Appendix for Paper: Learning to Estimate
Point-Prediction Uncertainty and Correct Output in
Neural Networks

Xin Qiu Elliot Meyerson
Cognizant Cognizant
qiuxin.nju@gmail.com elliot.meyerson@cognizant.com
Risto Miikkulainen
Cognizant

The University of Texas at Austin
risto@cognizant.com

Abstract

This Appendix supplements the paper: Learning to Estimate Point-Prediction
Uncertainty and Correct Output in Neural Networks. Section S1 reviews related
work. Section S2 introduces background details for the methods (i.e., neural
networks, Gaussian processes, and stochastic variational Gaussian processes) that
are used to develop the approach, RIO, in the paper. Section S3 provides theoretical
analysis of RIO. Section S4 provides additional details on the experimental setups
used in the paper, along with additional details on results.

S1 Related Work

There has been significant interest in combining NNs with probabilistic Bayesian models. An early
approach was Bayesian Neural Networks, in which a prior distribution is defined on the weights
and biases of a NN, and a posterior distribution is then inferred from the training data [17} [18].
Traditional variational inference techniques have been applied to the learning procedure of Bayesian
NN, but with limited success [} 9, [12]]. By using a more advanced variational inference method,
new approximations for Bayesian NNs were achieved that provided similar performance as dropout
NN [2]]. However, the main drawbacks of Bayesian NNs remain: prohibitive computational cost and
difficult implementation procedure compared to standard NNs.

Alternatives to Bayesian NNs have been developed recently. One such approach introduces a
training pipeline that incorporates ensembles of NNs and adversarial training [14]]. Another approach,
NNGP, considers a theoretical connection between NNs and GP to develop a model approximating the
Bayesian inference process of wide deep neural networks [16]]. Deep kernel learning (DKL) combines
NNs with GP by using a deep NN embedding as the input to the GP kernel [26]] . Conditional Neural
Processes (CNPs) combine the benefits of NNs and GP, by defining conditional distributions over
functions given data, and parameterizing this dependence with a NN [7]. Neural Processes (NPs)
generalize deterministic CNPs by incorporating a latent variable, strengthening the connection to
approximate Bayesian and latent variable approaches [8]. Attentive Neural Processes (ANPs) further
extends NPs by incorporating attention to overcome underfitting issues [13]. The above models
all require significant modifications to the original NN model and training pipeline. Compared to
standard NN, they are also less computationally efficient and more difficult for practitioners to
implement. In the approach that shares the most motivation with RIO, Monte Carlo dropout was

3rd Workshop on Meta-Learning at NeurIPS 2019, Vancouver, Canada

used to estimate the predictive uncertainty of dropout NNs [6]]. However, this method is restricted to
dropout NN, and also requires modifications to the NN inference process.

S2 Background

This section reviews notation for Neural Networks, Gaussian Processes, and its more efficient
approximation, Stochastic Variational Gaussian Processes. The RIO method, introduced in Section 2
of the main paper, uses Gaussian Processes to estimate the uncertainty in neural network predictions
and reduces their point-prediction errors.

S2.1 Neural Networks

Neural Networks (NNs) learn a nonlinear transformation from input to output space based on a
number of training examples. Let D C R%» x Ru¢ denote the training dataset with size n, and X =
{x; : (x4,y:) € D,x; = [:E},x?,...,xf“‘] |i=1,2,...,n}and Y = {y; : (x4,y:) € D,y; =
[yl y2, ... ,yf”“t] |i=1,2,...,n} denote the inputs and outputs (i.e., targets). A fully-connected
feed-forward neural network with L hidden layers of width N, (for layer [= 1,2,..., L) performs

the followmg computations: Let z] denote the output value of jth node 1n [th hidden layer given input
Ni—1

xZ,thenzl = o0 wlFak 4 bl forl = 1and 2/ = ¢(3n 5 wiFzF | 4+06)), forl=2,... L,
where w;’ * denotes the welght on the connection from kth node in previous layer to jth node in
[th hidden layer, b{ denotes the bias of jth node in /th hidden layer, and gb is a nonlinear activation
function. The output value of jth node in output layer is then given by g)z Z kel wfnﬁzf + bout,
where wout denotes the weight on the connection from kth node in last hidden layer to jth node in

output layer, and bOut denotes the bias of jth node in output layer.

