
A quantile-based approach for hyperparameter
transfer learning

David Salinas
NAVER LABS Europe ∗

david.salinas@naverlabs.com

Huibin Shen
Amazon Research

huibishe@amazon.com

Valerio Perrone
Amazon Research

vperrone@amazon.com

Abstract

Bayesian optimization (BO) is a popular methodology to tune the hyperparameters
of expensive black-box functions. Despite its success, standard BO focuses on a
single task at a time and is not designed to leverage information from related
functions, such as the performance metric of the same algorithm tuned across
multiple datasets. In this work, we introduce a novel approach to achieve transfer
learning across different datasets as well as different metrics. The main idea is
to reparametrize raw metrics as quantiles via the probability integral transform,
and learn a mapping from hyperparameters to metric quantiles. We introduce two
methods to leverage this estimation: a pure random search biased toward sampling
lower quantiles, and a Gaussian process using such quantile estimate as a prior. We
show that these strategies can combine the estimation of multiple metrics such as
runtime and accuracy, steering the optimization toward cheaper hyperparameters
for the same level of accuracy. Experiments on an extensive set of hyperparameter
tuning tasks demonstrate significant improvements over several baselines.

1 Introduction

Tuning complex machine learning models such as deep neural networks can be a daunting task.
Object detection or language understanding models often rely on deep neural networks with many
tunable hyperparameters, and automatic hyperparameter optimization (HPO) techniques such as
Bayesian optimization (BO) are critical to extract the best accuracy and save time. BO addresses
the black-box optimization problem by placing a probabilistic model on the function to minimize,
such as the mapping of neural network hyperparameters to a validation loss, and determine which
hyperparameters to evaluate next by trading off exploration and exploitation. While traditional BO
focuses on each problem in isolation, recent years have seen a surge of interest in transfer learning
for HPO. In this context, transfer learning aims to leverage evaluations from previous, related tasks
(e.g., the same neural network tuned on multiple datasets) to further speed up the hyperparameter
search. Given evaluations from previous tasks {(xli, yli)}

nl
i=1, where yli ∈ R is the i-th evaluation of

hyperparameter xli ∈ Rd on black-box f l, one aims to solve argminx∈Rd f(x) for a new task f .

A variety of methods have been developed to this end. The most common approach is to model
tasks jointly or via a conditional independence structure, which has been been explored through
multi-output GPs [24], weighted combination of GPs [20, 7], and neural networks, either fully
Bayesian [23] or hybrid [22, 17, 13]. A different line of research has focused on the setting where
tasks come over time as a sequence and models need to be updated online as new problems accrue.
A way to achieve this is to fit a sequence of surrogate models to the residuals relative to predictions
of the previously fitted model [9, 18]. Specifically, the GP over the new task is centered on the
predictive mean of the previously learned GP. Finally, rather than fitting a surrogate model to all

∗Work done while being at Amazon Research

3rd Workshop on Meta-Learning at NeurIPS 2019, Vancouver, Canada.

past data, some transfer can be achieved by warm-starting BO with the solutions to the previous BO
problems [8, 26]. A central challenge of all these approaches is that different black-boxes typically
have different scales, varying noise levels, and possibly contain outliers, making it hard to learn a
joint model. The Gaussian Copula Process (GCP) [25] can be used to alleviate scale issues on a
single task at the extra cost of estimating the CDF of the data. Using GCP for HPO was proposed
in [2] to handle potentially non-Gaussian data, albeit only for the single-task case.

In this work, we show how the probability integral transform can be used to map evaluations to
the quantile space, where fitting a joint model becomes easier as scale issues vanish. Using this
map we fit a global quantile parametric model, and then show how such estimation can be used
to transfer information to new tasks. To this end, we propose two strategies: a quantile random
search and a quantile-based Gaussian Process. We show that these strategies can jointly model
several metrics with potentially different scales, such as validation error and compute time, without
requiring processing. Extensive experiments demonstrate that significant speed-ups can be achieved.

