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Abstract

One-shot neural architecture search (NAS) has played a crucial role in making
NAS methods computationally feasible in practice. Nevertheless, there is still a
lack of understanding on how these weight-sharing algorithms exactly work due
to the many factors controlling the dynamics of the process. In order to allow
a scientific study of these components, we introduce a general framework for
one-shot NAS that can be instantiated to many recently-introduced variants and
introduce a general benchmarking framework that draws on the recent large-scale
tabular benchmark NAS-Bench-101 for cheap anytime evaluations of one-shot
NAS methods. To showcase the framework, we compare several state-of-the-art
one-shot NAS methods, examine how sensitive they are to their hyperparameters
and how they can be improved by tuning their hyperparameters, and compare their
performance to that of blackbox optimizers for NAS-Bench-101.

1 Introduction

While neural architecture search (NAS) has attracted a lot of attention due to the effectiveness in
automatically designing state-of-the-art neural networks [Zoph and Le, 2017, Zoph et al., 2018, Real
et al., 2017, 2019], the focus has recently shifted to making the search process more efficient [Pham
et al., 2018, Elsken et al., 2019, Liu et al., 2019, Xie et al., 2019, Cai et al., 2019, Casale et al., 2019].
The most crucial concept which led to a reduction in search costs to the order of a single function
evaluation is certainly the weight-sharing paradigm: Training only a single large architecture (the
one-shot model) subsuming all the possible architectures in the search space [Brock et al., 2018,
Pham et al., 2018].

Despite the great advancements of these methods, the exact results of many NAS papers are often
hard to reproduce [Li and Talwalkar, 2019, Sciuto et al., 2019]. This is a result of several factors,
such as unavailable original implementations, differences in the employed search spaces, training or
evaluation pipelines, hyperparameter settings, and even pseudorandom number seeds [Lindauer and
Hutter, 2019].

Furthermore, experiments in NAS can be computationally extremely costly, making it virtually
impossible to perform proper scientific evaluations with many repeated runs to draw statistically
robust conclusions. To address this issue, Ying et al. [2019] introduced NAS-Bench-101, a large
tabular benchmark with 423k unique cell architectures, trained and fully evaluated using a one-time
extreme amount of compute power (several months on thousands of TPUs), which now allows to
cheaply simulate an arbitrary number of runs of NAS methods, even on a laptop. NAS-Bench-101
enabled a comprehensive benchmarking of many discrete NAS optimizers [Zoph and Le, 2017, Real
et al., 2019], using the exact same settings. However, the discrete nature of this benchmark does not
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Figure 1: Overview of the NAS-Bench-1Shot1 analysis strategy. The one-shot model we construct
only contains discrete architectures that are elements of NAS-Bench-101 [Ying et al., 2019]. The cell
architecture chosen is similar to that of Bender et al. [2018], with each choice block containing an
operation decision. Note that NAS-Bench-101 does not contain a separate reduction cell type. Plot
on the right from Ying et al. [2019] (Best viewed in color).

allow to directly benchmark one-shot NAS optimizers [Pham et al., 2018, Liu et al., 2019, Xie et al.,
2019, Cai et al., 2019]. In this paper, we introduce the first method for making this possible. Our
contributions can be summarized as follows:

1. We introduce NAS-Bench-1Shot1, a novel benchmarking framework that allows us to reuse the
extreme amount of compute time that went into generating NAS-Bench-101 [Ying et al., 2019] to
cheaply benchmark one-shot NAS methods. Our mapping between search space representations is
novel to the best of our knowledge and it allows querying the performance of found architectures
from one-shot NAS methods, contrary to what is claimed by Ying et al. [2019]. (Section 2).

2. We use the above to compare several state-of-the-art one-shot NAS methods, assess the correlation
between their one-shot model performance and final test performance, examine how sensitive they
are to their hyperparameters, and compare their performance to that of black-box optimizers used
in NAS-Bench-101 (Section 3).

We provide our open-source implementation2, which we expect will also facilitate the reproducibility
and benchmarking of other one-shot NAS methods in the future.

