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Abstract

We introduce ES-MAML, a new framework for solving the model agnostic meta
learning (MAML) problem. Existing algorithms for MAML are based on policy
gradients. We show how MAML can be solved using Evolution Strategy (ES)
algorithms, which are conceptually simpler and easier to implement than policy
gradient-based methods. Moreover, many techniques for improving the perfor-
mance and exploration of ES methods become applicable to MAML. We show
empirically that ES-MAML is competitive with existing methods and often yields
better adaptation with fewer queries.

1 Introduction

We assume that the reader is familiar with model agnostic meta learning (MAML) [1, 2], an approach
for few-shot learning on multiple tasks. To introduce our notation, we have a collection of tasks
parameterized by T , and each task has an associated reward function fT and adaptation operator UT .
The goal of MAML is to find a meta-policy θ∗ such that adapting θ∗ is on average successful across
all tasks; that is, we aim to maximize M(θ) = ET fT (UT (θ)). Existing algorithms for MAML are
based on policy gradients. We propose an alternate paradigm: evolution strategies (ES) for MAML.

ES [3], or alternately random search [4], is a family of zero-order algorithms for optimizing potentially
nonsmooth functions f(θ) based on the Gaussian smoothing f̃σ(θ) = Eg[f(x + σg)], where g ∼
N (0, I). It can be shown that f̃σ is differentiable, and its gradient can be expressed as

∇f̃σ(θ) =
1

σ
Eg[f(x+ σg)g] (1)

which can be estimated by a simple Monte Carlo algorithm (Algorithm 1). This allows us to estimate
stochastic gradients of f̃σ(θ) as an input to a stochastic first-order method.

One major disadvantage of policy gradient-based MAML (henceforth, PG-MAML) is the need to
evaluate second derivatives of the reward. The standard adaptation operator UT is a single gradient
step, i.e UT (θ) = θ + α∇fT (θ). As a result, the gradient ∇M(θ) of the MAML function involves
the Hessian∇2fT (θ), which is difficult to compute. Multiple authors [5, 6] have pointed out that the
original implementation of MAML incorrectly estimates the Hessian. Improvements to the original
MAML include ProMP [5], which introduces a new low-variance curvature (LVC) estimator for
the Hessian, and T-MAML [6], which adds control variates to reduce the variance of the unbiased
DiCE estimator [7]. However, these are not without their drawbacks: the proposed solutions are
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complicated, the variance of the Hessian estimate remains problematic, and LVC introduces an
unknown estimator bias.
ESGrad (f, θ, n, σ)

inputs :function f , policy θ, number of perturbations n, precision σ
Sample n i.i.d N(0, I) vectors g1, . . . , gn;
return 1

nσ

∑n
i=1 f(θ + σgi)gi;

Algorithm 1: Monte Carlo ES Gradient

In contrast, we will derive an algorithm for MAML based on ES which requires only zero-order
evaluations, eliminating the need to explicitly compute gradients or Hessians. This has several
advantages:

1. It enables us to use novel adaptation operators UT which are either nonsmooth, or intractable
to differentiate.

2. We can use deterministic policies instead of stochastic policies (required in PG). Empirical
experiments from robotics suggest that the action randomization of stochastic policies can
often be risky when adapting on real hardware. In particular, we consider population search
operators [8] and DPP ES [9], which encourage exploratory behavior and are effective for
tasks with sparse rewards.
Empirically, ES-MAML also seems to be superior in training linear or compact policies
than PG-MAML.

3. Policy gradients are computationally expensive and require careful hyperparameter tuning
(see Alpha-MAML [10]), or annealing of learning rates (e.g [11]) to be effective.

Aside from PG-MAML, for which there is extensive literature, and our proposed ES-MAML, there are
also biologically-inspired methods for meta-learning [12, 13]. We wish to emphasize that despite the
similar names, our algorithm is fundamentally different from “Evolvability ES” [13]. Our algorithm
solves the standard MAML problem, whereas [13] focuses on a loosely-related notion of “behavioral
diversity”, and our algorithm is derived from rigorous smoothings and estimations.

