
Constrained Bayesian Optimization
with Max-Value Entropy Search:

Supplemental Material

Valerio Perrone, Iaroslav Shcherbatyi, Rodolphe Jenatton∗, Cédric Archambeau, Matthias Seeger
Amazon

Berlin, Germany
{vperrone, siarosla, cedrica, matthis}@amazon.com

1 Derivations

Consider the problem of Bayesian Optimization (BO) with unknown constraints. There are two
real-valued functions y(x), c(x) over a common space X . The first models the criterion to be
minimized, the second parameterizes the constraint. An evaluation produces zy, zc according to
likelihood functions. First,

zy ∼ N(zy|y(x), α−1y).

For zc, we consider two different options. First, we may observe c(x) directly, up to Gaussian noise:

zc ∼ N(zc|c(x), α−1c).

Second, we may observe a binary target only:

zc ∼ σ(zcc(x)), zc ∈ {±1}.
Here, zc = −1 means the evaluation at x is feasible, and zc = +1 means it is infeasible. We use the
logistic parameterization, involving

σ(t) =
1

1 + e−t
,

but any other likelihood could be used instead. The constrained optimization problem we would like
to solve is

y∗ = min
x∈X
{y(x) ‖ c(x) ≤ δ} . (1)

Here, δ is a confidence parameter. In the case of binary feedback, zc ∈ {±1}, we can also write

y∗ = min
x∈X
{y(x) ‖ P (zc = +1|x) = σ(c(x)) ≤ σ(δ)} ,

where the confidence parameter is σ(δ) ∈ (0, 1). Importantly, both y(·) and c(·) are unknown up
front and have to be learned from noisy samples zy, zc.

We assume that some data D has already been acquired, based on which independent Gaussian poste-
rior processes are obtained for y(x) and c(x). The marginals of these are denoted by N(y|µy, σ2

y)

and N(c|µc, σ2
c), where we drop the indexing by x. In the sequel, we drop both the conditioning on

x and on D from the notation. For example, we write P (y, c) instead of P (y, c|D,x):

P (y, c) = P (y)P (c) = N(y|µy, σ2
y)N(c|µc, σ2

c).

The MES acquisition function [1] without constraints is given by:

I(y; y∗) = H[P (y)]− E [H[P (y|y∗)]] ,
∗Work done while affiliated with Amazon; now at Google Brain, Berlin, rjenatton@google.com

3rd Workshop on Meta-Learning at NeurIPS 2019, Vancouver, Canada.

where the expectation is over P (y∗|D), and y∗ = minx∈X y(x). Here, P (y|y∗) ∝ P (y)I{y≥y∗} is a
truncated Gaussian. It should be noted that this is a simplifying assumption. In PES [2], the related
distribution P (y|x∗) is approximated, where x∗ is the argmin. Several local constraints on y(·) at x∗
are taken into account, such as ∇x∗y = 0. This is not done in MES, which simplifies derivations
dramatically. Second, the expectation over y∗ is approximated by Monte Carlo sampling.

1.1 Real-valued Constraint Feedback

In this section, we assume that the constraint function c(·) can be observed directly, so that we obtain
real-valued feedback from both y(·) and c(·). Our generalization of MES to the constrained case uses

A1(x) = I((y, c); y∗) = H[P (y, c)]− E [H[P (y, c|y∗)]] , (2)

where the expectation is over P (y∗|D), and y∗ is the constrained minimum (1). There are two points
to be worked out:

• Expression H[P (y, c)]−H[P (y, c|y∗)] for fixed y∗
• Efficient approximate sampler from P (y∗|D), where y∗ is given by (1), given that y(·) and
c(·) are sampled from their respective posterior distributions (assumed to be independent).

