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Abstract

The covariance matrix adaptation evolution strategy (CMA-ES) is one of the most
promising black-box optimization methods. However, one issue with the CMA-ES
is to require substantial amount of time to fit the internal parameters to sample
good solutions even if previous results on similar tasks are available. To alleviate
the problem, we propose the warm starting method for the CMA-ES. The method
determines the initial internal parameters of the CMA-ES through minimization
of KL divergence between the initial multivariate Gaussian distribution of the
CMA-ES and Gaussian mixture models of good solutions on a previous similar
task. The results show that the proposed method converges faster than the vanilla
CMA-ES, Bayesian optimization, and multi-task Bayesian optimization.

1 Introduction

Black-box optimization (BBO) is a problem optimizing an objective function that cannot be described
using an algebraic representation. BBO methods are widely used to solve the automated machine
learning problems such as hyperparameter optimization (HPO) [2] and neural architecture search [1].

The covariance matrix adaptation evolution strategy (CMA-ES) [8, 7] is one of the most powerful
methods for BBO, and it has shown the best performance out of over 100 optimization methods for
a variety of BBO problems [14]. The CMA-ES facilitates optimization by updating the parameters
of the multivariate Gaussian distribution (MGD) according to sampled solutions. There are several
application examples using the CMA-ES in a wide range of fields, including applications to the HPO
of machine learning algorithms [13, 4, 23]. Loshchilov and Hutter have reported that the CMA-ES
achieves better results than Bayesian optimization (BO) in HPO when we can afford a large amount of
evaluation budget [13]. However, it is practically difficult to evaluate many solutions due to expensive
objective functions. For this reason, the CMA-ES has not been studied widely in the HPO field.

In the real world, practitioners often apply machine learning to similar tasks and tune hyperparameters
from scratch even in the case that they have already trained the same machine learning algorithm on
similar tasks. To address the problem, there have been several studies to accelerate the optimization
by transferring the results on previous tasks [22, 3]. This approach is called “warm starting” and
has a great success in HPO with BO. One advantage of the CMA-ES over BO is that it can produce
solutions quickly in each iteration even when the amount of data is substantial. Due to this property,
the CMA-ES can be benefited from a massive amount of data. However, to our best knowledge, there
is no study in the context of warm starting methods for the CMA-ES.
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In this paper, we propose a warm starting method for the CMA-ES. The method transfers previous
knowledge through the minimization of KL divergence between the initial MGD of the CMA-ES
and Gaussian mixture models (GMM) of good solutions on previous similar tasks. To evaluate the
performance of the CMA-ES with warm starting (CMA-ES-WS), we compare CMA-ES-WS with
the vanilla CMA-ES and multi-task BO (MTBO) [22] in HPO problems. The experimental results
demonstrate that CMA-ES-WS achieves better performance.

2 Backgrounds

2.1 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

The CMA-ES is a BBO method using multivariate Gaussian distribution (MGD) N (m, σ2C) where
m ∈ Rd, C ∈ Rd×d is a positive definite symmetric matrix, d is the dimension of a solution vector,
and σ is the arbitrary positive number. In each iteration, this algorithm generates λ solutions from
MGD and evaluates each solution. According to the ranking of the generated solutions, m, C, and
σ are updated and the CMA-ES learns to sample solutions from a promising region. The CMA-ES
tutorial [7, 6] provides more details of the algorithm.

To sample the best solution by the CMA-ES, it is desirable to approximate the inverse Hessian matrix
of the objective function by the covariance matrix C; however, it requires an enormous evaluation
budget. Loshchilov and Hutter [13] reported that the CMA-ES outperforms BO when an abundant
budget is available; however, the CMA-ES does not achieve better results on a small budget.

2.2 Warm Starting Methods for Hyperparameter Optimization

Warm starting methods for BO that learn across tasks have been investigated by others before.
Multi-task Bayesian optimization (MTBO) [22] extended BO to the multi-task settings. This method
measures the correlation between tasks using a Gaussian process and transfers previously optimized
tasks by jointly minimizing the average error across multiple tasks. Springenberg et al. [20] applied a
Bayesian neural network instead of the Gaussian process to embed the features of tasks. Feurer et
al. measures the similarity between tasks using statistical information of dataset and makes sure to
evaluate hyperparameter settings that were superior on previous tasks [3]. One issue with MTBO is
the elapsed time which increases cubically as the number of evaluations accumulates. To address the
problem, Perrone et al. used adaptive Bayesian linear regression whose complexity is linear in terms
of the number of evaluations [18].

