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Abstract

Bayesian optimization (BO) is a model-based approach to minimize expensive
black-boxes, and has been widely used to tune the hyperparameters of complex
models such as deep neural networks. For many real-world black-boxes, however,
the optimization is further subject to a priori unknown constraints. For example,
model training may fail for certain configurations due to divergence or out of mem-
ory errors. To handle these failures, we focus on a general formulation of BO with
binary feedback constraints. We propose constrained Max-Value Entropy Search
(cMES), a novel information theoretic-based acquisition function implementing
this formulation. We demonstrate that tuning the probability of constraint violation
plays an important role, outperforming other commonly used heuristics. On an
extensive set of real-world constrained hyperparameter optimization problems, we
demonstrate that cMES compares favourably to prior work, while being simpler to
implement and faster than other constrained extensions of entropy search.

1 Introduction

Let y(x) : X → R represent a black-box function over a bounded set X ⊂ Rp. For instance, y(x) is
the validation error of a deep neural network as a function of its hyperparameters x (e.g., learning
rate, number of layers, layer width, dropout rates). Each evaluation of y(x) requires training the
network, which can be expensive. Our aim is to minimize y(x) with as few queries as possible.
Bayesian optimization (BO) is an efficient approach to find a minimum of the black-box function
y(x), where x ∈ X [1, 2, 3]. The idea is to replace y(x) by a surrogate model, and update this model
sequentially by querying the black-box at new points. Query points are found by optimizing an
acquisition function, which trades off exploration and exploitation. A variety of surrogate models
have been used to describe the black-box function y(x), with the Gaussian Process (GP) being a
common choice [4, 3], and a variety of acquisition functions have also been developed, with Expected
Improvement (EI) [5], Upper Confidence Bound (UCB) [6], Predictive Entropy Search (PES) [7], and
more recently Max-value Entropy Search (MES) [8] being popular choices. However, conventional
models and acquisitions are not designed to handle constraints.

Our goal is to minimize the target black-box y(x), subject to a constraint c(x) ≤ δ. Both y(x) :
X → R and c(x) : X → R are unknown and need to be queried sequentially. The constrained
optimization problem we would like to solve is defined as follows:

y? = min
x∈X
{y(x) ‖ c(x) ≤ δ} , (1)
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where δ ∈ R is a confidence parameter. y(x) and c(x) are conditionally independent in our surrogate
model, with different Gaussian process (GP) priors placed on them.2 In previous work, an evaluation
returns real-valued feedback on c(x) [9, 10, 11], which does not cover use cases we are interested
in, such as model tuning in the presence of training failures, e.g., out-of-memory (OOM) errors.3
In these settings, an evaluation returns zy ∼ N(zy|y(x), α−1y ) and zc ∈ {−1,+1}, where zc = −1
for a feasible, zc = +1 for an unfeasible point. In other words, we never observe the latent
constraint function c(x) directly, but obtain binary feedback only. We assume zc ∼ σ(zcc(x)),
where σ(t) = 1

1+e−t is the logistic sigmoid (other choices are possible). We can then rewrite the
constrained optimization problem (1) as y? = minx∈X {y(x) ‖ P (zc = +1|x) = σ(c(x)) ≤ σ(δ)}.
This formulation is similar to the one proposed in [10]. The confidence parameter σ(δ) ∈ (0, 1)
controls the size of the (random) feasible region for defining y?. Finally, note that in the example of
OOM training failures, the criterion observation zy is obtained only if zc = −1 (feasible).

The most established technique to tackle constrained BO is constrained EI (cEI) [9, 10, 12]. However,
the probability of constraint violation cannot be controlled with the CEI. This is undesirable in
practice, as the cost of violations can vary widely between applications. Several other issues with cEI
are detailed in [11]. Another approach was proposed in [11], where PES is extended to the constrained
case. Constrained PES (cPES) can outperform cEI and does not require the workarounds mentioned
above. However, it is complex to implement and expensive to evaluate. Moreover, the authors
neither consider binary constraint feedback nor controlling the probability of constraint violations.
A different generalization of EI to the constrained case is given in [13]. The authors represent the
constrained minimum by way of Lagrange multipliers, and the resulting query selection problem
is solved as a sequence of unconstrained problems. Their approach requires numerical quadrature,
is not designed for the binary constraint feedback, and is evaluated only on artificial black-boxes.
Moreover, our acquisition function can be optimized by a standard unconstrained optimizer, thus is
simple to integrate into BO packages such as GPyOpt [14] .