In fact, the formulation so far ignores that we observe zy, zc at x, not y(x), c(x). Even though this
is ignored in the original MES paper, a better acquisition function would therefore be

A2(x) = I((zy, zc); y∗) = H[P (zy, zc)]− E [H[P (zy, zc|y∗)]] . (3)

We start with the entropy difference in (2), where noise models are ignored, and come back to the
noisy case (3) below. We will define P (y, c|y∗) in the same “local” way as in MES, avoiding all
complications as considered in PES. What do we learn by conditioning on y∗? If c ≤ δ, then y ≥ y∗.
Otherwise (c > δ), our belief in y remains the same. Therefore:

P (y, c|y∗) = Z−1P (y, c)I{c>δ∨y≥y∗} = Z−1P (y, c)(1− I{c≤δ}I{y≤y∗}).

Here, we replaced y < y∗ by y ≤ y∗, which makes no difference for a distribution with a density. In
the remainder of this section, E[·] is always over P (y, c), unless otherwise indicated. Denote

κ(y, c) := 1− I{c≤δ}I{y≤y∗} ⇒ P (y, c|y∗) = Z−1P (y, c)κ(y, c).

We need some notation:

γc :=
δ − µc
σc

, γy :=
y∗ − µy
σy

, Zc = E[I{c≤δ}] = Φ(γc), Zy = E[I{y≤y∗}] = Φ(γy).

Here, Φ(t) = E[I{n≤t}], n ∼ N(0, 1), is the cumulative distribution function for a standard normal
variate. The normalization constant is

Z = E[κ(y, c)] = 1− ZcZy.

Also,

H[P (y, c|y∗)] = Z−1E [κ(y, c)(logZ − logP (y, c))] = logZ + Z−1E [κ(y, c)(− logP (y, c))] .

Note that the − log κ(y, c) drops out, because 1 log 1 = 0 log 0 = 0. If we parameterize c =
µc + σcnc, y = µy + σyny , where nc, ny are independent N(0, 1) variates, we have that

− logP (y, c) =
1

2

(
n2c + n2y + log(2πσ2

c) + log(2πσ2
y)
)
.

Plugging this in:

H[P (y, c|y∗)] = logZ+
1

2

(
log(2πσ2

c) + log(2πσ2
y)
)
+

1

2Z
E
[
(1− I{nc≤γc}I{ny≤γy})(n

2
c + n2y)

]
.

At this point, we need the simple identity:

E[I{n≤γ}n
2] = E[I{n≤γ}]− γN(γ) = Φ(γ)− γN(γ), N(x) := N(x|0, 1).

2

Concentrating on the final expectation term:
(2Z)−1E[. . .] = Z−1 − (2Z)−1E

[
I{nc≤γc}I{ny≤γy}(n

2
c + n2y)

]
= Z−1 − (2Z)−1 (Zy(Zc − γcN(γc)) + Zc(Zy − γyN(γy)))

= Z−1
(
Z +

1

2
(ZyγcN(γc) + ZcγyN(γy))

)
.

The hazard function of the standard normal is defined as

h(x) :=
N(x)

Φ(−x)
.

Noting that H[P (y, c)] = H[P (y)] + H[P (c)] and H[P (y)] = (1 + log(2πσ2
y))/2, some algebra

gives

H[P (y, c|y∗)] = H[P (y, c)] + logZ +
γch(−γc) + γyh(−γy)

2(exp(− logZc − logZy)− 1)
.

Here, we used
ZyZc
Z

=
ZyZc

1− ZyZc
=

1

exp(− logZc − logZy)− 1
.

All in all:

H[P (y, c)]−H[P (y, c|y∗)] = − logZ − γch(−γc) + γyh(−γy)

2(exp(− logZc − logZy)− 1)
.

Note that logZc, logZy are negative. The only case when this expression becomes problematic is if
both logZy and logZc tend to zero. This happens only if both y is much smaller than y∗ and c is
much smaller than δ. If y∗ is sampled from P (y∗|D), this is very unlikely to be the case. We need
numerically robust code for computing log Φ(x) and h(x).