2 ES-MAML

Suppose that we can evaluate (or approximate) fT and UT , but fT , UT may be nonsmooth or
their gradients may be intractable. We consider the Gaussian smoothing M̃ of the MAML reward
ET fT (UT (θ)), and optimize M̃ using ES. The gradient∇M̃ is given by

EgET [
1

σ
fT (UT (θ + σg))g] (2)

and can be estimated by jointly sampling over (τ, g) and evaluating fT (UT (θ+σg)). This algorithm
is specified in Algorithm 2, and we refer to it as (zero-order) ES-MAML.

Data: initial policy θ0, meta step
size β

for t = 0, 1, . . . do
Sample n tasks T1, . . . , Tn and
n i.i.d Gaussian perturbations
g1, . . . , gn;

foreach (τi, gi) do
vi ← fTi(UTi(θt + σgi))

end
θt+1 ← θt +

β
σn

∑n
i=1 vigi

end
Algorithm 2: Zero-Order ES-
MAML (general adaptation operator
UT )

Data: initial policy θ0, adaptation step size α,
meta step size β, number of queries K

for t = 0, 1, . . . do
Sample n tasks T1, . . . , Tn and n i.i.d
Gaussian perturbations g1, . . . , gn;

foreach (Ti, gi) do
d(i) ← ESGRAD(fTi , θt+σgi,K, σ);

θ
(i)
t ← θt + σgi + αd(i);
vi ← fT (θ

(i)
t );

end
θt+1 ← θt +

β
nσ

∑n
i=1 vigi;

end
Algorithm 3: Zero-Order ES-MAML
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The adaptation operator we consider most often is the one-step task gradient. Since fT is permitted
to be nonsmooth in our setting, we use the adaptation operator UT (θ) = θ + α∇f̃T (θ); that is, the
gradient taken is of the smoothing f̃T . Expanding the definition of M̃ , the gradient of the smoothed
MAML is then given by

∇J̃σ(θ) =
1

σ
E T∼P(T )
g∼N (0,I)

[
fT
(
θ + σg +

1

σ
Eh∼N (0,I)[f

T (θ + σg + σh)h]

)
g

]
. (3)

We describe an algorithm for this case in Algorithm 3, where the adaptation operator UT is itself
estimated using ES in the inner loop.

We can also derive an algorithm analogous to PG-MAML by applying a first-order method to
the MAML reward ET f̃T (θ + α∇f̃T (θ)) directly. The gradient is then given by ∇M(θ) =

ET∇f̃T (θ + α∇f̃T (θ))(I + α∇2f̃T (θ)), which corresponds to e.g. equation (3) in [6] when
expressed in terms of policy gradients. Every term in this expression has a simple Monte Carlo
estimator. We discuss this algorithm (Algorithm 5) in greater detail in Appendix A.1. This formulation
can be viewed as the “MAML of the smoothing”, compared to the “smoothing of the MAML”
which is the basis for Algorithm 2. It is the additional smoothing present in equation 2 which
eliminates the gradient of UT (and hence, the second derivatives of fT ). We find this to be a
significant advantage of Algorithm 2 over more specialized algorithms such as Algorithm 5.

3 Experiments

We write K for the number of queries (rollouts) used by the adaptation operator; an algorithm is
typically superior if it can find a strong meta-policy that can adapt with smaller K.

3.1 Exploration: Four Corners

The four corners benchmark was introduced in [5] to demonstrate the weaknesses of exploration
in PG-MAML. An agent on a 2D square receives reward for moving towards a selected corner of
the square, but only observes rewards once it is sufficiently close to the target corner, making the
reward sparse. An effective exploration strategy for this set of tasks is for the meta-policy θ∗ to travel
in circular trajectories to observe which corner produces rewards; however, for a single policy to
produce this exploration behavior is difficult.