2 Max-Value Entropy Search with Constraints

Recall the constrained optimization problem (1) giving rise to the constrained minimum y?. In this
section, we derive cMES, a novel max-value entropy search acquisition function, scoring the value
of an evaluation at some x ∈ X . Importantly, the output of the constraint zc ∈ {−1,+1} is binary,
where P (zc = +1|x) = σ(c(x)). We assume y(·) and c(·) are given independent Gaussian process
priors, with mean zero and covariance functions ky(x,x′) and kc(x,x′) respectively. Moreover,
data D = {xi, zyi, zci‖i = 1, . . . , n} has already been acquired. Since zyi ∼ N(y(xi), α

−1
y ), the

posterior for y(·) is a GP again [4], with marginal mean and variance given by

µy(x) = ky(x)TM−1zy, σ2
y(x) = ky(x,x)− ky(x)TM−1ky(x), zy = [zyi] ∈ Rn,

where M = [ky(xi,xj)] + α−1y I ∈ Rn×n, ky(x) = [ky(x,xi)] ∈ Rn. On the other hand,
zci ∈ {−1,+1} are binary. In our experiments, we use expectation propagation [15] in order to
approximate the posterior for c(·) by a GP. In the sequel, we denote the posterior marginals of these
processes at input x by P (y) = N(y|µy, σ2

y) and P (c) = N(c|µc, σ2
c ), dropping the conditioning

on D and x for convenience. Details on µc(x), σ2
c (x) are given in [4, Sect. 3.6.1].

To get started, the unconstrained MES acquisition function is given by I(y; y?) = H[P (y)] −
Ey? [H[P (y|y?)]], where the expectation is over P (y?|D), and y? = minx∈X y(x) [8]. Here,
H[P (y)] =

∫
P (y)(− logP (y)) dy denotes the differentiable entropy, and P (y|y?) ∝ P (y)I{y≥y?}

is a truncated Gaussian. It should be noted that this is a simplifying assumption. In PES [7], the
related distribution P (y|x?) is approximated, where x? is the argmin. Several local constraints on
y(·) at x? are taken into account, such as ∇x?

y = 0. This is not done in MES, which simplifies
derivations considerably. Second, the expectation over y? is approximated by Monte Carlo sampling.

Our extension to constraints with binary feedback is based on the mutual information term

I((y, zc); y?) = H[P (y, zc)]− Ey? [H[P (y, zc|y?)]] ,
2 We limit our attention to modeling the feasible region by a single function c(x). As the latent constraints

are pairwise conditionally independent, an extension to multiple constraints is straightforward.
3 An experiment with binary feedback is provided in [10], using constrained EI as acquisition function. We

compare against this setup in our experiments, using our own implementation.
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where y? is the constrained minimum from (1). Note that we use the noise-free y in place of zy
for simplicity, the same is done in [8]. A variant incorporating Gaussian noise is described in our
supplemental material. We first show how to approximate the entropy difference for fixed y?, then
how to sample from P (y?|D) in order to approximate Ey? [·] by Monte Carlo.

Suppose for a moment that we observed c in place of zc. What would P (y, c|y?) be? If c ≤ δ,
then y ≥ y?, while if c > δ, our belief in y remains the same. In other words, P (y, c|y?) =
Z−1P (y)P (c)κ(y, c), where κ(y, c) = 1 − I{c≤δ}I{y≤y?} is an indicator function. The entropy
difference H[P (y, c)]−H[P (y, c|y?)] can now be expressed in terms of

γc =
δ − µc
σc

, γy =
y? − µy
σy

, Zc = E[I{c≤δ}] = Φ(γc), Zy = E[I{y≤y?}] = Φ(γy).