2 Towards a general framework for benchmarking one-shot NAS

We will now introduce our framework for cheaply benchmarking the anytime performance of one-shot
NAS methods. Our main analysis strategy is the following: First, we run the search procedure of
various methods and save the architecture weights of the one-shot models for each epoch. Second,
we find the discrete architecture at each epoch and query it in NAS-Bench-101. The last step is not
trivial due to the different representations of the search space used in NAS-Bench-101 and standard
one-shot methods. Ying et al. [2019] state that one-shot methods cannot be directly evaluated on
NAS-Bench-101. In the following sections we present a mapping between these different search
space representations, which eventually enable us to evaluate one-shot methods on NAS-Bench-101.
To the best of our knowledge this is a novel contribution of this paper.

2.1 Search space representation

In order to carry out the analysis we propose in this work, we had to construct a search space that
only contains discrete architectures that are also contained in NAS-Bench-101. This allows us to look
up any discrete architectures’ performance in NAS-Bench-101 when the larger model is trained from
scratch. Unfortunately, this is non-trivial since the NAS-Bench-101 space does not match the typical
space used in one-shot NAS methods. We separately consider the various parts of the search space.
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Network-Level Topology. In terms of network-level topology, our search spaces closely resemble
the models which were evaluated in NAS-Bench-101. We used the same macro architecture as
in NAS-Bench-101, i.e., 3 stacked blocks with a max-pooling operation in-between, where each
block consists of 3 stacked cells (see Figure 1). While our final evaluation models exactly follow
NAS-Bench-101 in order to be able to reuse its evaluations, our one-shot model only has 16 initial
convolution filters, rather than the 128 used in NAS-Bench-101. This is a common practice to
accelerate NAS and used similarly in, e.g., Liu et al. [2019].

Cell-Level Topology. The cell-level structure is represented as a DAG, where the input node is the
output of a previous cell or the convolutional stem, and the output node is a concatenation of all the
previous nodes. In order to have the operation choices still in the intermediate nodes of the DAG, we
adapt the choice block motif from Bender et al. [2018] as depicted in Figure 1. The edges connecting
input, output nodes and choice blocks represent only the information flow in the graph. To have a
large and expressive enough search space(s), we introduce the following architectural weights in the
DAG edges:

• αi,j to edges connecting nodes i < j to choice block j. The input of choice block j is then
computed as Ij =

∑
i<j

exp(αi,j)∑
i′<j exp(αi′,j)

xi, where xi is the output tensor of node i (either input

node or choice block).
• γj,k to the edges connecting the input node or choice blocks j < k to the output node k of the cell,

where the corresponding feature maps are concatenated: Ok = ⊕j<k exp(γj,k)∑
j′<k exp(γj′,k)

xj , where ⊕
is the concatenation operator.

Note that the non-linearity applied to the edge weights varies depending on the NAS optimizer
used; e.g. for GDAS [Dong and Yang, 2019] and SNAS [Xie et al., 2019] it would be a Gumbel-
Softmax [Eric Jang and Poole, 2017] instead.

Choice Blocks. As in Bender et al. [2018], each choice block inside the cell can select between
the operations in the operations set O of NAS-Bench-101. In order to find the optimal opera-
tion in each choice block via gradient-based one-shot NAS methods, we assign an architectural
weight βo to each operation o ∈ O inside the choice block. The output of the choice block j is
computed by adding element-wise the latent representations coming from the operations outputs:
xj =

∑
o∈O

exp(βo)∑
o′∈O exp(βo′ )

o(Ij), which is basically the so-called MixedOp in DARTS [Liu et al.,
2019]. NASBench cells contain 1x1 projections in front every operation (demonstrated in Figure 1
in [Ying et al., 2019]). The number of output channels of each projection is chosen such that the
output has the same number of channels as the input. This adaptive choice for the number of channels
is incompatible with the one-shot model due to the different tensor dimensionality coming from
previous choice blocks. We used 1x1 projections with a fixed number of channels instead.

2.2 Evaluation procedure

Table 1 in the Appendix shows the characteristics of each search space. We propose three different
search spaces by making different decisions on the number of parents each choice block has. For all
search spaces note that the sum of the number of parents of all nodes in the search space is chosen
to be 9, to match the NAS-Bench-101 requirement. Search space 1, 2 and 3 have 6240, 29160 and
363648 architectures with loose ends respectively, making search space 3 the largest investigated
search space. To the best of our knowledge search space 3 is currently the largest and only available
tabular benchmark for one-shot NAS. For details on each search space see Appendix B.