Figure 1: (a) ES-MAML and PG-MAML exploration behavior. (b) Different exploration methods
when K is limited (K = 5 plotted with lighter colors) or large penalties are added on wrong goals.

(a) (b)

In Figure 1, we demonstrate the behavior of ES-MAML on the four corners problem. When K = 20,
the same number of rollouts for adaptation as used in [5], the basic version of Algorithm 3 is able
to correctly explore and adapt to the task by finding the target corner. Moreover, it does not require
any modifications to encourage exploration, unlike PG-MAML. We further used K = 10, 5, which
caused the performance to drop. For better performance in this low-information environment, we
experimented with two different adaptation operators UT in Algorithm 2. The hill climbing (HC)
operator is a type of population search which randomly perturbs the best policy observed, queries the
perturbed policy, and records the best observed policy. The DPP-ES operator [9] uses an enhanced
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ES gradient which generates the perturbations gi from DPP sampling [14, 15] instead of using i.i.d
normal perturbations. ES-MAML was able to train with both operators, and we found hill climbing
to be particularly successful for solving this task with limited information. This shows the utility of
ES-MAML in handling nonsmooth operators such as HC.

3.2 Good Adaptation with Compact Architectures

One of the main benefits of ES is due to its ability to train compact linear, deterministic policies. We
demonstrate this on several benchmark MAML problems in the HalfCheetah and Ant environments
in Figure 2. In contrast, [16] observed that PG-MAML was successful with relatively large neural
networks. We find that on the Forward-Backward and Goal-Velocity MAML benchmarks, ES-
MAML is consistently able to train successful linear policies faster than deep networks. We also
find again, for the Forward-Backward Ant problem, that ES-MAML with the new HC operator is
the most performant. Using more compact policies also directly speeds up ES-MAML, since fewer
perturbations are needed for gradient estimation.

Figure 2: The Forward-Backward and Goal-Velocity MAML problems. We compare the performance
for Linear (L) policies and policies with one hidden layer (H) for different numbers of queries K.

3.3 Exploration with Deterministic Policies

We find that deterministic policies often produce more stable behavior than the stochastic policies
required for PG, where randomized actions in unstable environments can lead to catastrophic out-
comes. In PG, this is often mitigated by reducing the entropy bonus, but this has an undesirable side
effect of reducing exploration. In contrast, ES-MAML explores in parameter space, which mitigates
this issue. To demonstrate this, we use the “Biased-Sensor CartPole” environment from [17]. This
environment has unstable dynamics and sparse rewards, so it requires exploration but is also risky.
We see in Figure 3 that ES-MAML is able to stably maintain the maximum reward (500). We also
include results in Figure 3 from two other environments, Swimmer and Walker2d, for which it is
known that PG is surprisingly unstable, and ES yields better training [4].

Figure 3: Stability comparisons of ES and PG on the Biased-Sensor CartPole and Swimmer, Walker2d
environments. (L) denotes linear policies, (H) denotes policies with one hidden layer, and (HH)
denotes policies with two hidden layers.

4 Conclusions and Further Discussion

We have presented a new algorithm for MAML based on ES algorithms. The ES approach avoids the
problems of Hessian estimation which necessitated complicated alterations in PG-MAML [5, 6] and
is easy to implement. Further extensions and analysis are shown in the Appendix.
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A.1 First-Order ES-MAML

A.1.1 Algorithm

Suppose that we first apply Gaussian smoothing to the task rewards and then form the MAML
problem, so we have J(θ) = ET∼P(T )f̃

T (U(θ, T )). The function J is then itself differentiable, and
we can directly apply first-order methods to it. The classical case where U(θ, T ) = θ + α∇f̃T (θ)
yields the gradient

∇J(θ) = ET∼P(T )∇f̃T (θ + α∇f̃T (θ))(I+ α∇2f̃T (θ)). (4)

This is analogous to formulas obtained in e.g [6] for the policy gradient MAML. We can then
approximate this gradient as an input to stochastic first-order methods. An example with standard
SGD is shown in Algorithm 5.

