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Abstract

Model-agnostic meta-learning (MAML) is known as a powerful meta-learning
method. In this paper, we derive the conditions that inner learning rate α and
meta-learning rate β must satisfy for a simplified MAML to locally converge to
local minima from any point. We find that the upper bound of β depends on α,
in contrast to the case of using the normal gradient descent method. Moreover,
we show that the threshold of β increases as α approaches its own upper bound.
This result is verified by experiments on various few-shot tasks and architectures;
specifically, we perform sinusoid regression and classification of Omniglot and
MiniImagenet datasets with a multilayer perceptron and a CNN. Based on this
outcome, we present a guideline for determining the learning rates: first, search
for the largest possible α; next, tune β based on the chosen value of α.

1 Introduction

A pillar of human intelligence is the ability to learn and adapt to unseen tasks quickly and based on
only a limited quantity of data. Although machine learning has achieved remarkable results, many
recent models require massive quantities of data and are designed for solving particular tasks. Meta-
learning, one of the ways of tackling this problem, tries to develop a model that can adapt to new
tasks quickly by learning to learn new concepts from few data points [16]. Among meta-learning
algorithms, model-agnostic meta-learning (MAML), a gradient-based meta-learning method pro-
posed by Finn et al. [6], has recently been extensively studied. The reason is because MAML is
simple but efficient and applicable to a wide range of tasks independent of model architecture and
the loss function. However, MAML is notorious for being hard to train [1]. One of the reasons
why training MAML is hard is the existence of two learning rates in MAML: the inner learning rate
α and meta-learning rate β. A learning rate is known to be one of the most important parameters,
and tuning this parameter may be challenging even if the simple gradient descent (GD) method is
used. Nevertheless, we do not yet know the relationship between these two learning rates and have
little guidance on how to tune them. Hence, guidelines for choosing these parameters are urgently
needed. In this paper, we investigate the MAML algorithm and propose a guideline for selecting the
learning rates. First, in Section 2 we briefly explain by using the first-order approximation how a
simplified MAML can be regarded as optimization with the negative gradient penalty. Because the
gradient norm is related to the shape of the loss surface, a bias towards a larger gradient norm can
make training unstable. Next, based on the approximation explained in Section 2, in Section 3, we
derive the necessary conditions that α and β must satisfy for a simplified MAML to locally converge
to local minima from any point. We find that the upper bound βc of meta-learning rate depends on
inner learning rate α. In particular, βc of α ≈ αc is larger than that of α = 0, where αc is the upper
bound of α. Note that βc of α = 0 corresponds to that of vanilla GD. This is verified by experiments
in Section 4. These results imply a guideline for selecting the learning rates: first, search for the
largest possible α; next, tune β.
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2 MAML as optimization with negative gradient penalty

2.1 MAML

The goal of MAML is to find a representation that can rapidly adapt to new tasks with a small
quantity of data. In other words, MAML performs optimization for parameters θ ∈ Rd that the
optimizer can use to quickly reach the optimal parameter θ∗

τ for task τ with few data points. To
this end, MAML takes the following steps to update θ. First, it samples a batch of tasks from task
distribution P (τ) and updates θ for each task τ with SGD:

θ′
τ = θ − α∇θLτ (θ) , (1)

where α is a step size referred to as the inner learning rate, and Lτ (θ) is the loss of τ . Next, MAML
resamples data from each τ and computes the loss at the updated parameters θ′

τ , obtaining Lτ (θ
′
τ )

for each task. Finally, to determine θ that can be adapted to θ′
τ for all tasks, θ is updated with the

gradient of a sum of loss values Lτ (θ
′
τ ) over all tasks. In other words,

θ ← θ − β∇θ

∑
τ∼P (τ)

Lτ (θ
′
τ ) , (2)

where β is the learning rate called the meta-learning rate.