3 Warm Starting Method for CMA-ES

In this section, we propose a warm starting method to determine the initial parameters of the MGD
N (m, σ2C) used for the CMA-ES by using data optimized on a similar task. As mentioned in the
previous section, the performance of the CMA-ES deteriorates when overall budgets that users can
afford are small. We alleviate this problem by initializing the distribution using the results on a
similar task.

The proposed method transfers the knowledge by three processes. First, the top γ × 100% solutions
are chosen from the set of solutions on a similar task. Second, a Gaussian mixture model (GMM) is
constructed by the solutions chosen above as a likelihood belonging to the promising region. Finally,
the parameters of the MGD are determined to fit the GMM, and optimized parameters are used as the
initial parameters of the CMA-ES. We describe the further details of the two operations below.

3.1 Estimating a Promising Region on a Previous Task

In the proposed method, a promising region is estimated using the top γ × 100 % solutions. Note
that we measure the ranking of solutions based on the evaluation value of solutions. We denote the
set of the top γ × 100 % solutions on a similar task as U ′. To approximate the promising region, we
construct a probability density function p(x) using GMM. p(x) is formulated as follows:

p(x) =
1

|U ′|
∑

x′∈U′
N (x | x′, α2I), (1)

where α(> 0) is a parameter that controls the extent of a promising region and I is the identity matrix.
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3.2 Transferring the Previous Knowledge to the CMA-ES

We showed how to obtain p(x) which measures the likelihood belonging to the promising region
in Section 3.1. In this section, we approximate the initial parameters of MGD used for the CMA-
ES so that the MGD fits p(x). Specifically, the initial parameter of MGD is determined through
minimization of Kullback-Leibler (KL) divergence [11] between p(x) and q(x) = N (x | µ,Σ).

The gradient of the KL divergence is computed by the following equation and approximated via a
Monte Carlo estimation. The derivation of the gradient is shown in Appendix A.

∂

∂µ
KL(p||q) = −

∫
Σ−1(x− µ)p(x)dx

≈ − 1

n

n∑
i=1

Σ−1(xi − µ),

(2)

∂

∂Σ
KL(p||q) = −1

2

∫
Σ−1(x− µ)(x− µ)>Σ−1p(x)dx +

1

2
Σ−1

≈ − 1

2n

n∑
i=1

Σ−1(xi − µ)(xi − µ)>Σ−1 +
1

2
Σ−1,

(3)

where samples xi follows the distribution p(x).

As a result of the minimization of KL divergence, we obtain µ,Σ. At the initialization step of the
CMA-ES, we substitute µ for m, Σ/ d

√
det(Σ) for C and 2d

√
det(Σ) for σ. Note that we choose

the initial parameters to be det(C) = 1 as the vanilla CMA-ES usually choose.

4 Results and Discussion

To evaluate the proposed method, we conducted experiments on a benchmark function and the HPO
of machine learning algorithms. We compared the proposed method with (1) the vanilla CMA-ES,
(2) BO using a Gaussian process as a surrogate model and the expected improvement [9] as an
acquisition function (GP-EI) [19], and (3) multi-task BO (MTBO) [22] as the baseline methods. Note
that we evaluated 100 input parameter settings as previous data and those input parameter settings
were sampled via random sampling to allow MTBO and the proposed method to transfer the same
data fairly. Details of the experimental settings are shown in Appendix B.

In the experiment of the optimization of a benchmark function, we optimized the Rotated Ellipsoid
function frotell(x) = fell(Rx), where fell(x) = (x1 − 3)2 + 106(x2 − 3)2, and R is 2× 2 rotation
matrix rotating π/6 around the origin. As previously optimized data, we chose the shifted Rotated
Ellipsoid function f shiftrotell(x) = f shiftell (Rx), where f shiftell (x) = (x1 − 2)2 + 106(x2 − 2)2. The
optimizations were run 30 times.

In addition to the benchmark function, we conducted the HPO of multi-layer perceptrons (MLPs).
MLPs were trained on MNIST handwritten digits dataset [12] and Fashion-MNIST clothing articles
dataset [25]. We optimized the four hyperparameters, (1) learning rate, (2) momentum, (3) the
number of hidden nodes and (4) dropout rate. First, we trained MLPs on a subset of each dataset.
Note that 2% of all the training data were used as a subset of each dataset. After that, we optimized
the MLPs trained on all the data by the proposed method and MTBO accelerated by transferring the
previous optimization knowledge. The optimizations were run 10 times for each. Further details of
the HPO we carried out are shown in Appendix C.