A gradient-based optimizer is usually used to learn the weights and bias given a pre-defined loss
function, e.g., a squared loss function £ = % Yo (yvi — ¥:)2. For a standard NN, the learned
parameters are fixed, so the NN output ¥; is also a fixed point. For a Bayesian NN, a distribution of
the parameters is learned, so the NN output is a distribution of §;. However, a pre-trained standard
NN needs to be augmented, e.g., with a Gaussian Process, to achieve the same result.

S2.2 Gaussian Processes

A Gaussian Process (GP) is a collection of random variables, such that any finite collection of
these variables follows a joint multivariate Gaussian distribution [22]. Given a training dataset
X={x;|i=12,....,n}and Y = {y; = f(x;) + €| i =1,2,...,n}, where e denotes additive
independent identically distributed Gaussian noise, the first step for GP is to fit itself to these training
data assuming Y ~ N(0, K(X, X) + 021), where A denotes a multivariate Gaussian distribution
with mean 0 and covariance matrix K(X, X) + o21. K(X, X) denotes the kernel-based covariance
matrix at all pairs of training points with each entry k; ; = k(x;,x;), and o2 denotes the noise
variance of observations. One commonly used kernel is the radial basis function (RBF) kernel, which

is defined as k(x;,x;) = aj%exp(f# lIx; — xj||). The signal variance af, length scale {; and
¥

noise variance o2 are trainable hyperparameters. The hyperparameters of the covariance function are

optimized during the learning process to maximize the log marginal likelihood log p(Y|X).

After fitting phase, the GP is utilized to predict the distribution of label y, given a test point x,.
This prediction is given by y.| X, V, X, ~ N (7., var(y.)) with 7, = k] (K(X,X) + ¢21)~'y and
var(y.) = k(x., %) — k] (K(X, X) + 02I)~'k,, where k, denotes the vector of kernel-based
covariances (i.e., k(x., X;)) between x, and all the training points, and y denotes the vector of all
training labels. Unlike with NN, the uncertainty of the prediction of a GP is therefore explicitly
quantified.

S2.3 Stochastic Variational Gaussian Processes

The main limitation of the standard GP, as defined above, is that it is excessively expensive in both
computational and storage cost. For a dataset with n data points, the inference of standard GP has time
complexity O(n?) and space complexity O(n?). To circumvent this issue, sparse GP methods were

developed to approximate the original GP by introducing inducing variables [4} 120} 23] 25]. These
approximation approaches lead to a computational complexity of O(nm?) and space complexity of
O(nm), where m is the number of inducing variables. Following this line of work, the Stochastic
Variational Gaussian Process (SVGP) [10} [11] further improves the scalability of the approach by
applying Stochastic Variational Inference (SVI) technique, as follows:

Consider the same training dataset and GP as in Section S2.2, and assume a set of inducing variables
asZ={z;|i=1,2,...,myand U = {u; = f(z;)+€|i=1,2,...,m} (f(-) and € are unknown).
SVGP learns a variational distribution ¢({/) by maximizing a lower bound of log p(Y|X’), where
log p(Y|X) = log [p(Y|U, X)p(U)dU and p(-) denotes the probability density under original GP.
Trainable hyperparameters during the learning process include values of z; and hyperparameters of
the covariance function of original GP. Given a test point x,, the predictive distribution is then given
by p(y«|x+) = [p(y«|U, x.)q(U)dU, which still follows a Gaussian distribution. One advantage of
SVGP is that minibatch training methods [[15] can be applied in case of very large dataset. Suppose
the minibatch size is m’ and m < m/, then for each training step/iteration, the computational
complexity is O(m’m?), and the space complexity is O(m’m). For full details about SVGP, see [10].
Since NN typically are based on training with relatively large datasets, SVGP makes it practical to
implement uncertainty estimates on NNs.

S3 Theoretical Analysis

S3.1 Underlying Rationale of Residual Prediction

This subsection gives a theoretical justification for why residual prediction helps both error correction
and uncertainty estimation of an NN. Specifically, such prediction (1) leads to output that is more
accurate than that of GP alone, (2) leads to output that is more accurate than that of the NN alone,
and (3) leads to uncertainty estimates that are positively correlated with variance of NN residuals.