Given the architectural weights of the cell shown in Figure 1 we query the test and validation error of
the discrete architecture from NAS-Bench-101 as follows:

1. We determine the operation chosen in each choice block by choosing the operation with the
highest architectural weight.

2. We determine the parents of each choice block and the output by choosing the top-k edges
according to Table 1 in the Appendix (e.g. for choice block 4 in search space 3 we would choose
the top-2 edges as parents).

3. From 1. we construct the operation list and from 2. the adjacency matrix of the cell which we use
to query NAS-Bench-101 for the test and validation error.
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(a) Search space 1
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(b) Search space 2
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(c) Search space 3

Figure 2: Comparison of different one-shot NAS optimizers on the three different search spaces
defined on NASBench. The solid lines show the anytime test regret (mean ± std), while the dashed
blurred lines the one-shot validation error (Best viewed in color).

3 Experiments

We now demonstrate the use of NAS-Bench-1Shot1 as a benchmark for one-shot NAS. We first
evaluate the anytime performance of five different one-shot NAS methods: DARTS [Liu et al., 2019],
GDAS [Dong and Yang, 2019], PC-DARTS [Xu et al., 2019], ENAS [Pham et al., 2018] and Random
Search with Weight Sharing (Random WS) [Li and Talwalkar, 2019].3 Afterwards, we investigate the
robustness of these one-shot NAS optimizers towards their search hyperparameters and show that if
these hyperparameters are carefully tuned, the one-shot NAS optimizer can outperform a wide range
of other discrete NAS optimizers in our search spaces.

3.1 Comparison of different One-shot NAS optimizers

We ran the NAS search for 50 epochs4 using their respective default hyperparameter settings (see
Appendix D). If not stated otherwise, all the following results were generated by running each
experiment with six random seeds (0 to 5). All plots show the mean and standard deviation of
the test regret queried from NAS-Bench-101. Over the three independent trainings contained in
NASBench-101 for each architecture on each epoch budget we average. The search was done on a
single NVIDIA RTX2080Ti using the same python environment. In Figure 2 we report the anytime
test regret for each of these methods. Our findings can be summarized as follows:

• While the one-shot validation error converged in all cases (except for GDAS due to the temperature
annealing) the queried test error from NAS-Bench-101 of the architectures increased at some point,
indicating that the architectural parameters overfit the validation set. This phenomenon occurred
frequently for DARTS. The same result was also previously observed by Zela et al. [2019] on
subspaces of the standard DARTS space.

• PC-DARTS demonstrated both a stable search and relatively good final performance in all search
spaces, notably the best overall performance for search space 3. We attribute this behaviour to
the regularization effect present in PC-DARTS via the partial channel connections (see Zela et al.
[2019] and Section F).

• Random WS and ENAS mainly explore poor architectures across all three search spaces. This
behaviour is a result of the small correlation between the architectures evaluated with the one-shot
weights and their true performance during architecture evaluation (as queried from NAS-Bench-101
(see Section F.3)). This correlation directly affects these methods since in the end of search they
sample a certain number of architectures (1000 randomly sampled for Random WS and 100 using
the learned controller policy for ENAS) and evaluate them using the one-shot model weights in
order to select the architecture which is going to be trained from scratch in the final evaluation
phase. When running ENAS for 100 epochs in search space 2 (Figure 5 in the appendix) we see
that the it performs better than Random WS. ENAS also has a stronger correlation between the
sampled architectures and the NAS-Bench-101 architectures for search space 2 (see Section F.3).

3Details on these optimizers can be found in Appendix C.
4This required different amounts of time: DARTS 1st order: 3h, DARTS 2nd order: 4h, GDAS: 1.5h,

PC-DARTS: 2h, ENAS: 4h, Random-WS: 11h.
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• GDAS performs quite robustly across all 3 benchmarks, however, due to the temperature annealing
of the Gumbel Softmax, it might manifest some premature convergence to a sub-optimal local
minimum.