Finally, we conducted the HPO of convolutional neural networks (CNNs). We applied CNNs to the
street view house numbers (SVHN) dataset [16]. SVHN has the same input dimension as CIFAR-10
[10]; therefore, we trained CNNs on a CIFAR-10 to transfer. In addition to CIFAR-10, we used 10%
of SVHN dataset to warm start the HPO. The optimizations were run 5 times for each. The details of
the HPO we carried out are shown in Appendix C.

The results of these experiments are shown in Figure 1(a) to 1(e). In Figure 1(a), CMA-ES-WS shows
much better optimization performance than the vanilla CMA-ES because CMA-ES-WS can correctly
learn the variable dependency and the ill-conditioned nature in advance. BO was advantageous at an
early stage as stated in [13]; however, since the CMA-ES-WS takes advantage of previous knowledge,
it surpassed the BO at the end. It demonstrates that if there are an abundant evaluation budget or
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(a) Rotated Ellipsoid function
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(b) MLP on MNIST
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(c) MLP on Fashion-MNIST
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(d) CNN on SVHN. Transferring
from CIFAR-10
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(e) CNN on SVHN. Transferring
from a subset of SVHN

Figure 1: Results of optimization. The solid line is the mean and the shadow is the standard error of
the mean of the evaluation value.

data optimized on a similar task, the CMA-ES can outstrip the BO. Similarly, in Figure 1(b) to 1(e),
CMA-ES-WS showed better performance than the other methods. Furthermore, when using a subset
of some dataset, the proposed method is economically efficient. For example, according to Figure
1(c), the proposed method identified better solutions than the vanilla CMA-ES in about 40 evaluations.
To warm start the CMA-ES, we trained 100 of MLPs on 2% size of training data used by MLPs
optimized in the experiment. Therefore, the evaluation time to obtain knowledge on the subset is
nearly equal to the time to train 2 MLPs on all the training data. In other words, the proposed method
could achieve a better result with 60% fewer evaluations than the vanilla CMA-ES and it is effective
even if we collect the previous data for the sake of transfer learning.

5 Conclusion

In this paper, we proposed a warm staring method for the CMA-ES, which transfers data optimized
on a similar task. The proposed method estimates a promising region on previous data by a GMM and
determines the initial parameters of multivariate Gaussian distribution (MGD) used for the CMA-ES
by fitting to the GMM. Due to the proposed method, the CMA-ES can utilize the accumulated
observations on similar tasks; therefore, it can identify a better solution even when only a small
evaluation budget is available. In the series of experiments, we demonstrated that the proposed method
allows the CMA-ES to search efficiently with a small budget. Additionally, since the proposed method
embeds previous knowledge in MGD, it can also accelerate other methods using MGD such as the
natural evolution strategies [24, 21, 5, 17].

On the other hand, one major problem with the CMA-ES is that it tends to fail to optimize difficult
multimodal functions [15]. The proposed method does not address this major issue. Based on the
fact that CMA-ES has shown promising results in HPO [13] and our experiments, it might not be a
big problem at present in the HPO field. However, it would be important to be able to handle this
problem when the architecture of neural networks becomes complex more and more and the relation
between hyperparameter settings and the performance is similar to difficult multimodal functions.
One solution is to construct a GMM that includes an estimation of the number of clusters. In the
case of difficult multimodality, the top solutions can be divided into multiple clusters. Therefore,
estimating the GMM including the number of clusters and learning the initial parameters so that the
proposed method fits the best cluster can be one solution and we do such a study in the future.
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A Derivation of Gradients of KL Divergence

The KL divergence between a probability density function p(x) and q(x) is defined such that:

KL(p||q) =
∫
p(x) ln

p(x)

q(x)
dx. (4)

Here the KL divergence between a general probability density function p(x) and q(x) = N (x | µ,Σ)
is calculated as follows:

KL(p||q) =
∫

1

2
(x− µ)>Σ−1(x− µ)p(x)dx +

1

2
log det(Σ)

+
d

2
log 2π +

∫
p(x) log p(x)dx.

(5)

First, the gradient ∂
∂µKL(p||q) is calculated.

∂

∂µ
KL(p||q) = ∂

∂µ

∫
1

2
(x− µ)>Σ−1(x− µ)p(x)dx

=

∫
1

2

∂

∂µ
(x− µ)>Σ−1(x− µ)p(x)dx

= −
∫

Σ−1(x− µ)p(x)dx.

(6)

Next, the gradient ∂
∂sij

KL(p||q) is calculated. Let sij be the (i, j) element of Σ, s′ij be the (i, j)

element of Σ−1 and ei be the d-tuple with all components equal to 0, except the i-th, which is 1.

