, these surrogate models contain
valuable information on how well different algorithms perform on a given task. To do meta-learning,
the surrogate models trained on previous tasks can be stored and leveraged when optimizing the
hyperparameters for new tasks [13, 1].

Current work in this direction considers hyperparameter optimization for single algorithms exclusively.
In this paper, we propose a novel meta-learning technique that generalizes this idea to the more
challenging problem of combined algorithm selection and hyperparameter optimization [2]. First, we
formulate the problem and discuss related work in Section 2. We introduce our approach in Section 3,
and evaluate it across a wide range of machine learning tasks in Section 4. Section 5 concludes.

2 Problem Statement and Related Work

The goal of Combined Algorithm Selection and Hyperparameter optimization (CASH) is to find an
optimal algorithmAk ∈ A, a set ofK algorithms, as well as its optimal hyperparameter configuration
θ∗ ∈ Θk

A, where Θk
A is the hyperparameter space for algorithm Ak. The optimal solution is the one

that minimizes the loss L (e.g. misclassification rate), measured by training the corresponding model
on sample data Dtrain and evaluating it on different sample data Dvalid:

A∗θ∗ = arg min
Ak∈A,θi∈Θ

Ak

L(Akθi(D
train), Dvalid) = arg min

Ak∈A,θi∈Θ
Ak

f(Ak, θi) (1)
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Figure 1: Illustration of proposed methodology. Ak ∈ A are the learning algorithms under con-
sideration. Sk,1,Sk,2, ...,Sk,j−1,Sk,j are the GPs obtained by running Bayesian optimization for
algorithm Ak on tasks t1, t2, ..., tj−1, tj . The ensemble model SA∗ with the best observed function
evaluation indicates the current best algorithm A∗. The steps correspond to the steps in Algorithm 1.

Bayesian optimization tackles Equation 1 by first evaluating a number of random configurations, and
then fitting a probabilistic surrogate model S(Ak, θi) to predict the loss of unseen configurations. An
acquisition function α(S(Ak, θi)), such as Expected Improvement (EI) [7], samples the surrogate
model to propose the next configuration to try, trading off exploration and exploitation. This procedure
is repeated for a number of iterations [10].

In the meta-learning setting, for a target task tj , we can leverage meta-data Dp = {(xpi , y
p
i )}np

i=1
p = [1, j − 1] consisting of np performance evaluations made for j − 1 prior tasks, where xpi
is a hyperparameter configuration and ypi the corresponding evaluation score. There exist many
ways to leverage such meta-data [11]. One simple but effective approach is to warm-start Bayesian
optimization with the best configurations on similar tasks [2] rather than starting from a random
initialization. A more recent improvement, ranking-weighted Gaussian process ensembles (RGPE) [1]
transfers the surrogate models S1,S2, ...,Sj−1 fitted on the previous j − 1 tasks, hereafter referred to
as the base surrogate models, and fits a new target surrogate model Sj on the new task. All surrogate
models are Gaussian Processes (GPs), and they are combined in a weighted sum S =

∑j
i=1 wiSi. The

ensemble maintains the distributional proprieties of a GP and can be used with standard acquisition
functions to obtain the next configuration to evaluated on the new task. In every iteration, the
corresponding surrogate model are ranked on how well they can predict the relative performance
of all configurations already evaluated on the new task, and weighted accordingly. However, this
approach has only been evaluated for single-algorithm hyperparameter optimization. Applying it for
the combined algorithm and hyperparameter optimization problem is non-trivial since the surrogate
models have to learn a more complex and high-dimensional hyperparameter space.

3 Methodology

In this paper, we address this issue by building one GP surrogate model for each combination of a task
tp and algorithm Ak ∈ A, under the assumption that the surrogate models are simpler (fitting only a
few hyperparameters instead of many) and more transferable. This approach also scales better with
the number of algorithms since GPs scale cubically in the number of dimensions (hyperparameters).
Hence, training k GPs for every task will scale much better than building one GP with the combined
hyperparameter space of k algorithms. Moreover, we weight the surrogate models based on the
combined meta-data from all algorithms, rather than only the meta-data specific to that algorithm,
under the assumption that tasks for which all algorithms behave similarly to the new task are indeed
intrinsically similar to the new task, and the surrogate models fit on them should carry more weight.
The method is illustrated in Figure 1 and detailed in Algorithm 1.

