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1 Introduction

A key aspect of human and animal intelligence is leveraging a rich variety of past experience in order
to adapt quickly to acquire new skills. Meta reinforcement learning (RL) has shown promising results
in enabling agents to rapidly adapt to new tasks by using prior experience and can, in principle, learn
across broad distribution of tasks. However, in practice, most current methods can only meta-train
on very limited task distributions. This is often due to the exploration and optimization challenges
that arise when trying to quickly adapt to perform very diverse behaviors, challenges that have also
plagued multi-task RL methods [8, 11, 13].

Current meta-RL methods are trained to infer the task and adapt or compute the policy for the task
from sampled data (using techniques such as policy gradients [4] or amortized inference [3, 9]),
where the adapted policy is optimized for high return. However, such task adaptation approaches
often do not clearly differentiate between different tasks early on in the meta-training process. As
a result, the aforementioned multi-task optimization challenges are exacerbated, as the policy is
not even informed of the task. Furthermore, diverse task distributions of interest often consist of
some tasks for which the reward is relatively sparse. Meta-training on these tasks requires good
exploration strategies, which are difficult to discover. Finally, since most current methods optimize
for post-adaptation performance on the entire set of tasks, the harder tasks which have sparser reward
are generally ignored by current methods while only the easier meta-training tasks are successfully
acquired.

One strategy for handling diverse task distributions is to decouple the meta-learning problem across
tasks. This involves learning local policies for each of the training tasks using off-policy RL, which
are then used to guide the meta-policy via supervised distillation. While this approach has been shown
to enable meta-training on harder tasks, such as those with sparse reward or image observations [6],
it has only been demonstrated on relatively narrow task distributions, such as varying goal locations
or angles of a block or a door. In this work, we leverage the decoupled training structure to transfer
knowledge across families of tasks. However, even with the decoupled structure, we still need multi-
modal exploration strategies in order to discover rewards for tasks from different families, which is
necessary for adaptation. Inspired by recent work on amortized task inference [9], we propose to
use a mixture model to represent the prior over tasks in order to capture different exploration modes.
Each family of tasks corresponds to a different mixture component, to which the contexts of relevant
tasks are constrained, instead of using a single global Gaussian prior for all tasks.

The main contribution of our work is a meta-RL method that can meta-train over diverse task
distributions, consisting of multiple distinct task families. Our algorithm, which we call Decoupled
Meta-Learning with Structured Latents (DAMSEL) achieves this by leveraging local trained experts
and using multi-modal priors for task latent variables corresponding to distinct task families. In our
experimental evaluation, we find that DAMSEL successfully enables a simulated sawyer robot to
meta-train on a challenging task distribution that includes pushing objects, opening doors, and opening
drawers to varying positions, while significantly outperforming prior state-of-the-art meta-learning
methods.
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2 Related Work

We build on the meta-learning framework [14, 1], where the objective is to adapt quickly using prior
experience. Prior meta-RL algorithms include context-based methods [9], recurrent network learners
[3, 15, 7], policy gradient methods which adapt quickly from a learned initialization [4, 5, 10], and
methods that quickly adapt models which are then used with planners [2, 12]. Recent work in
off-policy meta-RL [9, 6] has resulted in greatly improved sample efficiency during meta-training as
compared to prior methods. Our approach draws on prior works that decouple the meta-objective
across tasks [6] and methods that use latent task variables [9]. However, unlike these prior works, we
use a multi-model prior that is decoupled across task families to enable effective meta-training with
diverse task distributions, leading to significant empirical gains over these prior methods.

3 Decoupled Meta Learning with Structured Latents

3.1 Problem Statement

Given a distribution Ti ∼ p(T ) over tasks, where each task Ti is a different Markov decision process,
the meta-RL problem is to efficiently learn a policy that can quickly adapt to maximize the expected
return for a new task drawn from p(T ). This adaptation relies on a dataset of tuples (s,a, r, s′)
sampled from the new task, which we refer to as a context c.

We define a task family to be a collection of tasks that require similar exploration strategies to
detect significant reward, which is necessary for producing effective contexts for adaptation. For
each meta-training task, we assume access to which task family it belongs to. We do not assume
knowledge of the task family identity when presented with a new task at meta-test time.

3.2 Algorithm
Algorithm 1 DAMSEL : Meta-training

Require: Set of meta-training tasks {Ti}
Require: Task-family Fi for each task Ti.