1.2 Entropy Difference for Noisy Targets

As noted above, we would ideally compute the entropy difference for the noisy targets zy, zc instead
of the latents y, c, so use the acquisition function (3) instead of (2). How would this look like for the
case where both zy and zc are real-valued with Gaussian likelihood? Define

Ψ(zy, zc) =

∫
P (zy, y)P (zc, c)κ(y, c) dydc = P (zy)P (zc)

(
1− Z̃y(zy)Z̃c(zc)

)
,

where Z̃y(zy) is defined as Zy , but with P (y) being replaced by the posterior P (y|zy). Then:

P (zy, zc|y∗) = Z−1Ψ(zy, zc), Z = 1− ZyZc.
To our knowledge, there is no simple closed-form expression for H[P (zy, zc|y∗)]. The problem is
that Ψ(zy, zc) is not the product of a Gaussian with an indicator, and in particular log Ψ(zy, zc) is a
complex function.

Here is a simple idea which may work better than just ignoring the noise and using (2). Complications
arise because the expectations over P (y|zy) and P (c|zc) in Ψ(zy, zc) do not result in a term which is
the product of Gaussians and indicators. We can mitigate this problem by approximating P (y|zy)
with δ(y − E[y|zy]). Doing so results in

Ψ(zy, zc) = P (zy)P (zc)(1− I{E[y|zy]≤y∗}I{E[c|zc]≤δ}).

Here, P (zy) = N(µy, σ
2
y +α−1y), P (zc) = N(µc, σ

2
c +α−1c). Since E[y|zy] is an affine function of

zy, this can be brought into the same form as is used in the noise-free case, but y is replaced by zy,
y∗ by a different value, and P (y) by P (zy). Namely,

E[y|zy] = µy +
σ2
y

σ2
y + α−1y

(zy − µy) = µy + ρ2y(zy − µy), ρ2y =
σ2
yαy

1 + σ2
yαy

,

so that
E[y|zy] ≤ y∗ ⇔ zy ≤ ỹ∗ := µy + ρ−2y (y∗ − µy).

We can now simply use the derivation from above. In fact,

γ̃y =
ỹ∗ − µy

(σ2
y + α−1y)1/2

=
y∗ − µy
σyρy

, γ̃c =
δ − µc
σcρc

, ρy =
σyα

1/2
y√

1 + (σyα
1/2
y)2

just have to be used instead of γy, γc.

3

1.3 Binary Constraint Feedback

For binary response zc ∈ {±1}, we have to take into account that much less information is obtained
by sampling the constraint at x. Here, a sensible approach is to ignore the noise on y, but not ignore
the likelihood c→ zc. In other words, we can try to approximate

A3(x) = I((y, zc); y∗) = H[P (y, zc)]− E [H[P (y, zc|y∗)]] . (4)

In this case, we use some approximate inference method for

Q(zc)Q(c|zc) ≈ P (zc|c)P (c), zc ∈ {±1},

where Q(c|zc) are Gaussians. In our current code, we use Laplace’s approximation, where mode find-
ing is approximated by a single Newton step. Also, Q(zc) is using the highly accurate approximation
given in [3, Sect. 4.5.2]. Now:

Ψ(y, zc) :=

∫
Q(zc)Q(c|zc)P (y)κ(y, c) dc = P (y)Q(zc)κ̃(y, zc),

κ̃(y, zc) :=
(
1− I{y≤y∗}F (zc)

)
, F (zc) = EQ(c|zc)[I{c≤δ}],

and
P (y, zc|y∗) ≈ Z−1Ψ(y, zc), Z = 1− ZyZ̃c, Z̃c = EQ[F (zc)].

Importantly, κ̃(y, zc) is piece-wise constant, while not an indicator function anymore. Note that
Z̃c 6= Zc in general, due to the approximation we use, but it should be close.

In the following, E[·] is over P (y)Q(zc), EP [·] is over P (y), and EQ[·] is over Q(zc). First,

H[P (y, zc|y∗)] = logZ + Z−1E [κ̃(y, zc) (− logP (y)− logQ(zc)− log κ̃(y, zc))]

= logZ +
1

2
log(2πσ2

y) + EQ[G(zc)],

G(zc) := Z−1EP
[
κ̃(y, zc)

(
n2y/2− logQ(zc)− log κ̃(y, zc)

)]
.