2 Quantile based HPO

Quantile estimation We start by introducing quantile estimation, the building block of the HPO
strategies we propose. Let F̄ l denote the empirical cumulative distribution function on the set of
evaluations of task l : F̄ l(t) = 1

nl

∑
i 1yli≤t. This function maps each evaluation to a quantile value

ul = F̄ l(yl) ∈ [0, 1]. We use the available evaluations {xli, uli}i,l to fit a parametric quantile estimate
uw(x). The quantile estimate is regressed with a multi-layer-perceptron (MLP) whose parameters w
are obtained by minimizing the `2-error

∑
i,l(uw(xli)−uli)2. It is important to note that the quantile

estimate uw(x) is made independent of the dataset. Given a new task, we hope that uw(x) is a good
approximation of F (y(x)) where F is the CDF of y. It should be clear that if uw(x) = F (y(x)),
then the problem of finding the minimum of f would be solved as a parameter x minimizing f(x)
also minimizes the quantile F (y(x)). However, the estimation of uw(x) will not be perfect and will
yield some approximation error. For instance, a naive estimate always predicting the median, e.g.
u(x) = 0.5, would have a mean absolute error (MAE) of 0.252. For similar tasks, we would expect
the MAE to be lower than 0.25 for effective transfer. We next show how this improvement can be
leveraged to design two new HPO strategies.

Quantile random search Given a quantile estimation for the new task uw(x), we would now like
to design a HPO strategy. In particular, we want to design a random strategy with an exploration-
exploitation trade-off. Assume we are given N hyperparameter configurations x1, . . . , xN to sam-
ple from. We can predict quantiles with uw(x) and pick the hyperparameter configurations with the
minimum quantile score, but there would be no exploration. Instead, an exploration-exploitation
trade-off can be obtained by setting a probability density on the quantile domain [0, 1] so that lower
quantiles are sampled with larger probability. For this, we use a beta-distribution with α = 1
which yields the following pdf: pβ(u) = β(1 − u)β−1. The parameter β ≥ 1 controls the
exploration-exploitatiFon trade-off. Note that the density should decrease towards 1 to ensure that
lower quantiles are favored and larger values of β corresponds to more exploitation as the probabil-
ity of picking smaller quantiles increases, which can be seen in Fig 1 in the appendix. We call such
a method quantile random-search (quantile-RS) and present pseudo-code in Algorithm 1. The steps
inside the loop perform inverse transform sampling [5] from the density defined on quantiles with
the Beta distribution. Indeed, one has Fβ(u) =

∫ u
0
pβ(t) dt = 1 − (1 − u)β , and consequently,

F−1β (q) = 1− (1− q)1/β for q ∈ [0, 1].

Quantile-based Gaussian Process While the quantile random search approach can re-use infor-
mation from previous tasks, it does not exploit the evaluations from the current task as each draw
is independent of the observed evaluations. This can become an issue if the new black-box signifi-
cantly differs from previous tasks. We now show that the quantile approach can be combined with a
GP to both learn from previous tasks while adapting to the current task.

Instead of modeling observations directly as a GP, we model them as a Gaussian Copula Process
(GCP) [25]. Consider the map ψ = Φ−1 ◦ F where Φ is the standard normal CDF, recalling

2The average mean absolute error of a median predictor is given by
∫ 1

0
|q − 1

2
|dq = 2

∫ 1
2
0
|q|dq = 1

4
.