3.2 Tunability of One-shot NAS hyperparameters

Next to the hyperparameters used in the evaluation pipeline, one-shot NAS methods have several
hyperparameters of their own, such as the regularization hyperparameters studied in Section F,
learning rates, and other hyperparameters of the search phase. Naively tuning these hyperparameters
with the one-shot validation error as the objective would lead to sub-optimal configurations, since, as
we saw, this metric is not a good indicator of generalization.

In our proposed benchmarks, we can tune these hyperparameters of the NAS optimizer to minimize
the validation error queried from NAS-Bench-101. By doing so, we aim to shed more light onto the
influence these hyperparameters have during the one-shot search, and to study the sensitivity of the
NAS method towards these hyperparameters.

Figure 3: Optimizing the hyperparameters of one-shot
optimizers with BOHB on search space 3. Results for
search space 1 and 2 are shown in Figure 16.

To this end, we constructed 3 configura-
tion spaces of increasing cardinality, CS1,
CS2 and CS3 (see Appendix G for de-
tails), which only include hyperparameters
controlling the NAS process. We chose
BOHB [Falkner et al., 2018] (see Appendix
G for details) as the hyperparameter opti-
mization method and DARTS as our NAS
method to be tuned across all configura-
tion spaces, since in our benchmarks it was
more brittle than PC-DARTS and GDAS.
We provide the results in Appendix G.2.

In order to compare the tunability of NAS
methods, we used BOHB to optimize all
of DARTS, PC-DARTS, and GDAS, starting from their respective default hyperparameter settings.
Figure 3 shows the anytime test regret of the architectures found by the respective NAS method’s
configurations tried by BOHB; as the figure shows, PC-DARTS and GDAS start with much more
robust hyperparameter settings, but DARTS can also be tuned to perform as well or better. We note
that carrying out this optimization on NAS-Bench-1Shot1 reduced the time for tuning DARTS from a
simulated 45 GPU days to 1 day on 16 GPUs.

Figure 3 also provides an evaluation of DARTS, GDAS and PC-DARTS compared to the state-of-art
discrete NAS optimizers used by Ying et al. [2019] (such as RL, RE, and HPO methods). Since these
one-shot NAS methods are much faster than black-box methods, it is possible to tune them online
using BOHB and the resulting BOHB-{DARTS, GDAS, PC-DARTS} typically still yields better
performance over time. From this experiment, we make the following observations:

• On all search spaces the architectures BOHB-DARTS found outperformed the architectures found
by the default DARTS configuration by a factor of 7 to 10.

• The found robust configurations typically outperformed the architectures found by state-of-art
discrete NAS optimizers used by Ying et al. [2019] (such as RL, RE, and HPO methods).

4 Conclusion and Future Directions

We proposed NAS-Bench-1Shot1, a set of 3 new benchmarks for one-shot neural architecture search
which allows to track the trajectory and performance of the found architectures computationally
cheaply. Using our analysis framework, we compared state-of-the-art one-shot NAS methods and
inspected the robustness of the methods and how they are affected by different hyperparameters. Our
framework allows a fair comparison of any one-shot NAS optimizer and discrete NAS optimizers
without any confounding factors. We hope that our proposed framework and benchmarks will
facilitate the evaluation of existing and new one-shot NAS methods, improve reproducibility of work
in the field, and lead to new insights on the underlying mechanisms of one-shot NAS.
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A NASBench

NASBench [Ying et al., 2019] is a database of an exhaustive search of all architectures in a constrained
cell-structured space on CIFAR-10 [Krizhevsky, 2009]. To limit the number of architectures in the
search space the authors decided to use the following constraints on the cell:

• 3 operations
– 3x3 convolution
– 1x1 convolution
– 3x3 max-pool

• Number of nodes ≤ 7 (This includes input and output node, therefore 5 choice nodes.)
• At most 9 edges.

Through these constraints the authors evaluated a total of 423k unique, valid graphs in the search
space. Each architecture was trained from scratch three times to give a sense of the variance in the
training. In addition, each architecture was trained for 4, 12, 36 and 108 epochs. For our analysis, we
mainly used the results for models trained for 108 epochs, if not stated otherwise.

