
NASIB: Neural Architecture Search withIn Budget

Abhishek Singh∗

MIT Media Labs
abhi24@mit.edu

Anubhav Garg
Cisco Systems

anubhgar@cisco.com

Jinan Zhou
Cisco Systems

jinazhou@cisco.com

Shiv Ram Dubey
IIIT Sri City

srdubey@iiits.in

Debojyoti Dutta
Cisco Systems

dedutta@cisco.com

Abstract

We propose a new approach for Neural Architecture Search, called NASIB, which
adapts and attunes to the computation resources (budget) available by varying the
exploration vs exploitation trade-off. We reduce the expert bias by searching over
an augmented search space by introducing Superkernels. Our method can yield
better networks for different computation resources and different domains beyond
image classification of natural images, where one might lack bespoke architecture
motifs and domain expertise. We show, on CIFAR10, that it is possible to search
over a space that has 12x more candidate operations than the traditional prior art
in just 1.5 GPU days, while reaching close to state of the art accuracy. While our
method searches over an exponentially larger search space, it could lead to novel
architectures that require lesser domain expertise, compared to the majority of the
existing methods.

1 Introduction

Neural Architecture Search (NAS) embodies a wide variety of techniques to determine the optimal
neural network architecture based on a variety of constraints while optimizing for one or more
objectives (Zoph & Le (2017); Baker et al. (2016); Tan et al. (2018); Dong et al. (2018); Cai et al.
(2019)). However, in the current form, NAS has the following two limitations which inhibits it from
getting used across heterogeneous platforms and diverse tasks:

1. The search method is designed with the assumption that the user will run it till convergence.
It is not clear how to leverage these methods when the computational budget for performing
architecture search is significantly lower or higher than that used by such methods.

2. The search space used is quite narrow (relatively) and is built on already optimal structural
decisions, hence does not provide any significant benefit over a random search.

In this paper, we propose a simple, intuitive and effective solution to both the problems using a
common framework, called NASIB and present a trade-off between the computational budget and
exploration over a vast space of neural network architectures. Unlike the traditional NAS frameworks
which start with a pre-filtered fixed search space (where the filtering is done by domain experts),
we start with an unbiased search space by considering a huge space of various possible candidate
operations (e.g., for CNNs we search over all possible kernels with all combinations of kernel height
and width less than 10, which amounts to 81 different kernels at every layer) and dynamically reduce
it by decreasing the sampling probability of the ineffective operations. We propose an architecture
design method which searches over an exponentially larger search space, requires lesser domain

∗Work done while at Cisco

3rd Workshop on Meta-Learning at NeurIPS 2019, Vancouver, Canada.



expertise, and present an algorithm that performs architecture search under a given budget by adapting
to the computation resources available. We empirically demonstrate superiority of the proposed
method over existing methods by searching over a space having roughly 12X times more candidate
operations than the majority of the recent search methods under same computation budget without
any compromise on the performance of the discovered architecture. To ensure the efficiency of our
framework under such a huge set of structural decisions, we use computational budget available for
search by reducing the rate of dynamic pruning of the search space since such pruning rates affect the
amount of resources consumed, a proxy for the cost. This adaptive pruning is the trade-off between
exploration and exploitation. Related work has been discussed in Section D of the Appendix.

2 NASIB

2.1 From Computation Resources to Epochs

One key aspect of this work is to map available computation resources in a quantitative way which
can be utilized by the search algorithm. Different GPUs exhibit significantly different computation
speeds and CPU speed, memory access, interconnection network topology and many more interwoven
components are also a key factor in the overall speed which need to be taken into account. Therefore,
for our search algorithm to adapt to the available computation resources, a comprehensive search
space would be required. However, from an end user’s perspective, it is relatively convenient to
specify only the number of hours/days and provide the whole system/cluster as a black box to the
search algorithm. Hence, rather than developing a complex mapping of computation resources, we
calculate total number of epochs available as total gpu days/time for one epoch.