2

Algorithm 1: Quantile random search (quantile-RS)

Estimate uw(x) on hold-out evaluations of other tasks and a given β.
while Has budget do

Sample N hyperparameters x1, . . . , xN and sort them according to uw(xi).
Sample q ∼ U([0, 1]).
Return xbF−1

β (q)×Nc = xb(1−(1−q)1/β)×Nc.
end while

that F is the CDF of y. Then we can define a new random variable z and model the function
z = ψ(y) ∼ GP(µ(x), k(x)). As ψ is monotonically increasing and mapping into the line, we
can alternatively view this modeling as a warped GP [21] with a non-parametric warping. One
advantage of this transformation is that z follows a Normal distribution, which may not be the case
for y = f(x). In the specific case of HPO, y may represent accuracy scores in [0, 1] of a classifier
where a Gaussian cannot be used. Another advantage is that we can transfer the information from
other tasks extracted in the parametric quantile estimate uw by using the prior mean functionm(x) =
Φ−1(uw(x)). Using the probability-integral-transform is key here as it maps evaluations of each
task to a standard Normal distribution, meaning that evaluations of different tasks are mapped to
a similar space. Finally, we fit the GP using L-BFGS for marginal likelihood optimization, and
use the Expected Improvement [16] to sample new hyperparameters. The pseudo-code is given in
Algorithm 2.

Algorithm 2: Quantile-based GP (quantile-GP)

Estimate uw(x) on the available evaluations from related tasks.
Sample x via quantile random search as described in the previous section.
while Has budget do

Deduct the prior means by ψ(x)−m(x) and then fit the GP.
Return the parameter x maximizing the Expected Improvement in the space of ψ(x) +m(x).
Evaluate f(x) and collect the result.

end while

Let us now make a few remarks on ψ. When no observations are available, F is not defined. There-
fore, we warm-start the optimization on the new task by sampling a hyperparameter configuration
based on quantile random-search, as described above. Finally, as ψ will be infinite when applied to
the minimum or maximum of y, we apply the following truncated estimator for the CDF from [14]:

F̃ (t) =

δm if F̄ (t) < δm
F̄ (t) if δm ≤ F̄ (t) ≤ 1− δm
1− δm if F̄ (t) > 1− δm

where m is the number of observations and δm = 1
4m1/4

√
π logm

strikes a bias-variance trade-off.

Optimizing multiple metrics In addition to optimizing the accuracy of a black-box function, it is
often desirable to optimize its runtime or memory consumption. Indeed, given two hyperparameters
with the same expected error, the one requiring less resources is preferable. For tasks where runtime
is available, we use both runtime and error metrics by averaging their quantiles, e.g., we set u(x) =
1
2 (uerror(x) +utime(x)), where uerror(x) represents the error quantile and utime(x) represents the time
quantile. This allows us to seamlessly optimize for time and error when running HPO, so that the
cheaper hyperparameter is favored when two hyperparameters lead to similar expected error.

3 Experiments

We considered the problem of tuning three algorithms: XGBoost [4], a 2-layer feed-forward neural
network (FCNET) [11], and the RNN-based time series prediction model proposed in [19] (DeepAR).
To speed up experiments we used a variation of the lookup table approach advocated in [6], reducing
the BO problem to selecting the next hyperparameter configurations from a fixed set which has been

3

20 40 60 80 100
Iteration

10 5

10 4

10 3

No
rm

al
ize

d
di

st
an

ce
 to

 th
e

m
in

im
um

DeepAR
RS
GP
ABLR
QRS
QGP

20 40 60 80 100
Iteration

10 7

10 6

10 5

10 4

10 3

10 2

10 1

No
rm

al
ize

d
di

st
an

ce
 to

 th
e

m
in

im
um

fcnet

RS
GP
ABLR
QRS
QGP

20 40 60 80 100
Iteration

10 2

10 1

No
rm

al
ize

d
di

st
an

ce
 to

 th
e

m
in

im
um

xgboost
RS
GP
ABLR
QRS
QGP

Figure 1: Relative improvement over random search across iterations.