B Details on search spaces

In contrast to the search space used in the DARTS paper [Liu et al., 2019] every choice block chooses
its parent rather than its children. Our reason for choosing parents is that it could lead to choice blocks
without an input, which would be an invalid graph. By choosing the reverse evaluation procedure
we can have choice blocks which are not chosen as parents of the output node. We will refer to
these as architectures with loose ends, because disconnected choice blocks do not contribute to the
performance of the cell.
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Table 1: Characteristic information of the search
spaces.

search space
1 2 3

Number of parents

Input 0 0 0
Node 1 1 1 1
Node 2 2 1 1
Node 3 2 2 1
Node 4 2 2 2
Node 5 - - 2
Output 2 3 2

No. architectures w/ loose ends 6240 29160 363648
w/o loose ends 2487 3609 24066

Search space 1 The main characteristic of this
search space is that the number of parents for
each choice block and output has to be exactly
2 (apart from choice block 1 which is only con-
nected to the input). Because of this requirement
one choice block had to be discarded as that
would exceed the requirement to have at most
9 edges. The search space has a size of 6240
architectures with loose ends and 2487 when
not including them. The total distribution of test
error in shown in Figure 4a. It is the smallest
search space discussed in this work.

Search space 2 This search space is related to search space 1 in that it only consists of 4 intermediate
nodes, but in contrast the output has three parents and nodes 1 and 2 only one parent. This increases
the number of architectures in this space compared to search space 1. The test error distribution is
shown in Figure 4b.

Search space 3 All 5 intermediate nodes are used in this search space, making this search space
the largest, but also the search space where each node has on average the least number of parents.
The test error distribution is shown in Figure 4c.

C Optimizers

DARTS [Liu et al., 2019] uses a weighted continuous relaxation over the operations to learn an
architecture by solving a bilevel optimization problem. The training dataset is split in two parts, one
used for updating the parameters of the operations in the one-shot model, and the other to update the
weights appended to operations, that determine the importance of that operation.

For evaluation, we choose the parents of each choice block based on the highest architectural weights
and the number of parents for that choice block given by Table 1. We pick the highest weighted
operation from the choice block.

GDAS [Dong and Yang, 2019] modifies DARTS, such that individual paths are sampled differen-
tiably through each cell using Gumbel-Softmax [Eric Jang and Poole, 2017] to adapt the architecture
weights. This reduces the memory overhead created by DARTS as only the sampled paths have to be
evaluated. GDAS uses the same search space and evaluation procedure as DARTS.

PC-DARTS [Xu et al., 2019] reduces the memory overhead by only evaluating a random fraction
of the channels with the mixed-ops. The authors argue that this also regularizes the search as it
lowers the bias towards weight-free operations such as skip-connect and max-pooling, which are
often preferred early on in DARTS search. In addition to partial channel connections, the authors
propose edge normalization, which adds additional architectural parameters to the edges connecting
to an intermediate node. This is done to compensate for the added fluctuations due to the partial
channel connections. These additional weights are already part of the search spaces we proposed in
this paper.
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Figure 4: Distribution of test error in the search spaces with loose ends.
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Random Search with Weight Sharing (Random WS) [Li and Talwalkar, 2019] randomly sam-
ples architectures from the one-shot model for each training mini-batch and trains only the selected
subset of the one-shot model on that mini-batch. Differently from DARTS, PC-DARTS and GDAS,
Random WS does not require a validation set, since there are no architectural weights that need to be
updated. For evaluation Random WS samples 1000 architectures from the search space and evaluates
each for only a small number of batches on the validation set using the optimized weights of the
one-shot model corresponding to the sub-networks. Then the 5 architectures with the lowest one-shot
validation error are chosen and fully evaluated on the validation set. The overall best architecture is
returned.

ENAS [Pham et al., 2018] similarly to Random WS samples sub-networks of in the one-shot model,
however by means of a recurrent neural network (RNN) controller rather than randomly. As the
search progresses the parameters of the RNN controller are updated via REINFORCE [Williams et al.,
2000] using the validation error of the sampled architectures as a reward. This way the sampling
procedure is handled in a more effective way.