2.2 Differentiable Architecture Search

Algorithm 1 NASIB - Neural Architecture Search withIn Budget
total epochs = GPU days available / compute time for single epoch()

Initialize the base network with superkernel at every layer
while epoch < total epochs (budget) do

for each layer ` in the network do
1. current policy = sample from P1 and P2 using Bernoulli distribution
if current policy = P1 then

sample candidate operations based on distribution from eq. 3
else

sample candidate operations based on distribution from eq. 4
end
2. Update weights w based on eq. 1
3. Update architecture parameters α based on eq. 2
4. Update sampling probability for P1

end
end
For each layer, retain the operations with highest α.

The proposed method is built upon the existing differentiable architecture search methods (Liu
et al. (2018); Cai et al. (2019); Xie et al. (2019)). We sample two candidate operations at
every layer as described in Cai et al. (2019) to ensure the network fits on GPU memory.

x` =

N∑
j=1

O`,j(x`−1) (1) x` =

N∑
j=1

exp(α`
j)∑N

i=1 exp(α
`
i)
O`,j(x`−1) (2)

Here, O`,j is the jth candidate operation at the layer `, x` is the output of the layer ` and N is
the total number of candidate operations. All operations are assigned a single scalar α, also called
architecture parameters. The search method runs in two different modes, training of weights is done
by performing one step of forward pass and backward pass using eq. 1 on the training data and then
after completing one epoch, architecture parameters are trained using eq. 2 on the validation data. In
both the steps, the value of N=2 even though the number of candidate operations are higher as we do
sampling of two candidate operations as described in Cai et al. (2019).

2



0 20 40

0.4

0.6

Epochs

V
al

id
at

io
n

A
cc

ur
ac

y
ENAS on bigger search space

Original ENAS

Figure 1: Mean accuracy with standard de-
viation for the two set of experiments on the
ENAS implementation. The green curve cor-
responds to the accuracy obtained with a big-
ger search space and the orange curve corre-
sponds to the running of the original ENAS.

0 200 400

20

40

60

80

Epochs

V
al

id
at

io
n

A
cc

ur
ac

y

50 Epochs
150 Epochs
250 Epochs
500 Epochs

Figure 2: Search progress under different
computational budget on CIFAR10 dataset
with superkernel search space. We keep all
hyperparameters same except the computa-
tional budget, which is provided in such a
way that they get mapped to the mentioned
value of target epochs.

2.3 Policy based Sampling from Search Space

To account for the exploration and exploitation phase during the search, we use two policies P1 and P2,
respectively. For exploration, we encourage sampling of the underexplored operations by storing their
sampling frequency. Under the policy P1 and any given layer `, the sampling probability pi` of a oper-
ation i is computed by calculating the negative softmax of previously sampled frequencies as per eq. 3,

pi` =
exp(−freq`[i])∑N
j=1 exp(−freq`[j])

(3) pi` =
exp(α`

i/λ)∑N
j=1 exp(α

`
j/λ)

(4)

The negative sign in front of all the sampled frequency numbers allows to assign higher probability
to the operations with lower sampling frequency in the previous training. Hence, it encourages the
exploration of unexplored operations. The reasoning behind using softmax of frequencies instead of
random sampling or upper confidence bound, commonly used methods in reinforcement learning for
exploration, is to explicitly encourage those operations which have been sampled with low frequency
before to encourage the diversity in the architecture search. For the policy P2, an operation is sampled
with probability based on the softmax of architecture parameters, α as shown in eq. 4. Since the
policy P2 is expected to be purely exploitative in nature, we keep the value of λ to be very low. P1 is
sampled with exponentially decaying probability p1, hence, even though we start with a big search
space, the search space gets pruned softly as we proceed in the exploitation phase guided by the
policy P2.