Consider a dataset D = (X, Y) = {(x;,y:)}1, with x; drawn i.i.d. from a distribution p(x), and
yi = f(xi) +9(xi) + €,

where f(-) ~ GP(0,k(-,-)), & ~ N(0,0% > 0), and g is a function with mean zero and variance

Ex[g?(x)] = og > 0. Without loss of generality, f(-) represents the component in the target function

that can be modeled by a GP, € represents the observation noise, and g(-) represents all the remaining
components. With mean squared error as loss, the optimal predictor for y is h*(x) = f(x) + g(x).

Suppose that, from the perspective of GP given D, g is indistinguishable from noise, but that
there is a neural network hny that has successfully learned some of its structure. Consider the
residuals h*(x) — hnn(x) = 7(x) = ry(x) + r¢(x). Here, 7 is the remaining GP component,
ie, ry ~ GP(0, ak(-,-)), for some non-negative « < 1. Similarly, rg is the remainder of g
indistinguishable from noise, i.e., 07 — Ex[rZ(x)] = > 0. Aside from these indistinguishable
functions, assume GP hyperparameters can be estimated optimally.

Let hgp be the posterior mean of the GP trained directly on D, and rgp be that of a GP trained to fit
the residuals, which yields the final predictor hgp4nn = hnn + rap. Let Egp (X)), E{y(X), and
Eép NN (X) be the expected generalization errors of hgp, hnn, and hAgpi+NN-

First, following a standard approach [22], consider the eigenfunction expansion k(x,x’) =
2 A9 (x)$;(x) and J k(x,x")¢;(x)p(x)dx = X\;¢;(x’). Let A be the diagonal matrix of the
eigenvalues);, and ® be the design matrix, i.e., ®;; = qu(xi). The following series of results
capture the improvement due to residual estimation (proofs in section S3.3.1).

Lemma S3.1. El,(X) = tr(A™! + (02 + 02) 100 ")~ + 02

Lemma S3.2. E{\(X) = oE[f*(x)] + 0] — 6.

Lemma S3.3. Elp \«(X) = trla A7 + (02 + 02 = 6) 7100 T| "L + 02 — 4.

Theorem S3.4. E¢,p (X)) < Egp(X) — 6 and Edp yn(X) < E{n(X).

In particular, the improvement with respect to GP is greater than the reduction in apparent noise.

Importantly, this improvement in error corresponds to a predictive variance that is closer to the
optimal for this problem, so uncertainty estimates are improved as well. Experiments on real world

— NN
— 6P
x Labels

+ Residuals

— cp

o \M x Labels

+ Residuals

+ + -
OW
— NN i

Figure S1: Capturing uncertainty of more and less accurate NNs. These figures illustrate the
behavior of RIO in two cases: (left) The neural network has discovered true complex structure in the
labels, so the residuals have low variance and are easy for the GP to fit with high confidence; (right)
The ineffective neural network has introduced unnecessary complexity, so the residuals are modeled
with high uncertainty. In both cases, RIO matches the intuition for how uncertain the NN really is.

data confirm that when predicting the residuals of an NN, the estimated noise level of the GP is
indeed lower and correlates with the reduction in generalization error. This reduction is possible
because the NN is able to extract higher-level features not available to the GP.

These results also lead to a key practical property, which is illustrated in Figure [ST]

Proposition 1. The variance of NN residuals is positively correlated with the uncertainty of rap.

Proof. Increases in]E[’I’J% ()] lead to increases in «, and increases in E[r?(z)] lead to decreases in 4.
So, increases in either E[rfc (2)] or E[r2 ()] lead to increases of tr[a ™' A~ +(02+02—5) ! P,
which is the expected predictive variance of rgp. O

This property matches the intuition that the GP’s variance should generally be higher for bad NNs than
for good NNs. Such a property is crucial to accurately measuring the confidence of NN predictions.

S3.2 Robustness of I/0 Kernel

This section provides a justification for why a GP using the proposed 1/O kernel is more robust than
the standard GP, i.e., using the input kernel alone. The reasoning closely matches that in Section [S3.1]

Consider the setup in Section[S3.1} but now with y; = fin(x;) + fou (X:) +€;, where fiy ~ GP(0, kiy)
and fou ~ GP(0, kou), with non-trivial RBF kernels ki, kou. Again, suppose that, due to its high
expressivity [3], hny is indistinguishable from noise from the perspective of GP.