D Hyperparameters

If not stated otherwise the following hyperparameters were used for all our experiments. We used a
batch size of 96 throughout for DARTS, GDAS and PC-DARTS as the search spaces are small enough
to allow it and as this reduces the randomness in the training, which makes the comparison between
optimizers easier. Random WS was trained with a batch size of 64. All other hyperparameters were
adapted from DARTS [Liu et al., 2019].

E Comparison of optimizers over different budgets
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Figure 5: Comparison of different One-Shot Neural Architecture optimizers on the three different
search spaces defined on NAS-Bench-101 over 100 epochs.
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Figure 6: Comparison of DARTS first and second order on the three different search spaces defined
on NAS-Bench-101 for 25 epochs.
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Figure 7: Illustration of the impact that Cutout has on the test regret on NAS-Bench-101 and the
validation error of the one-shot model using DARTS, GDAS and PC-DARTS on search space 3 (Best
viewed in color).

F Robustness of one-shot NAS optimizers

As already observed by Zela et al. [2019], DARTS tends to become more robust when the inner
objective Ltrain in the bi-level optimization procedure has a relatively strong regularization factor
during search. In order to investigate the long term behaviour, for this analysis we chose to run every
search for 100 epochs instead of 50 epochs. Similarly to Zela et al. [2019], we find that enabling
Cutout [DeVries and Taylor, 2017] or increasing the L2 factor for the search model weights, has a
substantial effect on the quality of the solutions found by the NAS optimizers. See Figure 7 for the
Cutout (CO) results and Figure 10 (in the appendix) for the results with different L2 regularization.
Based on these results we observe that:

• As DARTS overfits to the validation set at the end of search for search space 1 and 3, applying
Cutout during search either keeps the solutions to a good local minimum or reduces the overfitting
effect, a finding similar as the one in Zela et al. [2019].

• Interestingly, while Zela et al. [2019] only showed overfitting behavior for DARTS, it may also
occur for GDAS (Figure 12 in the appendix) and PC-DARTS (Figure 13 in the appendix), which
indicates that this might be an intrinsic property of these methods due to the local updates in the
architecture space.

• In PC-DARTS, there is already a strong regularization effect as a result of the partial channel
connectivity, which explains the robust behavior of this optimizer and that its results deteriorate on
average as we increase L2 regularization.

F.1 Cutout results on Search Space 1 and 2

Interestingly, for GDAS the validation error of the one-shot model is closer linked to the test regret on
NASBench as that is the case for DARTS as shown in Figure 8. This is particularly striking in search
space 2 in which the local minimum attained by the one-shot validation error is well aligned with the
minimum of the test regret. It is interesting to note that GDAS very quickly overfits on this search
space, since the validation error increases usually at around 50 epochs. This may be related to the
linearly decreasing temperature schedule for the gumbel-softmax [Eric Jang and Poole, 2017] from
10 to 1 as proposed by Dong and Yang [2019]. As the temperature decreases the operations with
higher architectural weights will be sampled more often leading to overfitting on the architectural
level as demonstrated by the increasing one-shot validation error. Cutout has little impact on the
search phase of GDAS (Figure 8).

For PC-DARTS (Figure 9) cutout regularization helped find better architectures in particular in
search space 3 and 1. This underlines the fact that strong regularization on the architectural level via
partial channel connections can be effectively supported by cutout regularization on the training loss.
Second order optimization as proposed by DARTS has no significant benefit for PC-DARTS and
often decreases the performance.
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(b) Search space 2

Figure 8: Comparison of the effect of using Cutout during architecture search on GDAS for search
space 1 and 2.
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Figure 9: Comparison of the effect of using cutout during architecture search on PC-DARTS for
search space 1 and 2.

F.2 L2 regularization

Increasing the L2 regularization has a positive effect on the found architectures for GDAS in search
space 1 and 2 as shown in Figure 12. However, in search space 3 setting the weight decay to 81e−4

has the effect of making the model unstable.