We split this in three parts, using the derivation of the noise-free case above. First:

G1(zc) = Z−1EP
[
κ̃(y, zc)n

2
y/2
]

=
1

2Z
(1− F (zc)(Zy − γyN(γy))) .

Next:

G2(zc) = Z−1EP [κ̃(y, zc)(− logQ(zc))] = Z−1(1− ZyF (zc))(− logQ(zc)).

Finally, note that if y ≥ y∗, then log κ̃(y, zc) = log 1 = 0, so we can replace κ̃(y, zc) by I{y≤y∗}(1−
F (zc)), therefore:

G3(zc) = Z−1EP [κ̃(y, zc)(− log κ̃(y, zc))] = Z−1Zy(1− F (zc))(− log(1− F (zc))).

Next, the expectation over Q(zc). First,

G1(zc) =
1

2Z
(1− F (zc)Zy + F (zc)γyN(γy)) ,

so that

EQ[G1(zc)] =
1

2
+
ZyZ̃c
2Z

γyh(−γy).

Next, using 1− ZyF (zc) = Z − Zy(F (zc)− Z̃c):

EQ[G2(zc)] = Z−1EQ [(1− ZyF (zc))(− logQ(zc))]

= H[Q(zc)]−
ZyZ̃c
Z

Z̃−1c EQ

[
(F (zc)− Z̃c)(− logQ(zc))

]
.

Finally,

EQ[G3(zc)] =
ZyZ̃c
Z

Z̃−1c EQ [(1− F (zc))(− log(1− F (zc)))] .

4

Altogether, we obtain

H[P (y)] + H[Q(zc)]−H[P (y, zc|y∗)] = − logZ

−B
(
γyh(−γy)/2 + Z̃−1c EQ

[
(1− F (zc))(− log(1− F (zc))) + (F (zc)− Z̃c) logQ(zc)

])
,

B =
ZyZ̃c
Z

=
1

exp(− logZy − log Z̃c)− 1
.

We would compute logZy , h(−γy), logF (zc), log(1− F (zc)), then log Z̃c by logsumexp. In fact,
if

γc(zc) =
δ − EQ[c|zc]√

VarQ[c|zc]
,

then
logF (zc) = log Φ(γc(zc)), log(1− F (zc)) = log Φ(−γc(zc)).

The term Z̃−1c EQ[. . .] is computed by folding the normalization into the argument inside EQ[. . .],
which is computed as(

elogF (zc)−log Z̃c − 1
)

logQ(zc)− elog(1−F (zc))−log Z̃c log(1− F (zc)).

We then multiply with Q(zc) and sum over zc = −1,+1.

1.4 Sampling from P (y?|D)

In the constrained case, we aim to sample from P (y?|D), where y? = minx∈X {y(x) ‖ c(x) ≤ δ}.
Here, y(·) and c(·) are posterior GPs conditioned on the current data D. At least for commonly used
infinite-dimensional kernels, it is intractable to draw exact sample functions from these GPs, let alone
to solve the conditional optimization problem for y?.

In [4], a finite-dimensional random kitchen sink (RKS) approximation is used to draw approximate
sample paths, and the constrained problem is solved for these. Since the RKS basis functions
are nonlinear in x, so are objective and constraint function, and solving for y? requires complex
machinery. A simpler approach is used in [1]. They target the cumulative distribution function
(CDF) of y?, which can be written as expectation over y(·) and c(·) of an infinite product. This is
approximated by restricting the product over a finite set X̂ , and by assuming independence of all
y(x) and c(x) for x ∈ X̂ . While this gives rise to a tractable approximation of the CDF, we found
this approximation to be problematic in our experiments. As noted in [1], y? drawn under these
assumptions are underbiased. In fact, due to the independence assumption, this bias gets worse the
larger X̂ is: y? diverges as |X̂ | → ∞.