Here, Φ(t) = E[I{n≤t}], n ∼ N(0, 1) is the cumulative distribution function for a standard normal
variate. For example, Z = E[κ(y, c)] = 1−ZcZy . Details are given in our supplemental material. For
a binary response zc ∈ {±1}, we need to take into account that less information about y? is obtained.
Since P (zc|c) = σ(zcc) is not Gaussian, we approximate Q(zc)Q(c|zc) ≈ P (zc|c)P (c), zc ∈
{±1}, where the Q(c|zc) are Gaussians.4 Following the reasoning above,

P (y, zc|y?) =

∫
P (y)P (zc|c)P (c)κ(y, c) dc ≈

∫
P (y)Q(zc)Q(c|zc)κ(y, c) dc

= P (y)Q(zc)κ̃(y, zc), κ̃(y, zc) = 1− I{y≤y?}F (zc), F (zc) = EQ(c|zc)[I{c≤δ}].

While κ̃(y, zc) is not an indicator, it is piece-wise constant, allowing for an analytically tractable
computation of the entropy difference:

H[P (y)] + H[Q(zc)]−H[P (y, zc|y?)] = − logZ

−B
(
γyh(−γy)/2 + Z̃−1c EQ

[
(1− F (zc))(− log(1− F (zc))) + (F (zc)− Z̃c) logQ(zc)

])
,

B = ZyZ̃cZ
−1 =

(
exp(− logZy − log Z̃c)− 1

)−1
.

Here,
F (zc) = EQ(c|zc)[I{c≤δ}], Z̃c = EQ[F (zc)], Z = 1− ZyZ̃c,

and h(x) = N(x|0, 1)/Φ(−x) denotes the hazard function for the standard normal distribution. Note
that, as δ grows, F (zc) and Z̃c tend to 1 rapidly, and our complex expression simplifies to MES,
independent of the distribution over c. For example, euu→ 0, u = log(1− F (zc)), as F (zc)→ 1.
The full derivation is given in the supplement, along with recommendations for a numerically robust
implementation. In particular, observe that all terms depending on c and zc only are independent of
y?, and can therefore be precomputed.

Sampling from P (y?|D)

In the constrained case, we aim to sample from P (y?|D), where y? = minx∈X {y(x) ‖ c(x) ≤ δ}.
Here, y(·) and c(·) are posterior GPs conditioned on the current data D. In [11], a finite-dimensional
random kitchen sink (RKS) approximation is used to draw approximate sample paths, and the
constrained problem is solved for these. A simpler approach is used in [8]. They target the cumulative
distribution function (CDF) of y?, which can be written as expectation over y(·) and c(·) of an
infinite product. This is approximated by restricting the product over a finite set X̂ , and by assuming
independence of all y(x) and c(x) for x ∈ X̂ . While this gives rise to a tractable approximation
of the CDF, we found this approximation to be problematic in our experiments. As noted in [8],
y? drawn under these assumptions are underbiased. In fact, due to the independence assumption,
this bias gets worse the larger X̂ is: y? diverges as |X̂ | → ∞. In our experiments, we follow [8] by
restricting our attention to a finite set X̂ (we use a Sobol sequence [17]), but then draw joint samples
of y(X̂ ) and c(X̂ ) respectively, based on which y? (restricted to X̂ ) is trivial to compute (details
are provided in the supplemental material). While joint sampling scales cubically in the size of X̂ ,
sampling takes less than a second for |X̂ | = 2000, the size we used in our experiments.