Let E{(X), ES(X), and EY '/0(X) be the expected generalization errors of the standard GP, GP with
output kernel only, and GP with I/O kernel. Then, the expected result follows (proof in S3.3.2 of
appendix).

Theorem S3.5. EY

To(X) < EY(X) and EY

I/O(X) < EL(X).

The optimizer associated with GP simultaneously optimizes the hyperparameters of both kernels, so
the less useful kernel usually receives a smaller signal variance. As a result, the I/O kernel is resilient
to failures of either kernel. In particular, the GP using I/O kernel improves performance even in the
case where the problem is so complex that Euclidean distance in the input space provides no useful
correlation information or when the input space contains some noisy features. Conversely, when the
NN is a bad predictor, and hny is simply noise, the standard GP with input kernel alone is recovered.
In other words, the I/O kernel is never worse than using the input kernel alone, and in practice it is
often better.

S3.3 Proofs
S3.3.1 Proofs for Section S3.1

Theorem S3.4 follows from a series of three lemmas. First, following a standard approach [22],
consider the eigenfunction expansion k(x,x') = 3=, A;jd;(x)¢;(x') and [k(x,x")¢s(x)p(z)dx =
Xi¢;(x'). Let A be the diagonal matrix of the eigenvalues A;, and ® be the design matrix, i.e.,

Dji = ¢5(xi).
Lemma S3.1. B4, (X) = tr(A™' 4 (02 + 02) " '®®")~! + 02

Proof. Since, from the perspective of GP, g is indistinguishable from noise, the optimal hyperparame-
ter setting for the GP predictor is mean zero, kernel k(-, -) and noise variance o2 + ag. The expected
generalization error of the GP predictor with posterior mean hgp is

Egp(X) *(x) = hep(x))?] = E[(f(x) + g(x) — hap(x))?]

(f(x) = hap(x)) + g(x))?]

(f(x) = hep(x))* + 29(x) (f(x) = hep(x)) + 9°(x)]

(f(x) = hep(x))’] + 2E[g(x)(f(x) — hep (x))] + E[g* (x)]

(f(x) = hap(x))?] + a5,

where the last step makes use of the fact that the expectation of the product of independent zero-mean

random variables is zero. Plugging in a well-known result for the generalization error of Gaussian
processes [19, 22| [24]] yields the intended result

E[(h
E[(
E[(
E[(
E[(

E¢p(X) =tu(A™" + (0p +0)) 100 T) ! 07

O
Lemma S3.2. E{\(X) = oE[f*(x)] 4+ 07 — 6.
Proof. Making use of the fact that E[r] = 0,
E{n(X) = Elr?(2)] = E[(rf(2) + 14(2))*] = E[r}(2)] + E[rj (2)].
Now, ¢ ~ GP(0, ak(-,-)) = E[r?(w)} = oE[f*(x)],and 0} — E[r2(x)] =0 = E[r2(x)] =
07 — 6. S0, BN (X) = aE[f*(x)] + o7 — 6. O

Lemma S3.3. B, (X) = tr[a A~ + (02 + 02 — 0) '@ "] + 02 — 4.

Proof. Here, the goal of the GP is to fit the residuals h*(x) — hnn(x) = 7(x) = 77(x) + rg(x).
Since 7y ~ GP(0, ak(-, -)) and 4 is indistinguishable from noise, the optimal hyperparameter setting
for the GP predictor is mean zero, kernel ak(-, -), and noise variance o7 + E[rz(x)] = 07 + 02 — 6.
Denote the posterior mean of the GP residual predictor by rgp. Then the final predlctor for yis
hap+NN(X) = hnn(X) + rap(x). The expected generalization error of Agp NN is then

Edp an(X) = E[(ha(x) — hapyan(%))?] = E[(ha (%) — han(x) — rep(x))?)
= E[(rs (%) + r4(x) — rep(x))?] = E[((r7(x) — rap(x)) 4+ 74(x))?]
= E[(rf(x) — rap(x))?] + 2B[(r7(x) — rap(x))rg(x)] + E[r) (x)]
=E[(ry(x) — rap(x))?] + E[r}(x)]

trla”*AT + (02 —|—a —0) et —l—a? — 4.

Theorem S3.4. EY,, \(X) < E&p(X) — dand Egp (X)) < EXn(X).