In our experiments, we follow [1] by restricting our attention to a finite set X̂ (we use a Sobol sequence
[5]), but then draw joint samples of y(X̂) and c(X̂) respectively, based on which y? (restricted to X̂)
is trivial to compute. While joint sampling scales cubically in the size of X̂ , sampling takes less than
a second for |X̂ | = 2000, the size we used in our experiments.

More precisely, the posterior for y(·) conditioned on data zy = [zyi] ∈ Rn is defined in terms of the
Cholesky factor L and the vector p, where

LLT = K + α−1y I, p = L−1zy,

whereK = ky(X,X) ∈ Rn×n is the kernel matrix on the training set (X = [xi] ∈ Rn×p]), and αy
is the noise precision. The posterior distribution of y(X̂) is a Gaussian with mean and covariance

µ̂ = Mp, M = K∗,·L
−T , Σ̂ = K∗,∗ −MMT ,

where K∗,· = ky(X̂ ,X) ∈ Rm×n, m = |X̂ |, and K∗,∗ = ky(X̂ , X̂) ∈ Rm×m. Samples of y(X̂)
are drawn as

Ŷ = L̂N + µ̂1Tk , L̂L̂T = Σ̂, N = [νrs] ∈ Rm×k, νrs ∼ N(0, 1).

Due to the Cholesky factorization, joint sampling scales cubically in m. On the other hand, sampling
takes less than one second for sizes smaller than 2000.

5

1.5 Scoring Constraint or Criterion Evaluation

In some situations, we may be able to evaluate criterion and constraints independent of each other.
For example, one may be much cheaper to evaluate than the other. To this end, we would like to score
the value of sampling y(x) or c(x) at x.

To this end, we just marginalize the joint distributions worked out above. First, consider the case
where zy, zc are real-valued, and we would like to score the value of sampling zy (the case of sampling
zc is symmetric then). Note that this is the noisy case, where σy is replaced by σyρy, γy by γ̃y, etc.
We have that

Ψ(zy) = P (zy)(1− I{E[y|zy]≤y∗}Zc), Z = 1− Z̃yZc.
Then, P (zy|y∗) = Z−1Ψ(zy). Note that Zc = Φ(γc) without the noise. In fact, the marginal does
not depend on the noise c → zc, so the same expression is obtained in the case zc ∈ {±1}. In the
following, we use that

log(1− I{E[y|zy]≤y∗}Zc) = I{E[y|zy]≤y∗} log(1− Zc).
Then:

H[P (zy|y∗)] = logZ +
1

2
log(2πVar[zy]) + Z−1E

[
(1− ZcI{ny≤γ̃y})n

2
y/2

+ I{ny≤γ̃y}(1− Zc)(− log(1− Zc))
]
.

Some algebra gives

H[P (zy)]−H[P (zy|y∗)] = − logZ− γ̃yh(−γ̃y)/2− Z−1c (1− Zc) log(1− Zc)
exp(− log Z̃y − logZc)− 1

, Z = 1−Z̃yZc.

By symmetry, if zc ∈ R with Gaussian noise:

H[P (zc)]−H[P (zc|y∗)] = − logZ−
γ̃ch(−γ̃c)/2− Z−1y (1− Zy) log(1− Zy)

exp(− log Z̃c − logZy)− 1
, Z = 1−ZyZ̃c.

Finally, consider zc ∈ {±1}. Here,

κ̃(zc) = 1− ZyF (zc), Z = 1− ZyZ̃c, P (zc|y∗) = Z−1Q(zc)κ̃(zc).

Then:
H[P (zc|y∗)] = logZ + Z−1EQ [κ̃(zc) (− logQ(zc)− log κ̃(zc))] .