Base and target surrogate models. We denote the base surrogate models as Sk,p for an algorithm
Ak with k = [1,K] and a task tp with p = [1, j − 1]. They are GPs trained on all available meta-data
Dk
p = {(θk,pi ,k,pi )}nk,p

i=1 . We want to solve the CASH problem for a new task tj . We compute a set
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Algorithm 1 Relative Landmark-weighted Gaussian Processes (RLGP)

1: To each prior task, fit base models Sk,p on Dkp = {(θk,pi , yk,pi )}nk,p

i=1

2: Fit target models Sk,j on observations Dkj = {(θk,ji , yk,ji )}mk,j

i=1
for i← m,n do

for k ← 1,K do
3: Compute SAk =

∑j
p=1 wpSk,p for each Ak ∈ A, where wp ← 1

S

∑S
s=1 RLGP(Sk,p,D)

based on S samples drawn from the GP posterior
4: Select next hyperparameter configuration θknew ← arg maxθ∈Θ

Ak
αEI(SAk),

Evaluate yknew ← f(xknew)
Update observations Dkj = Dkj ∪ {(θk,jnew, yk,jnew)}

return A∗θ∗ ← arg min(θk∗ ,yk∗ )∈Dk∗ yk

of m initial random hyperparameter evaluations m < n (where n is the total number of iterations)
for each algorithm using the corresponding algorithm-hyperparameter space ΘAk , yielding target
meta-data Dkj = {(θk,ji , yk,ji )}mk,j

i=1 , and use it to fit the target models Sk,p′ . Per algorithm, we
combine the base and target models into a weighted ensemble SAk =

∑j
p=1 wpSk,p.

Relative landmark-weighting. These per-algorithm ensembles are similar to [1], although we weight
the surrogate Sk,p based on the ability of all surrogates Sk,p to predict the relative performance of
pairs of configurations (θi, θj) on the new task. Tasks gain more weight if all algorithms behave
similarly on them. Consider a pair of configurations (θi, θj) where θi, θj ∈ ΘAk . Similarly to [9,
1], we define a relative landmark function that evaluates whether the relative performance of every
pair of observed configurations on a target task t can be accurately predicted by the corresponding
surrogate models of another task:

RLGP(f t,Dkt ) =

n∑
i=1

n∑
j=1

1(f t(θi) > f t(θj) ∧ (yti > ytj)) (2)

where f t(θi) and f t(θj) i 6= j is the performance predicted by the corresponding surrogate models
at each specified point θi, θj , and yti and ytj the actual performance measured on task t. Function
1(condition) returns 1 if the surrogate correctly predicts that θi evaluates better than θj on task t,
and 0, otherwise. To include the uncertainty in the GP surrogates, S samples are drawn from the GP
posterior at each past observation [1]. Finally, the weights for each task t are computed as:

wt =
1

S

S∑
s=1

RLGP(f t,Dkt ) (3)

Selecting the next configuration. From each of the combined SAk we select the most promising
configuration with the EI acquisition function. We use the combined GP’s mean and variance µ(θ) =∑p
i=1 wiµi(θ) and σ2(θ) =

∑p
i=1 w

2
i σ

2
i (θ) with p = [1, j], thus, being able to apply standard EI.

After collecting all new configurations θknew suggested by the acquisition function, we evaluate them
obtaining yknew and increase the observation historyDkt ∪{(θknew, yknew)} for each Sk. The algorithms
are ranked based on the yk value. After n iterations, we identify A∗θ∗ = arg min(θk∗ ,yk∗ )∈Dk∗ yk.

4 Evaluation

Our main empirical validation is based on a large meta-dataset from [3], comprising 553 OpenML [12]
datasets and 11 classification algorithms for which 42000 hyperparameter configurations have been
evaluated. We use 50 randomly selected datasets and perform leave-one-data-set-out cross-validation,
every time using one left out (target) dataset as the new task and the rest as meta-data. Base GPs are
fitted to a set of 50 randomly selected configurations. We use three randomly selected configurations
to initialize Bayesian optimization and we evaluate for 20 iterations, similarly to [1]. Bayesian
optimization is repeated 20 times for each target dataset. In all experiments, GP regression is
done using a Matérn 5/2 kernel for smoothness [10], and the posterior distributions for the kernel

3



Figure 2: Evolution of average rank and regret using meta-data from 11 WEKA classification
algorithms evaluated on 50 OpenML datasets from [3]. Error bars show ±1 standard deviation.