ESHess (f, θ, n, σ)
inputs :function f , policy θ, number of

perturbations n, precision σ
Sample i.i.d N (0, I) vectors g1, . . . ,gn;
v ← 1

n

∑n
i=1 f(θ + σgi);

H0 ← 1
n

∑n
i=1 f(θ + σgi)gig

T
i ;

return 1
σ2 (H

0 − v · I);
Algorithm 4: Monte Carlo ES Hessian

Data: initial policy θ0, adaptation step size α,
meta step size β, number of queries K

for t = 0, 1, . . . do
Sample n tasks T1, . . . , Tn;
foreach Ti do

d
(i)
1 ← ESGRAD(fTi , θt,K, σ);

H(i) ← ESHESS(fTi , θt,K, σ);
θ
(i)
t ← θt + α · di;
d
(i)
2 ← ESGRAD(fTi , θ

(i)
t ,K, σ);

end
θt+1 ← θt +

β
n

∑n
i=1(I+ αH(i))d

(i)
2 ;

end
Algorithm 5: First Order ES-MAML

A central problem, as discussed in [5, 6] is the estimation of∇2f̃T (θ). However, a simple expression
exists for this object in the ES setting; it can be shown that

∇2f̃T (θ) =
1

σ2
(Eh∼N (0,I)[f

T (θ + σh)hhT ]− f̃T (θ)I]. (5)

Note that for the vector h, hT is the transpose (and unrelated to tasks T ). A basic MC estimator is
shown in Algorithm 4. Given an independent estimator for ∇f̃T (θ + α∇f̃T (θ)), we can then take
the product to obtain an estimator for∇J .

A.1.2 Experiments with First-Order ES-MAML

Unlike zero-order ES-MAML (Algorithm 3), the first-order ES-MAML explicitly builds an ap-
proximation of the Hessian of fT . Given the literature on PG-MAML, we expect that estimating
the Hessian ∇2f̃T (θ) with Algorithm 4 without any control variates may have high variance. We
compare two variants of first-order ES-MAML:

1. The full version (FO-Hessian) specified in Algorithm 5.

2. The ‘first-order approximation’ (FO-NoHessian) which ignores the term I+α∇2f̃T (θ) and
approximates the MAML gradient as ET∼P(T )∇f̃T (θ + α∇f̃T (θ)). This is equivalent to
setting H(i) = 0 in line 5 of Algorithm 5.

The results on the four corner exploration problem (Section 3.1) and the Forward-Backward Ant,
using Linear policies, are shown in Figure A1. On Forward-Backward Ant, FO-NoHessian actually
outperformed FO-Hessian, so the inclusion of the Hessian term actually slowed convergence. On the
four corners task, both FO-Hessian and FO-NoHessian have large error bars, and FO-Hessian slightly
outperforms FO-NoHessian.

There is conflicting evidence as to whether the same phenomenon occurs with PG-MAML; [1, §5.2]
found that on supervised learning MAML, omitting Hessian terms is competitive but slightly worse
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Figure A1: Comparisons between the FO-Hessian and FO-NoHessian variants of Algorithm 5.

than the full PG-MAML, and does not report comparisons with and without the Hessian on RL
MAML. [5, 6] argue for the importance of the second-order terms in proper credit assignment, but
use heavily modified estimators (LVC, control variates; see Algorithm 3) in their experiments, so the
performance is not directly comparable to the ‘naive’ estimator in Algorithm 4. Our interpretation is
that Algorithm 4 has high variance, making the Hessian estimates inaccurate, which can slow training
on relatively ‘easier’ tasks like Forward-Backward walking but possibly increase the exploration on
four corners.