2.2 Negative gradient penalty

Unless otherwise noted, we will consider the case of only one step being made per update, and
the data are not resampled to compute the loss for updating θ. The gradient of the loss at θ′

τ is
gτ (θ

′
τ ) = ∇θLτ (θ

′
τ ) = ∇θθ

′
τ
∂Lτ

∂θ′
τ

, where g(·) is the gradient of L(·) with respect to θ. If α is

small, we can assume that I ∂Lτ

∂θ′
τ
= gτ (θ); this seems to hold since α is usually small. Then,

∇θLτ (θ
′
τ ) = ∇θθ

′
τ

∂Lτ

∂θ′
τ

=
(
I − α∇2

θLτ

) ∂Lτ

∂θ′
τ

(3)

≈ gτ (θ)− αHτ (θ)gτ (θ). (4)
The above is known as the first-order approximation, which has been mentioned by Finn et al. [6]
and studied by Nichol et al. [14]. We will assume that only one task is considered during training,
omitting task index τ . Therefore, instead of

∑
τ∼P (τ) Lτ (θ

′
τ ), we will consider L(θ′) as the MAML

loss for simplicity. Because∇θ(g(θ)
⊤g(θ)) = 2H(θ)g(θ), if we define L̃(θ) = L(θ′),

L̃(θ) ≈ L(θ)− α

2
g(θ)⊤g(θ). (5)

The above means that a simplified MAML can be regarded as optimization with the negative gradient
penalty. We will analyze this MAML loss in Section 3. It can also be interpreted as a Taylor series
expansion of the MAML loss for the first-order term, up to scale:

L̃(θ) = L(θ − α∇θL(θ)) ≈ L(θ)− α∇θL(θ)∇θL(θ) (Taylor series expansion) (6)

= L(θ)− αg(θ)⊤g(θ). (7)
The fact that a simplified MAML is optimization with the negative gradient penalty is worth keeping
in mind. Because the goal of gradient-based optimization is to find a point where the gradient is 0,
a bias that favors a larger gradient is highly likely to make training unstable; this can be a cause
of instability of MAML [1]. In fact, as shown in Fig. 1, the gradient norm becomes larger during
training, as do the gradient inner products, as Guiroy et al. [9] observed.

3 Learning rate for convergence

3.1 Necessary condition for inner learning rate α

First, we derive the condition that learning rate α should satisfy. To this end, we will consider the
condition that a fixed point is a minimum. Taking the Taylor series for the second-order term at a
fixed point θ∗, the MAML loss is

L̃(θ) ≈ L̃(θ∗) +
1

2
(θ − θ∗)⊤H̃(θ − θ∗). (8)
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Figure 1. Gradient norm during
training. We compute the norm
per task and subsequently com-
pute their average. Joint training
shows when α = 0, and MAML is
when α = 1e-2. These results are
computed using training data, but
those determined using test data
behave similarly. The total num-
ber of iterations is 50000, β =
1e-3 and the Adam optimizer is
used. Other settings are the same
as those in Section 4. 1.
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Figure 2. Curves of βc as a func-
tion of α for eigenvalues of the
Hessian, λ0 < ... <λ4. Parameter
β is supposed to be smaller than
βc for both λ4 and λ3. Hence,
β should be chosen from the col-
ored area. Since α must satisfy
α < 1

λi
, α should also be in the

colored region. The dashed line
shows βc if α = 0. If α ≈ αc,
βc is larger than that at α = 0.
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Figure 3. Training loss of linear
regression. The area colored in
black is when the loss is below 1e-
2, and that in gray is when the loss
is over 1e-2. Uncolored region is
not considered. βc : λi shows βc

of λi, where λ1 < λ2. The dashed
line is αc. Theoretical βc and αc

correspond to empirical ones.

where H̃ = H − α
(
Tg +H2

)
is the Hessian matrix of L̃(θ) at θ∗ and g = ∇θL(θ

∗) ∈ Rd,
H = ∇2

θL(θ
∗) ∈ Rd×d, and T = ∇3

θL(θ
∗) ∈ Rd×d×d. The calculation of H̃ is presented

in Appendix A. We calculated the magnitudes of Tg and H2 numerically and observed that Tg
was much smaller than H2 in practice. Hence, we will ignore Tg while deriving the conditions
and will thus assume that H̃ = H − αH2. Further details are provided in Appendix B. Since
PΛH̃P⊤ = P [ΛH − αΛ2