0 20 40 60 80
Time

10 3

10 2

No
rm

al
ize

d
di

st
an

ce
 to

 th
e

m
in

im
um

DeepAR
RS
GP
ABLR
QRS (time)
QGP (time)

0 20 40 60 80
Time

10 1

3 × 10 2

4 × 10 2

6 × 10 2

No
rm

al
ize

d
di

st
an

ce
 to

 th
e

m
in

im
um

fcnet
RS
GP
ABLR
QRS (time)
QGP (time)

Figure 2: Relative improvement over random search against standardized run time.

evaluated in advance (as a result, no extrapolation error is introduced). These hyperparameter evalu-
ations were obtained by querying each algorithm at hyperparameters sampled uniformly at random
from their search space. We tuned XGBoost on 10 libsvm dataset [3] to minimize 1−AUC. Then,
we tuned FCNET on 4 datasets from [11], namely {slice localization, protein structure,
naval propulsion, parkinsons telemonitoring}, to minimize the test mean squared error.
As for DeepAR, the evaluations were collected on the data provided by GluonTS [1], consisting of 6
datasets from the M4-competition [15] and 5 datasets used in [12], and the goal is to minimize the
quantile loss [10]. Additionally, for DeepAR and FCNET the runtime to evaluate each hyperparameter
configuration was available, and we ran additional experiments exploiting this metric. More details
on the HPO problems and search spaces are in Table 1 and Table 2 of the appendix.

We assessed the transfer learning capabilities in a leave-one-task-out setting: we sequentially left
out one dataset and then aggregated the results for each algorithm. The performance of each method
was first averaged over 30 replicates for one dataset in a task, and we report the relative distance to
the global minimum defined by (yopt − ymin)/(ymax − ymin) which is in [0, 1] making improvement
scores comparable [26]. For all quantile-based methods we set β = 2, and learn the mapping to
quantiles via a 3-layer MLP with 50 units per layer, optimized by ADAM with early-stopping.

Results We benchmarked our methods against random search, standard GP-based BO, and ABLR
[17], a recently proposed approach to transfer learning consisting of a shared neural network across
tasks on top of which lies a Bayesian linear regression layer for each task. Figure 1 shows that
the quantile-based approaches consistently speed up convergence to a good optimum. Specifically,
quantile random search tends to outperform random-search in the beginning of the BO and is beaten
by GP later on due to its adaptiveness while quantile GP is able outperform competitors both at
the beginning and end of the optimization. Detailed results for each dataset are in Table 3 of the
appendix.

We then studied the ability of the quantile-based approaches to transfer information from multi-
ple metrics. Figure 2 reports results against standardized run time, leveraging both error and time
metrics for quantile-based BO. Here, performance for each optimizer was first averaged over 30
replicates within each dataset and then further aggregated across datasets. As tunings for differ-
ent datasets and optimizers require different time for a fixed number of iterations, to aggregate
results we average only up to the time taken by the fastest dataset and optimizer. Table 4 in the
appendix includes the full results for each dataset. Quantile random search and quantile GP outper-
form competing methods by a large margin, successfully tapping into multiple metrics to accelerate
the hyperparameter search.

4

References
[1] A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus, T. Januschowski,

D. C. Maddix, S. Rangapuram, D. Salinas, J. Schulz, L. Stella, A. C. Türkmen, and Y. Wang.
GluonTS: Probabilistic Time Series Modeling in Python. arXiv preprint arXiv:1906.05264,
2019.

[2] Alec Anderson, Sebastien Dubois, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Sam-
ple, estimate, tune: Scaling bayesian auto-tuning of data science pipelines. In 2017 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pages 361–372.
IEEE, 2017.

[3] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

[4] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. 2016.

[5] Luc Devroye. Nonuniform random variate generation. Handbooks in operations research and
management science, 13:83–121, 2006.

[6] K Eggensperger, F Hutter, HH Hoos, and K Leyton-brown. Efficient benchmarking of hyperpa-
rameter optimizers via surrogates background: hyperparameter optimization. In Proceedings
of the 29th AAAI Conference on Artificial Intelligence, pages 1114–1120, 2012.