∂

∂sij
KL(p||q) = ∂

∂sij

(∫
1

2
(x− µ)>Σ−1(x− µ)p(x)dx +

1

2
log det(Σ)

)

= −1

2

∫
(x− µ)>Σ−1eie

>
j Σ−1(x− µ)p(x)dx +

1

2
s′ji

= −1

2

∫
(Σ−1(x− µ))>eie

>
j Σ−1(x− µ)p(x)dx +

1

2
s′ji

= −1

2

∫
(Σ−1(x− µ))i(Σ

−1(x− µ))jp(x)dx +
1

2
s′ij (∵ s′ij = s′ji).

(7)

We used the formulas ∂ log det(A)
∂aij

= A−1ji and ∂A−1

∂aij
= −A−1eie

>
j A
−1 to transform line 1 to line 2

and obtain the gradient ∂
∂ΣKL(p||q) such that:

∂

∂Σ
KL(p||q) = −1

2

∫
Σ−1(x− µ)(x− µ)>Σ−1p(x)dx +

1

2
Σ−1. (8)

B Details of Experimental Setup

We used pycma6 and GPyOpt7 libraries to obtain the results for the vanilla CMA-ES and GP-EI.

The CMA-ES has two control parameters, i.e. the sample size λ and the initial sampling distribution.
Since the recommended value of λ suggested by [7] is 4 + b3 log dc and the dimension of the input
space was d = 2, 4, 9 in the experiments, we took the middle and set λ to 8. We chose N (0.5, 0.22I)
as the initial distribution because we scaled all the variables to [0, 1] and this setting is the same
in [13]. The other control parameters of GP-EI and the CMA-ES followed the default settings of
each library. In MTBO, the initial random sample size was set to 10. In the proposed method, α in
equation (1) and γ were set to 0.05 and 0.1 for each. Note that α necessarily need not be redefined
when the definition of the search space changes because GMM in Section 3.1 is performed in the
scaled space [0, 1]d.

6https://github.com/CMA-ES/pycma
7https://github.com/SheffieldML/GPyOpt
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C Details of Hyperparameter Optimization

Table 1, 2 show the hyperparameters of MLP and CNN and their respective search spaces. We treat
integer-valued hyperparameters as a continuous variable and rounded off before evaluations. The
MLP consists of two fully-connected layers with softmax at the end. We set the maximum number
of epochs during training to 20, and the mini-batch size to 128 in the experiments on MLPs. In
the experiments on CNNs, we set the maximum number of epochs during training to 160. The
architecture of CNNs is presented in Table 3.

In the experiments on MLPs, the MNIST and Fashion-MNIST were used and we used 50, 000 images
as training data and 10, 000 images as validation data. As previous data, we trained MLPs on 1, 000
training images and evaluated the performance on 10, 000 validation data for each dataset. In the
experiments on CNNs, SVHN was used and we used 73, 257 images as training data and 26, 032
images as validation data. As previous data, we trained CNNs on a subset of SVHN and CIFAR-10.
When using CIFAR-10, we used 50, 000 images as training data and 10, 000 images as validation
data. When using a subset of SVHN, we used 7, 352 images as training data and 1, 832 images as
validation data.

Table 1: Details of hyperparameters of MLP on MNIST and Fashion-MNIST dataset.

Hyperparameters Type Scale Range

Learning Rate float linear [1.0× 10−3, 0.2]
Momentum float linear [0.8, 0.99]
# of Hidden Nodes int linear [50, 500]
Dropout Rate float linear [0, 0.8]

Table 2: Details of hyperparameters of CNN on SVHN dataset.

Hyperparameters Type Scale Range

Batch Size int log [32, 256]
Learning Rate float log [5.0× 10−3, 0.5]
Momentum float linear [0.8, 1.0]
Weight Decay float log [5.0× 10−6, 5.0× 10−2]
# of Feature Maps in Conv C1, C2, C3 int log [16, 128]
# of Feature Maps in FC C4 int log [16, 128]
Dropout Rate float linear [0, 1.0]

Table 3: Details of architecture of CNN on SVHN dataset.

Components Output Size Layer Type

Convolution 1 32× 32× C1 5× 5 conv × C1, Padding 2
Max Pooling 15× 15× C1 3× 3, Stride 2

Convolution 2 15× 15× C2 5× 5 conv × C2, Padding 2
Average Pooling 7× 7× C2 3× 3, Stride 2

Convolution 3 7× 7× C3 5× 5 conv × C3, Padding 2
Average Pooling 3× 3× C3 3× 3, Stride 2

Fully-connected Layer C4 × 1 C4 dimensional fully-connected
Classification Layer 100× 1 100 dimensional fully-connected, softmax
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