Figure 3: Results on synthetic datasets covering 6 global optimization functions from [6]

hyperparameters is inferred with the NUTS sampler [4]. Bayesian optimization procedures are
implemented with the ROBO library [8].

Three methods are benchmarked: RGPE [1] and GP (standard Bayesian optimization) for which we
run Bayesian optimization per algorithm, and our Relative Landmark-weighted Gaussian Processes
(RLGP). In order to compare them we perform 11 runs, each time predicting the best configuration for
a single classification algorithm for RGPE and GP. For RLGP we always predict the best algorithm-
configuration from all 11 algorithms. We compute the average rank and regret (the distance to the
global minimum at each iteration) of each method over the 11 runs. All strategies are plotted against
the number of iterations and lower scores are better. Results are shown in Figure 2. RLGP has the best
average rank, which is consistent throughout the optimization process. Our solution is significantly
better than RGPE and GP, which seems to indicate that the additional meta-data from other algorithms
(used in the weights) provides a significant boost and helps guide the search. Also, we are able to
learn good configurations quicker, in fewer than five iterations. We performed a Friedman-Nemenyi
post-hoc statistical significance tests and found p-values smaller than 0.001 at a significance level of
0.05. In future work we aim to compare with variants of RGPE operating over combined algorithm
hyperparameter spaces, select harder datasets, as well as explore at how many iterations the methods
will eventually converge.

Figure 3 shows results obtained over a set of synthetic datasets covering six very different global
optimization functions from [6]. We observe that again, RLGP consistently outperforms both RGPE
and GP. Further details are available in the Supplementary Materials.

5 Conclusion

We present a novel meta-learning approach that leverages Bayesian optimization to select a machine
learning algorithm as well as its hyperparameters for a given task. Compared to the state-of-the-art
ranking-weighted Gaussian process ensembles (RGPE) [1], our method enables meta-learning across
algorithms and also scales better to many algorithms. Compared to Active testing [9], we do not need
to discretize the configuration space, enabling more hyperparameter options to be tried. We achieve
this by learning ensembles of algorithm and task-specific surrogate models, under the assumption
that such surrogate modes are simpler and more transferable. The method significantly outperforms
both RGPE and normal GPs on both real-world and synthetic datasets.
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Supplementary Materials
A Relative Landmark-Weighted Gaussian Processes

In this section we further explain the weighting of surrogate models with relative landmarks (RL).
Given an algorithm with a fixed set of hyperparameter configurations Θ, a task t ∈ T and a
performance measure M (e.g. accuracy), RL indicates the performance of a configuration relative to
another configuration for the given task:

RL(θi, θj , t) = M(θi, t) ≥M(θj , t) (4)
The decision concerning the ≥ operator may be established through a statistical significance test
or a simple scalar comparison. Such sets of landmarks can be used to characterize a task and, thus,
compute similarities between tasks. In this work, the goal is to measure the performance of GPs.

Since GPs are compared, models that can correctly predict the relative performance of configurations
on a new task are better. Consider a pair of hyperparameter configurations (θi, θj) where θi, θj ∈ Θ
and a task t ∈ T . Then, for a GP, define the RL function as:

RL(θi, θj , f
t) = 1(f t(θi) > f t(θj) ∧ (yti > ytj)) (5)

where f t(θi) and f t(θj) i 6= j is the performance predicted by the surrogate models at each specified
point θi, θj , and yti and ytj the actual performance measures M(θi, t),M(θi, t). Then, Function
1(condition) returns 1 if the surrogate correctly predicts that configuration θi evaluates better than θj
on task t, and 0, otherwise. In practice, we measure how well the target model trained on all previous
evaluations on the target task predicts the relative performance of configurations on other tasks. We
use leave-one-out models which are stored so that it can be updated rather than retrained from scratch
every time. As such, an observation (θi, yi) is left out at a time:

RL(θi, θj , f
tnew) = 1(f tnew

−i (θi) > f tnew
−i (θj) ∧ (ytnew

i > ytnew
j )) (6)

Based on this, for each task (including the target task case), we count the number of times (f t(θi) >
f t(θj) ∧ (yti > ytj). With target observations D = {(θk, yk)}nk=0 for which optimization is being
executed, we introduce a new function called RLGP to rank each model:

RLGP(f t,D) =

n∑
i=1

n∑
j=1

RL(θi, θj , f
t) (7)

Finally, a model is weighted by its ability to predict relative performance of configurations on the new
task. Similarly to [1], S samples are drawn from the GP posterior at each past observations to obtain
the ranks on configurations evaluated so far. By sampling, the overall uncertainty of the models is
also taken into account when weighted. Weights for each model i are, thus, computed as:

wi =
1

S

S∑
s=1

RLGP(f ti ,D) (8)

where ties are either broken randomly or weighted on tnew if included in the tie.

We can further refine this method by taking into account prediction accuracy and task similarity.
Sim is a variant that uses [9] ATWs similarity Sim(t, tnew) between a prior task t ∈ T and the
new task tnew. Up to now, we assumed all tasks are similar to the target task. Let c the counter of
hyperparameter-evaluation pairs between a prior task t ∈ T and the new task tnew for which the
estimations match. Then, Sim is defined as:

c =

n∑
i=1

n∑
j=1

1((f t(θi) > f t(θj)) ∧ (f tnew
−i (θi) > f tnew

−i (θj)))

Sim(t, tnew) =
2c− 1

2n2 − 1

Sim(f t,D) = Sim(t, tnew) ·
n∑
i=1

n∑
j=1

RL(θi, θj , t)

(9)

However, we find that Sim does not outperform our base algorithm.

6



B Extended Evaluation Results

B.1 Synthetic Functions

Six functions from [6] are adapted to create artificial data sets, including Alpine1, Alpine2 and their
variations, and Ginuta and Griewank [6]. The mathematical notation of each of those functions is
shown in Equation 10 and their representation in Figure 5. Parameter k = 1, 2, ..., 5 indicates data
sets used as past runs for meta-learning, while k = 0 is the target data set.

f(x, k) =



(1−x)(sin(x+5)+0.1)
10 + 5 + k − 1, if k = 0

x sin(x+ π + k + x
10 ), if k = 1√

x sin(x+ k − 1) + k − 1, if k = 2
6
10 + sin( 16

15x− 1) + sin( 16
15x− 1)2

+ 1
50 sin(4( 16

15x− 1)) + k − 1, if k = 3
x2

4000 − cos(x3 ) + 1 + k − 1, if k = 4
1−x
10 (sin(x+ 4) + 1

10 ) + k − 1, otherwise

(10)

Figure 4: Graphical representation of the synthetic data.

B.2 Real Data

Table 1: WEKA Classifiers. The table shows the number of hyperparameters for each algorithm
which consist of both categorical and numerical types.

Classifier Hyperparameters
BERNOULLI NAIVE BAYES 2
DECISION TREE 4
EXTRA TREES 5
EXTREME GRADIENT BOOSTING 5
GRADIENT BOOSTED DECISION TREES 7
GAUSSIAN NAIVE BAYES 2
K NEIGHBORS 3
LINEAR DISCRIMINANT ANALYSIS 4
MULTINOMIAL NAIVE BAYES 2
QUADRATIC DISCRIMINANT ANALYSIS 1
RANDOM FOREST 5

C Code

We made code and data available in a GitHub repo: github.com/georgianamanolache/model-selection
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Table 2: Statistical significance tests between the compared methods. pF is the Friedman signif-
icance level. We reject the hull hypothesis if pF is smaller than the significance level (i.e. pF < 0.05).

Experiment pF RLGP
Synthetic Function Algorithms < 0.05 RGPE < 0.001∗∗∗

GP < 0.001∗∗∗

WEKA Algorithms < 0.05 RGPE < 0.001∗∗∗

GP < 0.001∗∗∗

Figure 5: Results on synthetic dataset covering one optimization function from Equation 10.
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