We also compare FO-NoHessian against Algorithm 3 on Forward-Backward HalfCheetah and Ant
in Figure A2. In this experiment, the two methods ran on servers with different number of workers
available, so we measure the score by the total number of rollouts. We found that FO-NoHessian was
slightly faster than Algorithm 3 when measured by rollouts on Ant, but FO-NoHessian had notably
poor performance when the number of queries was low (K = 5) on HalfCheetah, and failed to reach
similar scores as the others even after running for many more rollouts.

Figure A2: Comparisons between FO-NoHessian and Algorithm 3, by rollouts

.

A.2 Handling Estimator Bias

Since the adapted policy U(θ, T ) generally cannot be evaluated exactly, we cannot easily obtain
unbiased estimates of fT (U(θ, T )). This problem arises for both PG-MAML and ES-MAML.

We consider PG-MAML first as an example. In PG-MAML, the adaptation operator is U(θ, T ) =
θ + α∇θEτ∼PT (τ |θ)[R(τ)]. In general, we can only obtain an estimate of ∇θEτ∼PT (τ |θ)[R(τ)] and
not its exact value. However, the MAML gradient is given by

∇θJ(θ) = ET ∼P(T )[Er′∼PT (τ ′|θ′)[∇θ′ logPT (τ ′|θ′)R(τ ′)∇θU(θ, T )]] (6)

which requires exact sampling from the adapted trajectories τ ′ ∼ PT (τ ′|U(θ, T )). Since this is
a nonlinear function of U(θ, T ), we cannot obtain unbiased estimates of ∇J(θ) by sampling τ ′
generated by an estimate of U(θ, T ).
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In the case of ES-MAML, the adaptation operator is U(θ, T ) = θ + α∇f̃(θ, T ) = Ehu(θ, T ;h) for
h ∼ N (0, I), where u(θ, T ;h) = θ + α

σ f
T (θ + σh)h. Clearly, fT (u(θ, T ;h)) is not an unbiased

estimator of fT (U(θ, T )).

We may question whether using an unbiased estimator of fT (U(θ, T )) is likely to improve per-
formance. One natural strategy is to reformulate the objective function so as to make the desired
estimator unbiased. This happens to be the case for the algorithm E-MAML [18], which treats the
adaptation operator as an explicit function of K sampled trajectories and “moves the expectation
outside”. That is, we now have an adaptation operator U(θ, T ; τ1, . . . , τK), and the objective function
becomes

ET [Eτ1,...,τk∼PT (τ |θ)f
T (U(θ, T ; τ1, . . . , τK))] (7)

An unbiased estimator for the E-MAML gradient can be obtained by sampling only from τ ∼ PT (τ |θ)
[18]. However, it has been argued that by doing so, E-MAML does not properly assign credit to the
pre-adaptation policy [5]. Thus, this particular mathematical strategy seems to be disadvantageous
for RL.

The problem of finding estimators for function-of-expectations f(EX) is difficult and while general
unbiased estimation methods exist [19], they are often complicated and suffer from high variance. In
the context of MAML, ProMP compares the low variance curvature (LVC) estimator [5], which is
biased, against the unbiased DiCE estimator [7], for the Hessian term in the MAML gradient, and
found that the lower variance of LVC produced better performance than DiCE. Alternatively, control
variates can be used to reduce the variance of the DiCE estimator, which is the approach followed in
[6].

In the ES framework, the problem can also be formulated to avoid exactly evaluating U(·, T ), and
hence circumvents the question of estimator bias. We observe an interesting connection between
MAML and the stochastic composition problem. Let us define uh(θ, T ) = u(θ, T ;h) and fTg (θ) =

fT (θ + σg). For a given task T , the MAML reward is given by

f̃T (U(θ, T )) = f̃T [Ehuh(θ, T )] = Egf
T
g (Ehuh(θ, T )). (8)