1: Use RL to acquire π∗i for each task Ti
2: Store roll-outs from each π∗i in dataset D∗i
3: Initialize replay buffers Bi for each training task
4: Randomly initialize θ , φ
5: while not done do
6: for each Ti in mini-batch {Tj}j=1...L do
7: Initialize zi to the mixture component corre-

sponding to task-family Fi
8: Initialize context ci = {}
9: for k = 1, ...K do

10: Sample latent zi = qφ(ci)
11: Collect data from policy πθ(a|s, zi) and

add to buffer Bi
12: Sampled data from the buffer

{(sj ,aj , s′j , rj)}j:1..N ∼ Bi , and
append to ci

13: end for
14: end for
15: for step in training steps do
16: for each Ti in mini-batch {Tj}j=1...M do
17: Sample context ci ∼ Bi and obtain latent

zi = qφ(ci)
18: Sample expert trajectories Dval

i ∼ D∗i
19: end for
20: LBC

i = LBC
i (θ,Dval

i , zi)
21: φ← φ−∇φ

∑
i(L

BC
i +Lmodel

i +Lconstraint
i )

22: θ ← θ −∇θ
∑
i L

BC
i

23: end for
24: end while

We first learn optimal policies for each of the
meta-training tasks, using off-policy RL to min-
imize number of samples required. Rollouts
from these trained experts are then saved to a
dataset to be used for meta-learning.

We build on PEARL, which uses amortized in-
ference to learn a latent from the provided con-
text for a given task Ti. When sampling data
from the environment, the context is updated
with each new sampled trajectory. We use an
inference network q parameterized by φ to pro-
duce a latent zi from a context ci, which is
then used to condition a policy (π, parameter-
ized by θ).The policy is trained via a supervised
loss using data from the expert dataset. Specif-
ically, the supervised loss for task Ti, with ex-
pert traces Dval

i is given by LBC
i (θπ,Dval

i , zi) =

−
∑

(st,at)∈D(apredt − at)
2, where apredt is the

action produced by the policy θπ for state st
when conditioned on zi

To encourage multi-modal exploration, we use a
mixture model to represent the prior over tasks,
with each task family corresponding to a differ-
ent mixture component. Since we use imitation
learning to train the policy on expert data and
guide exploration, we do not need probabilistic
latents as in PEARL [9]. The constraint loss
for a training task with latent zi and mixture
component of the corresponding task family f
is given by Lconstraint

i = ‖zi − f‖2. Further, to ensure that the latent encodes relevant task infor-
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mation, we train a model M that takes in (s,a) data from a context c = (s,a, s′, r), and condi-
tioned on the latent seeks to regenerate (s′, r). We optimize the model using the following loss :
Lmodel
i = −‖(s′, r)−M(s,a, zi)‖2 Algorithm 2 DAMSEL : Test-time adaptation

Require: Validation task T
1: for each mixture-model component f do
2: Collect data using πθ(a|s, f) , and record aver-

age return.
3: end for
4: Initialize zi to mixture component f∗ which gave

best average return.
5: Initialize context c = {}
6: for k = 1, ...K do
7: Obtain z = qφ(c)
8: Roll out policy πθ(a|s, z) to collect data , and

append this to context
9: end for

At test time, we need to adapt to a new validation
task, without access to its task family. We roll
out the policy conditioned on each of the task
family priors, and set the task family based on
which prior yields highest return. The task latent
for the validation task is initialized to this prior,
and then subsequently updated as more data is
sampled from the environment.

4 Experimental Evaluation

We aim to answer the following questions: (1) How well does DAMSEL compare to prior state of
the art meta-learning approaches for meta-training on diverse task distributions and adapting to new
validation tasks? (2) For our method to perform well, how important is (a) decoupling the meta
objective and (b) structuring the latent space?

For evaluation, we use a challenging multi-family task distribution involving a simulated
7-DOF sawyer robot having to push objects, open doors and open drawers to differ-
ent positions. For each of the tasks, the target location is not observed and needs
to be inferred. The robot is controlled via 3D position control, and observations in-
clude the 3D position of the end effector and positions of the block, door and drawer.

Figure 1: Environment visualization

• Pushing : Each task comprises moving a block from a fixed
starting position to a goal location sampled from a 20 cm
× 10 cm region.

• Door opening: The task distribution involves opening the
door to a target angle chosen from 0 to 45 degrees.

• Drawer opening: Each task requires the robot to open the
drawer to a target position chosen from 0 to 15 cm.