Some algebra gives

H[Q(zc)]−H[P (zc|y∗)] = − logZ + Z−1EQ

[
κ̃(zc) log κ̃(zc)− Zy(F (zc)− Z̃c) logQ(zc)

]
,

where Z = 1− ZyZ̃c. Using the notation from above, this can also be written as

H[Q(zc)]−H[P (zc|y∗)] = − logZ − Z−1EQ[κ̃(zc)(− log κ̃(zc))]

−BZ̃−1c EQ[(F (zc)− Z̃c) logQ(zc)], B =
ZyZ̃c
Z

=
1

exp(− logZy − log Z̃c)− 1
.

1.6 Observe y(x) only in Feasible Region

In this section, we deal with binary feedback zc ∈ {−1,+1}. For some important applications,
feedback zy on y(x) is obtained only if zc = −1 (feasible). For example, BO may be used to tune
parameters of deep neural networks. A function evaluation zy of a test set metric may fail, because
training crashed due to out of memory errors (zc = +1). Note that y∗ itself does not depend on
values of y(x) in the infeasible region.

It seems hard to properly define the entropy difference (conditioned on y∗) in this case. One idea is to
simply use the entropy difference from Section 1.3. Even though this assumes noise-free feedback
for y, the value conveys information about y∗ only if x is feasible. Another idea is to consider
the mixture of Q(zc = −1) times the entropy difference from Section 1.3 plus Q(zc = +1) times
the entropy difference from Section 1.5. At least for Q(zc) away from 1/2, this could be a more
reasonable score. Note that the part

− logZ −BZ̃−1c EQ[(F (zc)− Z̃c) logQ(zc)]

appears in both entropy difference expressions.

6

Model Dataset Constraint Threshold Feasible points d

XGBoost mg model size 50000 bytes 72% 7
Decision tree mpg model size 3500 bytes 48% 4
Random forest pyrim model size 5000 bytes 26% 4
Random forest cpusmall model size 27000 bytes 80% 4
MLP pyrim model size 27000 bytes 79% 11
kNN + rnd. projection australian model size 28000 bytes 29% 5
MLP heart error on neg. 13.3% 30% 12
MLP higgs error on neg. 60% 38% 12
Factorization machine heart error on neg. 17% 39% 7
MLP diabetes error on neg. 80% 74% 12

Table 1: Constrained HPO problems considered in our experiments. Here d is a number of dimensions
of a blackbox function.

Figure 1: A tradeoff between model performance (r2) and threshold value for xgboost model,
on mg dataset. Smaller threshold results in a smaller number of weak learners, thus degrading the
performance of the model.

2 Experiments

In this section, we provide additional details about our experiments.

2.1 Real-world Hyperparameter Tuning Problems

We created a wide range of constrained HPO problems, spanning different scikitlearn algorithms
[6], libsvm datasets [7], and constraint modalities. Our results are for ten problems drawn from
this range. The first six problems are about optimizing an accuracy metric2, subject to a constraint
on model size, a setup motivated by applications in IOT or on mobile devices. The remaining four
problems require to minimize the error on positives, subject to a limit on the error on negatives3,
as is relevant for example in applications in medical domains. A summary of algorithms, datasets,
and fraction of feasible configurations is given in Table 1. When sampling a problem, and then a
hyperparameter configuration at random, we hit a feasible point with probability 51.5%. Also note
that for all these problems, the overall global minimum point is unfeasible.

All our example functions require a threshold, either on the size of trained model, or on the error
on negatives. For a given HPO problem, the threshold is chosen as follows. First, we sample 2000
random values of the criterion function, without constraint. This allows us to access an effect of a
particular threshold on the value of objective, and on a fraction of points which are unfeasible. We
select a threshold at random, such that a total fraction of unfeasible points is within 20% to 80%
interval. An example visualization for xgboost is given in Figure 1.

2 AUC for binary classification, coefficient of determination for regression.
3 Here, one hyperparameter to tune is the fraction of the positive class in the data (both training and validation),

which is adjusted by resampling with replacement.

7

Figure 2: Average ranking of cMES and cEI , where objective is not available when a constraint is
violated.

Figure 3: Average ranking of cMES and cEI; objective is available when a constraint is violated.