4 We use Laplace’s approximation here, in particular the accurate approximation Q(zc) ≈ P (zc) detailed in
[16, Sect. 4.5.2].
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Optimizers Unfeasible evaluations (in %) Average ranking
cMES, p = 0.1 39.25 5.6
cMES, p = 0.5 41.41 5.57
cMES, p = 0.9 46.75 5.17

cEI 24.26 6.14
AP, perc. = 50 49.63 6.13
AP, perc. = 75 36.62 6.1
AP, perc. = 100 27.87 5.77

cEIobserve 35.54 6.1
cMESobserve, p = 0.1 46.73 6.7
cMESobserve, p = 0.5 48.93 6.51
cMESobserve, p = 0.9 53.23 6.21

Table 1: Comparison on 10 scikit-learn problems. For cMES, p = σ(δ). AP denotes adaptive
percentile. Subscript observe indicates the objective y(·) is observed at unfeasible points.

3 Experiments

Methods were implemented in GPyOpt [14], using a Matérn-5/2 covariance kernel with automatic
relevance determination hyperparameters, optimized by type II maximum likelihood [4]. We consider
binary feedback scenarios, where the latent constraint function c(·) is observed indirectly via zc ∈
{−1,+1}. The model for c(·) uses Bernoulli likelihood, and inference is approximated by expectation
propagation [15, 4]. We distinguish two variants of this scenario. In the observed variant, the objective
y(·) is observed with each evaluation, feasible or not. In the unobserved variant, an observation zy is
obtained only if zc = −1 (feasible). We compare against cEI ([10]), which can be used with binary
feedback.5 As baselines, we use random search [18], as well as a novel heuristic called adaptive
percentile (AP). AP is a variant of the high-value heuristic introduced in [10], where a single GP y(·)
is used. Whenever an evaluation is unfeasible, AP is plugging in the p-percentile of all previously
observed objective values as target value. Here, p ≥ 50, and p = 100 corresponds to plugging in
the maximum observed so far. Finally, we compute cMES by sampling the constrained optimum y?
as detailed in Section 2 (joint sampling), using |X̂ | = 2000 and 10 samples. We also ran the same
experiments with different sample sizes. Results are included in the supplement, showing slightly
worse performance with 2 and equivalent performance with 40 samples.

We considered 10 constrained HPO problems, spanning different scikit-learn algorithms [19],
libsvm datasets [20], and constraint modalities. The first 6 problems are about optimizing an
accuracy metric (AUC for binary classification and coefficient of determination for regression)
subject to a constraint on model size, a setup motivated by applications in IOT or mobile devices.
The remaining 4 problems require minimizing the error on positives, subject to a limit on the error on
negatives. We tune XGBoost, decision tree, random forest, MLP, kNN, and factorization machine
models. When sampling a problem, and then a hyperparameter configuration at random, we hit
a feasible point with 51.5% probability. More details on the algorithms, datasets, and fraction of
feasible points is given in the supplement.

Figure 1: Average per-iteration rank for the best-
performing methods in each category. The rankings are
different from Table 1 as a subset of methods are compared.

We ran each method to be compared
on the 10 hyperparameter optimization
(HPO) problems described above, us-
ing 20 random repetitions. We start
each method with evaluations at 5 ran-
domly sampled candidates. To account
for the heterogeneous scales of the 10
blackboxes and compare the relative per-
formance of the competing methods,
common practice is to aggregate results
based on the average rank (lower, bet-
ter) [21, 22, 23]. We rank6 methods for
the same problem, iteration, and seed
according to the best feasible value ob-
served so far, then average over all these.

The results in Table 1 and Figure 1 point
to a number of conclusions. First, among methods operating in the unobserved scenario, cMES

5 We could not compare against cPES [11], since they do not support binary constraint feedback.
6 In initial rounds, some methods may not have made feasible observations. Say, five of ten methods have

feasible evaluations. Then, the former are ranked 1, . . . , 5, while the latter are equally ranked (6 + 10)/2 = 8.
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achieves the best overall average rank. While cEI uses fewer unfeasible evaluations, it is overly
conservative and tends to converge to worse optima. Second, the AP baseline for perc = 100 is
surprisingly effective, outperforming cEI. Third, using the value of y(·) in the unfeasible region,
where the (unfeasible) global optimum resides, degrades performance for cMES. Finally, Figure 1
shows that cMES (p = 0.9) is particularly efficient in early iterations, outperforming all competing
methods by a wide margin.
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