This is a two-layer nested stochastic composition problem with outer function f̃T = Egf
T
g and inner

function U(·, T ) = Ehuh(·, T ). An accelerated algorithm (ASC-PG) was developed in [20]] for this
class of problems. While neither fTg nor uh(·, T ) is smooth, which is assumed in [20], we can verify
that the crucial content of the assumptions hold:

1. Ehuh(θ, T ) = U(θ, T )

2. We can define two functions

ζTg (θ) =
1

σ
fTg (θ)g, ξTh (θ) = I+

α

σ2
(fTh (θ)hhT − fTh (θ)I)

such that for any θ1, θ2,

Eg,h[ξ
T
h (θ1)ζ

T
g (θ2)] = JU(θ1, T )∇f̃T (θ2)

where JU denotes the Jacobian of U(·, T ), and g,h are independent vectors sampled from
N (0, I). This follows immediately from equation 1 and equation 5.

The ASC-PG algorithm does not immediately extend to the full MAML problem, as upon taking an
outer expectation over T , the MAML reward J(θ) = ETEgf

T
g (Ehuh(θ, T )) is no longer a stochastic

composition of the required form. In particular, there are conceptual difficulties when the number of
tasks in T is infinite. However, it can be used to solve the MAML problem for each task within a
consensus framework, such as consensus ADMM [21].

A.3 Extensions of ES

In this section, we discuss several general techniques for improving the basic ES gradient estimator
(Algorithm 1). These can be applied both to the ES gradient of the meta-training (the ‘outer
loop’ of Algorithm 3), and more interestingly, to the adaptation operator itself. That is, given
U(θ, T ) = θ+α∇f̃Tσ (θ), we replace the estimation of U by ESGRAD on line 4 of Algorithm 3 with
an improved estimator of∇f̃Tσ (θ), which even may depend on data collected during the meta-training
stage. Many techniques exist for reducing the variance of the estimator such as Quasi Monte Carlo
sampling [22]. Aside from variance reduction, there are also methods with special properties.
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A.3.1 Active subspaces

Active Subspaces is a method for finding a low-dimensional subspace where the contribution of the
gradient is maximized. Conceptually, the goal is to find and update on-the-fly a low-rank subspace
L so that the projection ∇fT (θ)L of ∇fT (θ) into L is maximized and apply ∇fT (θ)L instead of
∇fT (θ). This should be done in such a way that∇fT (θ) does not need to be computed explicitly.
Optimizing in lower-dimensional subspaces might be computationally more efficient and can be
thought of as an example of guided ES methods, where the algorithm is guided how to explore space
in the anisotropic way, leveraging its knowledge about function optimization landscape that it gained
in the previous steps of optimization. In the context of RL, the active subspace method ASEBO
[23] was successfully applied to speed up policy training algorithms. This strategy can be made
data-dependent also in the MAML context, by learning an optimal subspace using data from the
meta-training stage, and sampling from that subspace in the adaptation step.

A.3.2 Regression-Based Optimization

Regression-Based Optimization (RBO) is an alternative method of gradient estimation. From Taylor
series expansion we have f(θ + d) − f(θ) = ∇f(θ)Td + O(‖d‖2). By taking multiple finite
difference expressions f(θ + d) − f(θ) for different d, we can recover the gradient by solving a
regularized regression problem. The regularization has an additional advantage - it was shown that
the gradient can be recovered even if a substantial fraction of the rewards f(θ + d) are corrupted
[24]. Strictly speaking, this is not based on the Gaussian smoothing as in ES, but is another method
for estimating gradients using only zero-th order evaluations.

A.3.3 Experiments

We present a preliminary experiment with RBO and ASEBO gradient adaptation in Figure A3. To be
precise, the algorithms used are identical to Algorithm 3 except that in line 4, d(i) ← ESGRAD is
replaced by d(i) ← RBO (yielding RBO-MAML) and d(i) ← ASEBO (yielding ASEBO-MAML)
respectively.

Figure A3: RBO-MAML and ASEBO-MAML compared to ES-MAML.