H ]P⊤ where ΛH̃ is a diagonal matrix with entries that are eigenvalues of
H̃ and P is a matrix with rows that are eigenvectors of H̃ , the necessary condition for θ∗ to reach a
minimum is

∀i, λ(H̃)i = λ(H)i − αλ(H)2i ≥ 0 (9)

⇒ ∀i, α ≤ 1

λ(H)i
, (λ(H)i ̸= 0) or λ(H)i = 0. (10)

Note that λ(A)i represents the ith eigenvalue of matrix A. Hence, if we define 1/0 to be ∞, the
necessary condition that α must satisfy for θ∗ to reach a minimum is

∀i, α ≤ 1

λ(H)i
. (11)

3.2 Necessary condition for meta-learning rate β

Next, we derive the necessary condition that meta-learning rate β must satisfy for a simplified
MAML to locally converge to the local minima discussed above. This is an extension of research
of LeCun et al. [12]. If we denote P (θ − θ∗) by v, the MAML loss is L̃(v) ≈ L̃(0) + 1

2v
⊤ΛH̃v.

Because the gradient of L̃(v) for v is ∇vL̃(v) = ΛH̃v, the update equation of v is v(t + 1) =
v(t)− βΛH̃v(t) = (I − βΛH̃)v(t), where v(t) is the value of v during iteration t (t = 0, ...,M ),
and M is the total number of iterations. Assuming that Eq. 11 holds, the necessary condition that β
must satisfy is as follows: for all i,

|1− βλ(H − αH2)i| = |1− β(λ(H)i − αλ(H)2i )| < 1 (12)

⇒ −1 + β(λ(H)i − αλ(H)2i ) < 1 (∵ λ(H)i − αλ(H)2i ≥ 0 holds because of Eq. 11) (13)

⇒ β <
2

λ(H)i − αλ(H)2i
. (14)

Consequently, the necessary condition for a simplified MAML to converge to minima is as follows:

∀i, α ≤ 1

λ(H)i
∧ β ≤ 2

λ(H)i − αλ(H)2i
. (15)
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Vanilla GD with learning rate β corresponds to MAML if α = 0. In this case, β < 2
λmax

is necessary
for the optimizer to converge, where λmax is the largest eigenvalue of H , because 2/λmax is smaller
than any other 2/λi [12]. Though this holds for MAML as well, this is not the case if α is close to
αc. The reason is that βc diverges as α approaches 1

λ(H)i
, or αc as Eq. 13 indicates. Hence, for

MAML we must consider not only the largest but also other eigenvalues. In short, βc depends on
α in the case of MAML, and βc is expected to be larger if α is close to αc, as shown in Fig. 2.
This finding is validated by experiments presented in Section 4. In the case of linear regression with
simplifications used in Section 3, we observed that theoretical βc and αc correspond to empirical
ones as shown in Fig. 3. Further details are presented in Appendix C.

4 Experiments

4.1 Regression

We conducted a sinusoid regression, where each task is to regress a sine wave with amplitude in the
range of [0.1, 5.0] and phase in the range of [0, π] based on data points in the range of [-5.0, 5.0]. A
three-layer multilayer perceptron with ReLU was trained with SGD. The batch size of data was 10,
the number of tasks was 100, and 1 step was taken for update. Using these settings, we computed
the training loss after 500 iterations with α in the range of [1e-4, 9e-1] and β in the range of [1e-2,
9e-0]. According to Fig. 4 (a), if α is close to the value above which the losses diverge, a larger β
can be used. Despite simplifications, this result confirms the expectation that MAML allows larger
β if α is close to αc. This result has a practical implication for tuning the learning rates: first, the
largest possible α should be identified, and β may be subsequently tuned based on the value of α.