We compare our method (DAMSEL) to prior methods in-
cluding PEARL and an ablation without the structured latent
space (similar to GMPS). After meta-training on a set of 60
tasks, including 20 tasks of each family type , we evaluate
performance on 10 pushing, 10 door, and 10 drawer tasks.
Fig 2 shows plots of final distance to target position versus
number of trajectories sampled (a) with performance aver-
aged across tasks (1st column) and also (b) with performance plotted for each individual validation
task (2nd to 4th columns).

Defining success to be within 5cm of the target for pushing, within 0.1 radians for door opening and
within 0.02 cm for drawer opening, we see that DAMSEL is successful on almost all tasks. On the
other hand, PEARL makes no progress on any of the door and drawer tasks. This is because reward
detection for door and drawer opening requires exploration strategies that are harder to learn than for
pushing, and hence PEARL ignores the harder tasks while meta-training, and only meta-trains on the
pushing tasks. Consequently, it is unable to perform validation tasks from the harder families. Even
on the pushing tasks on which PEARL makes some progress (50% success), DAMSEL has a much
higher success rate (90 % success).

The performance improvement between PEARL and the GMPS variant highlights the advantage of
decoupling the optimization problem, as the provided supervision from the learned experts enables
GMPS to make progress on all families. However, GMPS doesn’t solve tasks as accurately as
DAMSEL. From Fig. 3, we see that for GMPS on the drawer or drawer families, the inference
network produces the same latents for multiple tasks. On the other hand, some pushing task latents
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ALL DAMSEL (OURS) GMPS (variant) PEARL

Figure 2: Comparison for performance (distance to target) on validation tasks. (a) Column 1:
Performance averaged across all training tasks for each task family. (b) Performance plotted for each
validation task individually for DAMSEL (Ours) (column 2), GMPS (variant) (column 3) and PEARL
(column 4).Top: Block Pushing Middle: Door Opening Bottom: Drawer Opening

are closer to the door or drawer families rather than to other task latents corresponding to pushing.
By imposing a mixture -model to model the prior over the three task families, DAMSEL learns a
much more structured task latent space (as seen in Fig. 3), resulting in much superior accuracy in
solving the validation tasks.

Figure 3: Task context visualization Left: DAMSEL (Ours). Right: a variation of GMPS

5 Discussion and Future Work

We have presented an algorithm that can meta-learn on diverse task distributions involving multiple
task families. The key aspects of the approach include decoupling the meta-learning problem across
tasks and imposing structure on the task latent space. We believe this work represents a first step
towards realizing the full potential of meta-learning on broad distributions of skills. Future work
could explore better ways of structuring the latents, such as learning the task family priors instead
of assigning them arbitrarily. Further, an important direction for future exploration is studying how
smooth, yet structured global priors can be acquired, as they may enable generalize to entirely new
task families at test time, if meta-trained on a sufficiently diverse set of task families.

4



References
[1] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule.

[2] Ignasi Clavera, Anusha Nagabandi, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt: Meta-learning for model-based control. arXiv preprint
arXiv:1803.11347, 2018.

[3] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RlΘ2:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, 2017.

[5] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. In Advances in Neural Information
Processing Systems, pages 5307–5316, 2018.

[6] Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. Guided meta-policy search. Advances in Neural Information Processing Systems, 2019.

[7] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. arXiv preprint arXiv:1707.03141, 2017.

[8] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. International Conference on Learning Representations (ICLR),
2016.

[9] Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient off-
policy meta-reinforcement learning via probabilistic context variables. International Conference
on Machine Learning (ICML), 2019.

[10] Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. International Conference on Learning Representations (ICLR), 2019.

[11] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. International Conference on Learning Representations (ICLR), 2016.

[12] Steindór Sæmundsson, Katja Hofmann, and Marc Peter Deisenroth. Meta reinforcement
learning with latent variable gaussian processes. CoRR, abs/1803.07551, 2018.

[13] Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of
plateaus in deep reinforcement learning. arXiv preprint arXiv:1904.11455, 2019.

[14] Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

[15] Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Rémi Munos,
Charles Blundell, Dharshan Kumaran, and Matthew Botvinick. Learning to reinforcement learn.
CoRR, abs/1611.05763, 2016.

5


	Introduction
	Related Work
	Decoupled Meta Learning with Structured Latents
	Problem Statement
	Algorithm

	Experimental Evaluation
	Discussion and Future Work