2.2 Effect of number of y∗ samples on optimization performance

Let Y ∗ be a set of all sampled minima, and let |Y ∗| be its size. In our experiments, using more than
10 samples of y∗ does not lead to improvement of the algorithm performance. Results are summarized
in Figure 2 and 3 and Table 2, 3.

8

Optimizers Unfeasible evaluations, percent Average ranking

cMES, p = 0.5, |Y ∗ | = 40 43.08 5.55
cMES, p = 0.9, |Y ∗ | = 40 47.14 5.5
cMES, p = 0.95, |Y ∗ | = 40 49.12 5.22
cMES, p = 0.1, |Y ∗ | = 10 39.25 5.58
cMES, p = 0.5, |Y ∗ | = 10 41.41 5.48
cMES, p = 0.9, |Y ∗ | = 10 46.75 5.09
cMES, p = 0.5, |Y ∗ | = 2 43.29 5.59
cMES, p = 0.9, |Y ∗ | = 2 48.92 5.6
cMES, p = 0.95, |Y ∗ | = 2 51.07 5.49
cEI 24.26 5.89

Table 2: Comparison of various number of |Y ∗| on ten scikitlearn problems. Here, p = σ(δ) for
cMES. AP denotes adaptive percentile. For methods with subscript observe, the objective y(·) is
observed at unfeasible points. No objective is available when a constraint is violated.

Optimizers Unfeasible evaluations, percent Average ranking

cMESobserve, p = 0.5, |Y ∗ | = 40 46.31 5.34
cMESobserve, p = 0.9, |Y ∗ | = 40 55.5 5.73
cMESobserve, p = 0.95, |Y ∗ | = 40 54.95 5.33
cMESobserve, p = 0.1, |Y ∗ | = 10 46.73 5.87
cMESobserve, p = 0.5, |Y ∗ | = 10 48.93 5.7
cMESobserve, p = 0.9, |Y ∗ | = 10 53.23 5.4
cMESobserve, p = 0.5, |Y ∗ | = 2 47.81 5.2
cMESobserve, p = 0.9, |Y ∗ | = 2 55.45 5.68
cMESobserve, p = 0.95, |Y ∗ | = 2 57.81 5.37
cEIobserve 35.54 5.4

Table 3: Comparison of various number of |Y ∗| on ten scikitlearn problems. Here, p = σ(δ) for
cMES. AP denotes adaptive percentile. For methods with subscript observe, the objective y(·) is
observed at unfeasible points. Objective is available when a constraint is violated.

9

References
[1] Z. Wang and S. Jegelka. Max-value entropy search for efficient Bayesian optimization. In D. Precup and

Y. W. Teh, editors, International Conference on Machine Learning 34. JMLR.org, 2017.

[2] D. Hernandez-Lobato, J. Hernandez-Lobato, A. Shah, and R. Adams. Predictive entropy search for multi-
objective Bayesian optimization. In M. Balcan and K. Weinberger, editors, International Conference on
Machine Learning 33. JMLR.org, 2016.

[3] C. Bishop. Pattern Recognition and Machine Learning. Springer, 1st edition, 2006.

[4] José Miguel Hernández-Lobato, Michael A. Gelbart, Matthew W. Hoffman, Ryan P. Adams, and Zoubin
Ghahramani. Predictive entropy search for Bayesian optimization with unknown constraints. In Proceedings
of the International Conference on Machine Learning (ICML), pages 1699–1707, 2015.

[5] Ilya M Sobol. On the distribution of points in a cube and the approximate evaluation of integrals. USSR
Computational Mathematics and Mathematical Physics, 7(4):86–112, 1967.

[6] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research (JMLR), 12:2825–2830, 2011.

[7] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

10

	Derivations
	Real-valued Constraint Feedback
	Entropy Difference for Noisy Targets
	Binary Constraint Feedback
	Sampling from P(y | D)
	Scoring Constraint or Criterion Evaluation
	Observe y() only in Feasible Region

	Experiments
	Real-world Hyperparameter Tuning Problems
	Effect of number of y* samples on optimization performance