2.4 Searching for CNN Architectures

In order to reduce the expert bias in the design of the search space, we introduce the notion of
superkernel. A superkernel of size m can be viewed as a square having size m which encompasses
all possible combinations of rectangles of dimensions i× j,∀i, j ≤ m. Thus, a superkernel of size m
would result in m2 different rectangles. All such rectangles can be viewed as kernels of dimensions
i × j. We use macro search space for architecture search and at every layer we utilize a single
superkernel. Therefore, at every layer, we allow m2 candidate operations to be searched over, but at
any given time only two operations are sampled from the superkernel which reduces the memory
requirement. The overall search space for the architecture search with superkernel is m2∗l while for
other existing methods it is nl. Here l is the number of layers, n is number of candidate operations and
m is superkernel size, and typical values for them are 12, 5, and 9 respectively. Detailed experimental
setup can be found in section A.3 of Appendix.

3 Experiments and Results

We perform several sets of experiments to test our hypothesis and demonstrate the efficacy of the
proposed method. All experiments are performed on CIFAR10 dataset using Nvidia V100 GPU.
To test our hypothesis on leveraging more number of candidate operations, we use the same code
base of ENAS (Pham et al. (2018)) and simply increase the search space by adding more number of

3



Table 1: Comparison of performance on two standard benchmarks. Search time is reported in GPU
days. #OPs refers to the number of candidate operations in the search space.

Network Dataset Params Test error #OPs Search time

NASNet-v3 (Zoph & Le (2017)) CIFAR10 37.4M 3.65 13 1800
AmoebaNet-B (Real et al. (2017)) CIFAR-10 34.9M 2.13 19 3150
PNAS (Liu et al. (2017)) CIFAR10 3.2M 3.41 8 225
ENAS (Pham et al. (2018)) CIFAR-10 4.6M 3.54 6 0.45
DARTS (Liu et al. (2018)) CIFAR-10 4.6M 2.76 7 4
NAO (Luo et al. (2018)) CIFAR-10 128M 2.07 11 200
ProxylessNAS (Cai et al. (2019)) CIFAR-10 5.7M 2.08 6 8.3
SNAS (Xie et al. (2019)) CIFAR-10 2.85M 2.8 7 1.5
Graph Hypernetworks (Zhang et al. (2019)) CIFAR-10 2.84M 5.7 8 0.84
NASIB CIFAR10 6.71M 3.57 81 1.5

convolution filters with varying kernel sizes. All hyper-parameters and other experimental details are
kept exactly the same as provided in their publicly released code base for performing macro search on
CIFAR10 dataset. As shown in Figure 1, there is a significant increase (by a margin of 10%) in the
accuracy of ENAS with extended search space throughout the validation phase of architecture search
without any change in other hyperparameters and wall clock time. Thus we empirically observe that
the diversity in the search space is useful in obtaining high performance.
Similar to the study performed in Xie et al. (2019) over the relative performance of architectures
during the search phase, we also compare two of our workloads in Figure 3. To provide a fair
comparison we reduce the search space of NASIB-1 to match it with commonly known methods.
As it can be observed, NASIB-1 outperforms few other methods when trained with a small search
space similar to the other methods, we attribute this to efficient utilization of computational budget.
Note that while the curve corresponding to DARTS converges faster than NASIB-1, Xie et al. (2019)
showed that there is a strong inconsistency with the performance of its child network. We also plot the
NASIB-2 curve which shows efficient utilization of budget under a significantly larger search space.

0 50 100 150 200
0

20

40

60

80

Epochs

V
al

id
at

io
n

A
cc

ur
ac

y

DARTS
ENAS
SNAS

NASIB-1
NASIB-2

Figure 3: Here, NASIB-1 refers to the architecture
search performed using the widely used narrow
search space and NASIB-2 refers to the search
performed using superkernels.

We show how our method adapts to the compu-
tation resources available for the NAS process
by searching for architectures on CIFAR10 for
four different scenarios. All four scenarios have
been formed by allocating different computa-
tion budget for performing the search. In fig-
ure 2, we plot validation accuracy as the search
progresses for all four workloads. It can be ob-
served from the plot that slope of the curve de-
creases as the workloads approach close to their
target epochs and this slope varies significantly
for all four different workloads which means
lower the number of epochs available, the model
spends relatively lesser time in exploring the
search space and hence converges quickly by en-
tering the exploitation phase. We compare our
result with other widely known NAS methods
in Table 1. The proposed method uses relatively
bigger search space of candidate operations at every layer in the architecture. We fine tune our
discovered model and retrain it. We observe that while the performance of architectures during search
is substantially different for different methods, this difference does not have any correlation after
the fine tuning of the architectures. We attribute this to the use of other hyperparameters and clever
training tricks which provide greater contribution to the re-tuned training of networks.