[7] Matthias Feurer, Benjamin Letham, and Eytan Bakshy. Scalable meta-learning for Bayesian
optimization using ranking-weighted Gaussian process ensembles. In ICML 2018 AutoML
Workshop, July 2018.

[8] Matthias Feurer, T Springenberg, and Frank Hutter. Initializing Bayesian hyperparameter opti-
mization via meta-learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015.

[9] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and
D Sculley. Google Vizier: A service for black-box optimization. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1487–1495, 2017.

[10] Tim Januschowski, David Arpin, David Salinas, Valentin Flunkert, Jan Gasthaus, Lorenzo
Stella, and Paul Vazquez. Now available in amazon sagemaker: Deepar algorithm
for more accurate time series forecasting. https://aws.amazon.com/blogs/machine-
learning/now-available-in-amazon-sagemaker-deepar-algorithm-for-more-accurate-time-
series-forecasting/, 2018.

[11] Aaron Klein and Frank Hutter. Tabular benchmarks for joint architecture and hyperparameter
optimization. arXiv preprint arXiv:1905.04970, 2019.

[12] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-
term temporal patterns with deep neural networks. CoRR, abs/1703.07015, 2017.

[13] Ho Chung Leon Law, Peilin Zhao, Junzhou Huang, and Dino Sejdinovic. Hyperparameter
learning via distributional transfer. Technical report, preprint arXiv:1810.06305, 2018.

[14] Han Liu, John Lafferty, and Larry Wasserman. The Nonparanormal: Semiparametric Estima-
tion of High Dimensional Undirected Graphs. 10:2295–2328, 2009.

[15] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The M4 Competi-
tion: Results, findings, conclusion and way forward. International Journal of Forecasting,
34(4):802–808, 2018.

[16] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of bayesian methods
for seeking the extremum. Towards global optimization, 2(117-129):2, 1978.

5

[17] Valerio Perrone, Rodolphe Jenatton, Matthias Seeger, and Cédric Archambeau. Scalable hy-
perparameter transfer learning. In Advances in Neural Information Processing Systems (NIPS),
2018.

[18] Matthias Poloczek, Jialei Wang, and Peter I Frazier. Warm starting Bayesian optimization. In
Winter Simulation Conference (WSC), 2016, pages 770–781. IEEE, 2016.

[19] David Salinas, Valentin Flunkert, and Jan Gasthaus. Deepar: Probabilistic forecasting with
autoregressive recurrent networks. CoRR, abs/1704.04110, 2017.

[20] Nicolas Schilling, Martin Wistuba, and Lars Schmidt-Thieme. Scalable hyperparameter opti-
mization with products of Gaussian process experts. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 33–48. Springer, 2016.

[21] Edward Snelson, Zoubin Ghahramani, and Carl E. Rasmussen. Warped gaussian processes. In
S. Thrun, L. K. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing
Systems 16, pages 337–344. MIT Press, 2004.

[22] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sun-
daram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable Bayesian optimization using
deep neural networks. In Proceedings of the International Conference on Machine Learning
(ICML), pages 2171–2180, 2015.

[23] Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian optimiza-
tion with robust Bayesian neural networks. In Advances in Neural Information Processing
Systems (NIPS), pages 4134–4142, 2016.

[24] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task Bayesian optimization. In
Advances in Neural Information Processing Systems (NIPS), pages 2004–2012, 2013.

[25] Andrew Gordon Wilson and Zoubin Ghahramani. Copula processes. In Proceedings of
the 23rd International Conference on Neural Information Processing Systems - Volume 2,
NIPS’10, pages 2460–2468, USA, 2010. Curran Associates Inc.

[26] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Learning hyperparameter opti-
mization initializations. In Data Science and Advanced Analytics (DSAA), 2015. 36678 2015.
IEEE International Conference on, pages 1–10. IEEE, 2015.

6

	Introduction
	Quantile based HPO
	Experiments