For PC-DARTS lowering the L2 regularization had overall a positive effect across all search spaces
(Figure 13). However, this made the training also less stable as demonstrated by search space 1
(Figure 13a)
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Figure 10: Illustration of the impact that weight decay has on the test regret on NAS-Bench-101 and
the validation error of the one-shot model using DARTS, GDAS and PC-DARTS on search space 3
(Best viewed in color).
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Figure 11: DARTS first order w/o cutout trained with different levels of L2 regularization for search
space 1 and 2.
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Figure 12: Comparison of the effect of using different values of weight decay during architecture
search on GDAS for search space 1 and 2.
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Figure 13: Comparison of the effect of using different values of weight decay during architecture
search on PC-DARTS for search space 1 and 2.
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F.3 Correlation analysis

Many one-shot NAS methods, such as ENAS [Pham et al., 2018], NAONet [Luo et al., 2018] or
Random WS [Li and Talwalkar, 2019] select the final architecture by means of the one-shot parameters.
In order to assess if this is optimal we computed the correlation between a given architecture’s one-shot
test error and its respective NAS-Bench-101 test error, for all 4 available budgets in NAS-Bench-101
on every 10th search epoch. This analysis was performed for all architectures without loose ends in
each search space. The only exception is ENAS, for which we decided to evaluate the correlation by
sampling 100 architectures (as done by the algorithm after the search has finished to select the one to
retrain from scratch) from the controller instead of evaluating every architecture in the search space.

As shown in Figure 14, there is almost no correlation between the weight sharing ranking and
the true one (Spearman correlation coeff. between -0.25 and 0.3) during search for DARTS, PC-
DARTS, GDAS and Random WS. Only ENAS shows some correlation for search space 2 and some
anticorrelation for search spaces 1 and 3. These results agree with the ones reported by Sciuto et al.
[2019] (who could only do this evaluation on a small search space) and explain the poor performance
of Random WS and ENAS on our benchmarks, since the architectures sampled during evaluation
and ranked according to their one-shot validation error are unlikely to perform well when evaluated
independently. To the best of our knowledge this is the first time that an evaluation of this correlation
is conducted utilizing such a large number of architectures in the search space, namely 24066 different
architectures for search space 3.
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Figure 14: Correlation between the one-shot validation error and the corresponding NAS-Bench-101
test error for each search space. (Best viewed in color).

13



G BOHB details

BOHB [Falkner et al., 2018] is a combination of Bayesian Optimization (BO) and Hyperband (HB)
[Li et al., 2017]. Hyperband uses Success Halving (SH) [Jamieson and Talwalkar, 2016] to stop
poorly performing trainings early. Success Halving starts trainings with an initial budget and advances
the top fraction (1/η) of them to the next stage with η higher budget. Hyperband uses this a subroutine
to evaluate many uniformly at random sampled configurations on small budgets. The budgets and
scaling factors are chosen such that all Success Halving evaluations take approximately the same time.
BOHB combines Hyperband with Bayesian Optimization by using a Tree-Parzen Estimator [Bergstra
et al., 2011] to guide the search towards better configurations. As a result, BOHB performs as well as
Hyperband during early optimization, but samples better configurations once enough samples are
available to build a model.

G.1 Setup

We ran BOHB for 64 iterations of SuccessiveHalving [Jamieson and Talwalkar, 2016] on 16 parallel
workers, resulting in 280 full function evaluations. In our experiments we use the number of epochs
that DARTS runs the architecture search as the fidelity used by BOHB and optimize the validation
error after 108 epochs of training queried from NAS-Bench-101. Namely, we use min_budget = 25
epochs, max_budget = 100 epochs and η = 2 in BOHB. Note that this is only the number of epochs
used for the DARTS architecture search. Additionally, we never use the validation set split used to
evaluate the individual architectures in NAS-Bench-101 during the architecture search. Therefore,
DARTS will use 20k examples for training and 20k for validation. The x-axis in Figures 15, 16, 17,
18 shows the simulated wall-clock time: tsim = tsearch + ttrain, where tsearch is the time spent
during search by each DARTS configuration and ttrain is the training time for 108 epochs (queried
from NAS-Bench-101) of the architectures selected by DARTS.