Proof. The first condition follows from Lemma S3.1, Lemma S3.3, and the fact that
trla AT+ (o) + o) — 671t < tr(AT 4+ (02 + 03)_1<I><I>T)_1.
The second condition follows from Lemma S3.2, Lemma S3.3, and the fact that

trla™ AT 4 (02 + Jg —0)71ed 7! < aE[f3(x)).

S3.3.2 Proof of Theorem S3.5.
Theorem S3.5. EI"/O(X) < E{(X) and EIg/O(X) < EY(X).

Proof. The fact that fi, and foy are non-trivial implies E[f2(x)] > 0 and E[f2,(z)] > 0. Following

the definitions at the beginning of Section S3.3.1, let A;,, @iy, and Agy, Poue be the diagonal matrices
of eigenvalues and the design matrices for the eigenfunction expansions of ki, and ko, respectively.

With only the input kernel, that fact that hny is indistinguishable from noise from the perspective of
GP implies fou is also indistinguishable from noise, since it is a function of ||Ann(x') — hnn (%) -

Thus, the GP optimizer estimates the noise variance as o2 + E[f2,(z)], so the generalization error is

EY(X) = u(Ag" + (0 + Elfau(2)]) T @) ™" + E[f8,(2)].

Conversely, the fact that f,, is indistinguishable from noise from the perspective of the input kernel
implies that fi, is indistinguishable from noise from the perspective of the output kernel. So, when
only using the output kernel, the GP optimizer estimates the noise variance as o2 + E[f2(z)]. So,

E§(X) = (Mg + (07 + E[fa(@)]) " Pou®ou) ™" + ELfis (2)].

Now, when considering the I/O kernel, note that y; = fin(x;) + fou(x:) + € = v = f(x;) +
€;, where f ~ GP(0, ki, + kow). So, with /O kernel, the GP optimizer correctly estimates all
hyperparameters, and the resulting generalization error is

EYo(X) = u(AL" + (07, + Elfou(@)]) 7 @uniy) ™!

+ (Mg + (05 + E[fi (2)]) 7 PouPay) -
Then,
(Ao + (07 + E[f (@)]) 7 PouPou) ! < Elfan(2)] = EYo(X) < E{(X),

and
w(AL + (07 + E[f3(2)) 7' 0n®y) T < E[fi(2)] = E{o(X) < E§(X).

S4 Empirical Study

S4.1 Experimental Setups

Dataset Description In total, twelve real-world regression datasets from UCI machine learning
repository [3] are tested. Table S1 summarizes the basic information of these datasets. For all the
datasets, 20% of the whole dataset is used as test dataset and 80% is used as training dataset, and
this split is randomly generated in each independent run. During the experiments, all the datasets
are tested for 100 independent runs. For each independent run, the same random dataset split are
used by all the tested algorithms to ensure fair comparisons. NNGP and ANP are only tested on
the four smallest dataset (based on the product of dataset size and feature dimensionality) because
they do not scale well to larger datasets. A downloadable link for all source codes is provided at:
(https://drive.google.com/open?id=1ZZkoCgOxSG6U1CGgRHkgxJIZhL.1B0dbY).

https://drive.google.com/open?id=1ZZkoCgOxSG6U1CGgRHkgxJIZhL1B0db9

Table S1: Summary of testing dataset

abbreviation full name in UCI ML repository dataset size | dimension note
yacht Yacht Hydrodynamics Data Set 252 6 -
ENB/h Energy efficiency 768 8 Heating Load as target
ENB/c Energy efficiency 768 8 Cooling Load as target
airfoil Airfoil Self-Noise 1505 5 -
CCS Concrete Compressive Strength 1030 8 -
wine/w Wine Quality 4898 11 only use winequality-white data
CCPP Combined Cycle Power Plant 9568 4 -
CASP Physicochemical Properties of Protein Tertiary Structure 54730 9
SC Superconductivty Data 21263 80
CT Relative location of CT slices on axial axis 53500 384

Parametric Setup for Algorithms

e NN: For SC dataset, a fully connected feed-forward NN with 2 hidden layers, each with
128 hidden neurons, is used. For CT dataset, a fully connected feed-forward NN with 2
hidden layers, each with 256 hidden neurons, is used. For all the remaining datasets, a fully
connected feed-forward NN with 2 hidden layers, each with 64 hidden neurons, is used. The
inputs to the NN are normalized to have mean O and standard deviation 1. The activation
function is ReLU for all the hidden layers. The maximum number of epochs for training is
1000. 20% of the training data is used as validation data, and the split is random at each
independent run. An early stop is triggered if the loss on validation data has not be improved
for 10 epochs. The optimizer is RMSprop with learning rate 0.001, and the loss function is
mean squared error (MSE).