On the left plot, we test for noise robustness on the Forward-Backward Swimmer MAML task,
comparing standard ES-MAML (Algorithm 3) to RBO-MAML. To simulate noisy data, we randomly
corrupt 25% of the queries fT (θ + σg) used to estimate the adaptation operator U(θ, T ) with an
enormous additive noise. This is the same type of corruption used in [24]. Interestingly, RBO does
not appear to be more robust against noise than the standard MC estimator, which suggests that the
original ES-MAML has some inherent robustness to noise.

On the right plot, we compare ASEBO-MAML to ES-MAML on the Goal-Velocity HalfCheetah task
in the low-K setting. We found that when measured in iterations, ASEBO-MAML outperforms ES-
MAML. However, ASEBO requires additional linear algebra operations and thus uses significantly
more wall-clock time (not shown in plot) per iteration, so if measured by real time, then ES-MAML
was more effective.
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A.4 Navigation-2D Exploration Task

Navigation-2D [1] is a classic environment where the agent must explore to adapt to the task. The
agent is represented by a point on a 2D square, and at each time step, receives reward equal to its
distance from a given target point on the square. Note that unlike the four corners and six circles
tasks, the reward for Navigation-2D is dense. We visualize the differing exploration strategies learned
by PG-MAML and ES-MAML in Figure A4. Notice that PG-MAML makes many tiny movements
in multiple directions to ‘triangulate’ the target location using the differences in reward for different
state-action pairs. On the other hand, ES-MAML learns a meta-policy such that each perturbation of
the meta-policy causes the agent to move in a different direction (represented by red paths), so it can
determine the target location from the total rewards of each path.

Figure A4: Comparing the exploration behavior of PG-MAML and ES-MAML on the Navigation-2D
task. We use K = 20 queries for each algorithm.
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A.5 PG-MAML RL Benchmarks

In Figure A5, we compare ES-MAML and PG-MAML on the Forward-Backward and Goal-Velocity
tasks for HalfCheetah, Swimmer, Walker2d, and Ant, using the same values of K that were used in
the original experiments of [1].

Figure A5: Comparisons between ES-MAML and PG-MAML using the queries K from [1].

A.5.1 Low-K Benchmarks

Figure A6: Low K comparisons between ES-MAML and PG-MAML.

For real-world applications, we may be constrained to use fewer queries K than has typically been
demonstrated in previous MAML works. Hence, it is of interest to compare how ES-MAML compares
to PG-MAML for adapting with very low K.
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One possible concern is that low K might harm ES in particular because it uses only the cumulative
rewards; if for example K = 5, then the ES adaptation gradient can make use of only 5 values. In
comparison, PG-MAML uses K ·H state-action pairs, so for K = 5, H = 200, PG-MAML still has
1000 pieces of information available.

However, we find experimentally that the standard ES-MAML (Algorithm 3) remains competitive
with PG-MAML even in the low-K setting. In Figure A6, we compare ES-MAML and PG-MAML
on the Forward-Backward and Goal-Velocity tasks across four environments (HalfCheetah, Swimmer,
Walker2d, Ant) and two model architectures. While PG-MAML can generally outperform ES-MAML
on the Goal-Velocity task, ES-MAML is similar or better on the Forward-Backward task. Moreover,
we observed that for low K, PG-MAML can be highly unstable (note the wide error bars), with some
trajectories failing catastrophically, whereas ES-MAML is relatively stable. This is an important
consideration in real applications, where the risk of catastrophic failure is undesirable.

A.6 Regression and Supervised Learning

MAML has also been applied to supervised learning. We demonstrate ES-MAML on sine regression
[1], where the task is to fit a sine curve f with unknown amplitude and phase given a set of K pairs
(xi, f(xi)). The meta-policy must be able to learn that all of tasks have a common periodic nature, so
that it can correctly adapt to an unknown sine curve outside of the points xi.