We build 3 configuration spaces with different cardinality and which include hyperparameters
affecting the DARTS search process. The spaces are as follows:

1. CS1 = {L2, CO_prob}
2. CS2 = {L2, CO_prob, lr}
3. CS3 = {L2, CO_prob, lr, moment, CO_len, batch_size, grad_clip, arch_lr, arch_L2}

G.2 Results

(a) Search space 1 (b) Search space 2 (c) Search space 3

Figure 15: Test regret of architectures found with DARTS (1st order) configurations sampled
by BOHB on CS1. All the lines except the BOHB-DARTS one show the mean±std of the best
architecture from 500 search repetitions (Best viewed in color).

Interestingly, optimizing on CS2 led to not only a more robust configuration of DARTS, but also in
outperforming a state-of-the-art discrete NAS optimizer such as Regularized Evolution (RE) [Real
et al., 2019]. The found solutions by BOHB also outperform every other one-shot optimizer used
throughout this paper with their default settings. Including the learning rate in the configuration
space was crucial to achieve such a performance. Figure 16 shows the results when running BOHB
with the same settings on CS1. Note that none of the sampled configurations outperforms RE. On
the other hand, increasing the cardinality of the configuration space requires many more samples to
build a good model. Figure 17 shows the results when optimizing with BOHB on CS3. Even though
the learning rate was inside this space, again none of the sampled configurations is better than the
discrete NAS optimizers.
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(a) Search space 1 (b) Search space 2

Figure 16: Test regret of architectures found with DARTS (1st order) configurations sampled by
BOHB on CS2. All the lines except BOHB-DARTS, BOHB-GDAS and BOHB-PC-DARTS show
the mean±std of the best architecture from 500 search repetitions (Best viewed in color).

(a) Search space 1 (b) Search space 2

Figure 17: Analogous to Figure 15, with the only difference being that here we optimize on CS3.

G.3 Transferability between spaces.

The following Table 2 shows the performance of the best found configuration on search space 3 for 50
epochs by BOHB when transferred to search spaces 1 and 2. The results show the mean and standard
deviation of the architectures found by 6 independent search runs with the respective optimizers. We
can see that there is no clear pattern on what is transferable where.

H Hyperparameter importance

To better understand the configuration space which we evaluated with BOHB we use functional
analysis of variance (fANOVA) [Hutter et al., 2014]. The idea is to assess the importance of individual
hyperparameters by marginalizing performances over all possible values other hyperparameters could

Table 2: Results of architectures found on search space 1 and 2 with the best found configuration for
50 epochs by BOHB on search space 3.

Optimizer Test regret
Search space 1 Search Space 2

DARTS Default config. 1.252e-2 ± 0.0 0.864e-2 ± 0.023e-2
Transferred config. 1.045e-2 ± 0.171e-2 0.992e-2 ± 0.211e-2

GDAS Default config. 1.252e-2 ± 0.0 0.871e-2 ± 0.0
Transferred config. 3.093e-2 ± 3.975e-2 0.831e-2 ± 0.045e-2

PC-DARTS Default config. 1.104e-2 ± 0.088e-2 1.133e-2 ± 0.404e-2
Transferred config. 5.843e-2 ± 4.118e-2 0.992e-2 ± 0.087e-2
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(a) Search space 1 (b) Search space 2

Figure 18: Test regret of architectures found with DARTS (2nd order) configurations sampled by
BOHB on CS2.

have taken. The marginalization estimates are determined by a random forest model which was
trained on all configurations belonging to specific budgets during the BOHB optimization procedure.

Figure 19 shows the interaction between the Cutout (CO) and L2 factor when optimizing on CS2,
DARTS 1st order, for search space 1, 2 and 3. It should be noted that the best found configuration
involves at least one relatively high value of one of the regularizers in CS2.

(a) SS 1, Budget: 25 epochs

(b) SS 1, Budget: 50 epochs

(c) SS 1, Budget: 100 epochs

(d) SS 2, Budget: 25 epochs

(e) SS 2, Budget: 50 epochs

(f) SS 2, Budget: 100 epochs

(g) SS 3, Budget: 25 epochs

(h) SS 3, Budget: 50 epochs

(i) SS 3, Budget: 100 epochs

Figure 19: Parameter importance for two hyperparameters, Cutout (CO) and L2 regularization (CS2)
across different training epochs and search spaces (SS).
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