e RIO, RIO variants and SVGP [[10]: SVGP is used as an approximator to original GP
in RIO and all the RIO variants. For RIO, RIO variants and SVGP, the number of
inducing points are 50 for all the experiments. RBF kernel is used for both input
and output kernel. For RIO, RIO variants and SVGP, the signal variances and length
scales of all the kernels plus the noise variance are the trainable hyperparameters. The
optimizer is L-BFGS-B with default parameters as in Scipy.optimize documentation
(https://docs.scipy.org/doc/scipy/reference/optimize.minimize-1bfgsb.html), and the max-
imum number of iterations is set as 1000. The training process runs until the L-BFGS-B
optimizer decides to stop.

o NNGP [16]: For NNGP kernel, the depth is 2, and the activation function is ReLU. n, = 101,
n, = 151, and n. = 131. Following the learning process in original paper, a grid search
is performed to search for the best values of 02 and o7. Same as in the original paper, a
grid of 30 points evenly spaced from 0.1 to 5.0 (for o2)) and 30 points evenly spaced from
0 to 2.0 (for og) was evaluated. The noise variance 062 is fixed as 0.01. The grid search
process stops when Cholesky decomposition fails or all the 900 points are evaluated. The
best values found during the grid search will be used in the experiments. No pre-computed
lookup tables are utilized.

e ANP [13]: The parametric setups of ANP are following the recommendations in the original
paper. The attention type is multihead, the hidden size is 64, the max number of context
points is 50, the context ratio is 0.8, the random kernel hyperparameters option is on.
The size of latent encoder is 64 x 64 x 64 x 64, the number of latents is 64, the size of
deterministic encoder is 64 X 64 x 64 x 64, the size of decoder is 64 x 64 x 64 x 64 X 2,
and the deterministic path option is on. Adam optimizer with learning rate 10~ is used,
and the maximum number of training iterations is 2000.

Performance Metrics

e To measure the point-prediction error, the Root Mean Square Error (RMSE) between the
method predictions and true outcomes on test datasets are calculated for each independent
experimental run. After that, the mean and standard deviations of these RMSEs are used to
measure the performance of the algorithms.

o To quantitatively measure the quality of uncertainty estimation, average negative log predic-
tive density (NLPD) [21] is used to measure the quality of uncertainty estimation. NLPD is

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html

given by
1 n
L=——51 Vi =Yyilxi 1
- ;:1 og p(§i = yilxi) (D

where ¥, indicates the prediction results, x; is the input with true associated outcome y;,
p(+) is the probability density function (PDF) of the returned distribution based on input x;.

e To compare the computation time of the algorithms, the training time (wall clock time) of
NN, RIO, all the RIO variants, SVGP and ANP are averaged over all the independent runs
as the computation time. For NNGP, the wall clock time for the grid search is used. In case
that the grid search stops due to Cholesky decomposition failures, the computation time of
NNGP will be estimated as the average running time of all the successful evaluations x 900,
which is the supposed number of evaluations. All the algorithms are implemented using
Tensorflow, and tested in the exactly same python environment. All the experiments are
running on a machine with 16 Intel(R) Xeon(R) CPU E5-2623 v4@2.60GHz and 128GB
memory.

References

[1] D. Barber and C. Bishop. Ensemble learning in bayesian neural networks. In Generalization in
Neural Networks and Machine Learning, pages 215-237. Springer Verlag, January 1998.

[2] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural
networks. In Proceedings of the 32Nd International Conference on International Conference
on Machine Learning - Volume 37, ICML’15, pages 1613-1622. JMLR.org, 2015.

[3] B. Csaji. Approximation with artificial neural networks. M.S. Thesis, Dept. Science, Eotvos
Lorand Univ., Budapest, Hungary, 2001.

[4] L. Csaté and M. Opper. Sparse on-line gaussian processes. Neural computation, 14:641-68, 04
2002.

[5] D. Dua and C. Graff. UCI machine learning repository, 2017.