4 Conclusion

In this paper we have two insights. First we perform architecture search over a computational budget
and second, we search over a good representative search space instead of an ad-hoc selection of few
candidate operations. This paper could lead to several new directions in NAS and there are different
ways in which this work can be extended e.g. combining the superkernel based search space with the

4



multi-objective search could discover interesting architectures. Next, we could leverage the same
insight in searching for the cell based architectures like RNNs and micro search space for CNNs. We
believe that this work would bring a different perspective to the community working in NAS and
initiate the discussion about the search space and budget oriented architecture search.

References

Baker, B., Gupta, O., Naik, N., and Raskar, R. Designing neural network architectures using
reinforcement learning. CoRR, abs/1611.02167, 2016. URL http://arxiv.org/abs/1611.
02167.

Cai, H., Zhu, L., and Han, S. ProxylessNAS: Direct neural architecture search on target task
and hardware. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HylVB3AqYm.

Dong, J.-D., Cheng, A.-C., Juan, D.-C., Wei, W., and Sun, M. Ppp-net: Platform-aware progressive
search for pareto-optimal neural architectures, 2018. URL https://openreview.net/forum?
id=B1NT3TAIM.

Liu, C., Zoph, B., Shlens, J., Hua, W., Li, L., Fei-Fei, L., Yuille, A. L., Huang, J., and Murphy, K.
Progressive neural architecture search. CoRR, abs/1712.00559, 2017. URL http://arxiv.org/
abs/1712.00559.

Liu, H., Simonyan, K., and Yang, Y. DARTS: Differentiable Architecture Search. ArXiv e-prints,
June 2018.

Luo, R., Tian, F., Qin, T., and Liu, T. Neural architecture optimization. CoRR, abs/1808.07233, 2018.
URL http://arxiv.org/abs/1808.07233.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. Efficient neural architecture search via
parameter sharing. CoRR, abs/1802.03268, 2018. URL http://arxiv.org/abs/1802.03268.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Le, Q. V., and Kurakin, A. Large-scale
evolution of image classifiers. volume abs/1703.01041, 2017. URL http://arxiv.org/abs/
1703.01041.

Tan, M., Chen, B., Pang, R., Vasudevan, V., and Le, Q. V. Mnasnet: Platform-aware neural architecture
search for mobile. CoRR, abs/1807.11626, 2018. URL http://arxiv.org/abs/1807.11626.

Xie, S., Zheng, H., Liu, C., and Lin, L. SNAS: stochastic neural architecture search. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
rylqooRqK7.

Zhang, C., Ren, M., and Urtasun, R. Graph hypernetworks for neural architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=rkgW0oA9FX.

Zoph, B. and Le, Q. V. Neural architecture search with reinforcement learning. In ICLR 2017, 2017.
URL https://arxiv.org/abs/1611.01578.

5

http://arxiv.org/abs/1611.02167
http://arxiv.org/abs/1611.02167
https://openreview.net/forum?id=HylVB3AqYm
https://openreview.net/forum?id=HylVB3AqYm
https://openreview.net/forum?id=B1NT3TAIM
https://openreview.net/forum?id=B1NT3TAIM
http://arxiv.org/abs/1712.00559
http://arxiv.org/abs/1712.00559
http://arxiv.org/abs/1808.07233
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1703.01041
http://arxiv.org/abs/1703.01041
http://arxiv.org/abs/1807.11626
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rkgW0oA9FX
https://openreview.net/forum?id=rkgW0oA9FX
https://arxiv.org/abs/1611.01578

	Introduction
	NASIB
	From Computation Resources to Epochs
	Differentiable Architecture Search
	Policy based Sampling from Search Space
	Searching for CNN Architectures

	Experiments and Results
	Conclusion