For regression, the loss is the mean-squared error (MSE) between the adapted policy πθ(x) and the
true curve f(x). Given data samples {(xi, f(xi)}Ki=1, the empirical loss is L(θ) = 1

K

∑K
i=1(f(xi)−

πθ(xi))
2. Note that unlike in reinforcement learning, we can exactly compute ∇L(θ); for deep

networks, this is by automatic differentiation. Thus, we opt to use Tensorflow to compute the
adaptation operator U(θ, T ) in Algorithm 3. This is in accordance with the general principle that
when gradients are available, it is more efficient to use the gradient than to approximate it by a
zero-order method [25].

We show several results in Figure A7. The adaptation step size is α = 0.01, which is the same as
in [1]. For comparison, [1] reports that PG-MAML can obtain a loss of ≈ 0.5 after one adaptation
step with K = 5, though it is not specified how many iterations the meta-policy was trained for.
ES-MAML approaches the same level of performance, though the number of training iterations
required is higher than for the RL tasks, and surprisingly high for what appears to be a simpler
problem. This is likely again a reflection of the fact that for problems such as regression where the
gradients are available, it is more efficient to use gradients.

Figure A7: The MSE of the adapted policy, for varying number of gradient steps and query number
K. Runs are averaged across 3 seeds.

As an aside, this leads to a related question of the correct interpretation of the query number K in
the supervised setting. There is a distinction between obtaining a data sample (xi, f(xi)), and doing
a computation (such as a gradient) using that sample. If the main bottleneck is collecting the data
{(xi, f(xi)}, then we may be satisfied with any algorithm that performs any number of operations
on the data, as long as it uses only K samples. On the other hand, in the (on-policy) RL setting,
samples cannot typically be ‘re-used’ to the same extent, because rollouts τ sampled with a given
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policy πθ follow an unknown distribution P(τ |θ) which reduces their usefulness away from θ. Thus,
the corresponding notion to rollouts in the SL setting would be the number of backpropagations (for
PG-MAML) or perturbations (for ES-MAML), but clearly these have different relative costs than
doing simulations in RL.

A.7 Hyperparameters and Setups

A.7.1 Environments

Unless otherwise explicitly stated, we default to K = 20 and horizon = 200 for all RL experiments.
We also use the standard reward normalization in [4], and use a global state normalization (i.e. the
same mean, standard deviation normalization values for MDP states are shared across workers).

For the Ant environments (Goal-Position Ant, Forward-Backward Ant), there are significant differ-
ences in weighting on the auxiliary rewards such as control costs, contact costs, and survival rewards
across different previous work (e.g. those costs are downweighted in [1] whereas the coefficients are
vanilla Gym weightings in [6]). These auxiliary rewards can lead to local minima, such as the agent
staying stationary to collect the survival bonus which may be confused with movement progress
when presenting a training curve. To make sure the agent is explicitly performing the required
task, we opted to remove such costs in our work and only present the main goal-distance cost and
forward-movement reward respectively.

For the other environments, we used default weightings and rewards, since they do not change across
previous works.

A.7.2 ES-MAML Hyperparameters

Let N be the number of possible distinct tasks possible. We sample tasks without replacement, which
is important if N � 5, as each worker performs adaptations on all possible tasks.

For standard ES-MAML (Algorithm 3), we used the following settings.

Setting Value
(Total Workers, # Perturbations, # Current Evals) (300, 150, 150)
(Train Set Size, Task Batch Size, Test Set Size) (50,5,5) or (N,N,N)
Number of rollouts per parameter 1
Number of Perturbations per worker 1
Outer-Loop Precision Parameter 0.1
Adaptation Precision Parameter 0.1
Outer-Loop Step Size 0.01
Adaptation Step Size (α) 0.05
Hidden Layer Width 32
ES Estimation Type Forward-FD
Reward Normalization True
State Normalization True

For ES-MAML and PG-MAML, we took 3 seeded runs, using the default TRPO hyperparameters
found in [6].
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