[6] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’ 16, pages 1050-1059. IMLR.org, 2016.

[71 M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. W. Teh,
D. Rezende, and S. M. A. Eslami. Conditional neural processes. In J. Dy and A. Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 1704—-1713. PMLR, 10-15 Jul 2018.

[8] M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. M. A. Eslami, and Y. W.
Teh. Neural processes. CoRR, abs/1807.01622, 2018.

[9] A. Graves. Practical variational inference for neural networks. In Proceedings of the 24th
International Conference on Neural Information Processing Systems, NIPS 11, pages 2348—
2356, USA, 2011. Curran Associates Inc.

[10] J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Proceedings of
the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI’ 13, pages 282-290,
Arlington, Virginia, United States, 2013. AUAI Press.

[11] J. Hensman, A. Matthews, and Z. Ghahramani. Scalable Variational Gaussian Process Clas-
sification. In G. Lebanon and S. V. N. Vishwanathan, editors, Proceedings of the Eighteenth
International Conference on Artificial Intelligence and Statistics, volume 38 of Proceedings of
Machine Learning Research, pages 351-360, San Diego, California, USA, 09-12 May 2015.
PMLR.

[12] G.E. Hinton and D. van Camp. Keeping the neural networks simple by minimizing the descrip-
tion length of the weights. In Proceedings of the Sixth Annual Conference on Computational
Learning Theory, COLT 93, pages 5-13, New York, NY, USA, 1993. ACM.

[13] H. Kim, A. Mnih, J. Schwarz, M. Garnelo, S. M. A. Eslami, D. Rosenbaum, O. Vinyals, and
Y. W. Teh. Attentive neural processes. CoRR, abs/1901.05761, 2019.

[14] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems
30, pages 6402—-6413. Curran Associates, Inc., 2017.

[15] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng. On optimization methods
for deep learning. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, ICML’11, pages 265-272, USA, 2011. Omnipress.

[16] J. Lee, Y. Bahri, R. Novak, S. Schoenholz, J. Pennington, and J. Sohl-dickstein. Deep neural
networks as gaussian processes. International Conference on Learning Representations, 2018.

[17] D. J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural
Comput., 4(3):448-472, May 1992.

[18] R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidelberg,
1996.

[19] M. Opper and F. Vivarelli. General bounds on bayes errors for regression with gaussian processes.

In Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems
11, pages 302-308, Cambridge, MA, USA, 1999. MIT Press.

[20] J. Quifionero Candela and C. E. Rasmussen. A unifying view of sparse approximate gaussian
process regression. J. Mach. Learn. Res., 6:1939-1959, Dec. 2005.

[21] J. Quifonero-Candela, C. E. Rasmussen, F. Sinz, O. Bousquet, and B. Scholkopf. Evaluating
predictive uncertainty challenge. In J. Quifionero-Candela, I. Dagan, B. Magnini, and F. d’Alché
Buc, editors, Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object
Classification, and Recognising Tectual Entailment, pages 1-27, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[22] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. Adaptive Computa-
tion and Machine Learning. MIT Press, Jan. 2006.

[23] M. Seeger, C. K. I. Williams, and N. D. Lawrence. Fast forward selection to speed up sparse
gaussian process regression. In IN WORKSHOP ON Al AND STATISTICS 9, 2003.

[24] P. Sollich. Learning curves for gaussian processes. In Proceedings of the 1998 Conference on
Advances in Neural Information Processing Systems 11, pages 344-350, Cambridge, MA, USA,
1999. MIT Press.

[25] M. K. Titsias. Variational learning of inducing variables in sparse gaussian processes. In In
Artificial Intelligence and Statistics 12, pages 567-574, 2009.

[26] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Deep kernel learning. In A. Gretton and
C. C. Robert, editors, Proceedings of the 19th International Conference on Artificial Intelligence

and Statistics, volume 51 of Proceedings of Machine Learning Research, pages 370-378, Cadiz,
Spain, 09-11 May 2016. PMLR.

	Related Work
	Background
	Neural Networks
	Gaussian Processes
	Stochastic Variational Gaussian Processes

	Theoretical Analysis
	Underlying Rationale of Residual Prediction
	Robustness of I/O Kernel
	Proofs
	Proofs for Section S3.1
	Proof of Theorem S3.5.

	Empirical Study
	Experimental Setups