4.2 Classification

We performed classification of the Omniglot and MiniImagenet datasets [11] [15], which are bench-
mark datasets for few-shot learning. The model used was essentially the same as that Finn et al.
[6], and hence, Vinyals et al. [17] used. The task is a 5-way 1-shot classification, where the query
size is 15, the number of update steps is 2, and the task batch size is 32 for Omniglot and 4 for
MiniImagenet. In this setup, we computed the training losses after 100 iterations for the Omniglot
dataset and 1 epoch for the MiniImagenet dataset with various values of α and β; for Omniglot, α
was in the range of [3e-3, 9e-0] and β was in the range of [3e-2, 9e+1], and for MiniImagenet, α
was in the range of [3e-3, 9e-1] and β was in the range of [3e-3, 9e-0]. As shown in Fig. 4 (b) and
(c), the maximum β is larger at large α, confirming that our theory is applicable in practice.
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Figure 4. Training losses for (a) sinusoid regression, (b) Omniglot classification, and (c) MiniImagenet classi-
fication at various values of α and β after a fixed number of iterations. The area with no color represents the
diverged losses, and the dashed line indicates the values of β above which the loss diverges for α = 0. The
maximum possible β is larger if α is close to the value above which the losses diverge than that at α = 0.

5 Conclusions

We regard a simplified MAML as training with the negative gradient penalty. Based on this, we
showed that the upper bound of meta-learning rate β required for a simplified MAML to locally
converge to local minima from any point depends on inner learning rate α. Moreover, we found that
if α is close to its upper bound αc, the maximum possible meta-learning rate βc is larger.
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A Calculation of H̃

Because H̃ is the Hessian matrix of L̃ at θ∗, we derive the Hessian of Eq. 8. Then,

H̃ = ∇2
θL̃(θ) (16)

= ∇2
θ

(
L(θ)− α

2
g(θ)⊤g(θ)

)
(17)

= H(θ)− α∇θ (H(θ)g(θ)) (18)
= H(θ)− α (∇θH(θ)g(θ) +H(θ)H(θ)) (19)

= H − α(Tg +H2). (20)

B Magnitude of Tg and H2

As we showed in Section 3, especially large eigenvalues of H̃ are important for the upper bounds
of learning rates. Therefore, if λ(Tg + H2)max ≈ λ(H2)max, we can ignore Tg when deriving
the necessary condition. We calculate the maximum and the second-largest eigenvalues of Tg, H2

and Tg + H2 of the trained model. As shown in Fig. 5 (a), λ(Tg + H2)max is almost equal to
λ(H2)max, and λ(Tg)max is by far smaller than them. Therefore, ignoring λ(Tg)max is reasonable
when the conditions are derived. Furthermore, we calculate the Frobenius norm of Tg and H2. As
Fig. 5 (b) indicates, the Frobenius norm of Tg is much smaller than that of H2, meaning that Tg
is negligible in the sense of the magnitude of the norm as well. These results confirm that we can
neglect Tg when considering H̃ . The trained model we use was trained with essentially the same
condition that we explain in Section 4 (a). However, unlike in Section 4 (a), the total number of
iterations is 50000, and α and β are both 1e-3.

Tg H2 Tg + H2

10
4

2 × 10
4

(a) Maximum eigenvalue

Tg H2 Tg + H2

10
1

10
2

(b) Second largest eigenvalue

Tg H2

2 × 10
4

3 × 10
4

(c) Frobenius norm

Figure 5. (a): The maximum eigenvalues of Tg, H2 and Tg +H2. It is clear that the maximum eigenvalue of
Tg+H2 is almost the same as that of H2, while that of Tg is much smaller than them. (b): The second-largest
eigenvalues of Tg, H2 and Tg +H2. Like (a), the second-largest eigenvalue of Tg +H2 is almost equal to
that of H2. (c): The Frobenius norm of Tg and H2. The Frobenius norm of Tg is much smaller than that of
H2.

C Linear regression

We conducted a linear regression, where the task is to regress a linear function with scale parameter
in the range of [0, 5.0] and bias parameter in the range of [0, 5.0] based on data points in the range
of [-5.0, 5.0]. The model architecture was the same as that of the true function. We employed the
steepest gradient descent method to minimize the mean squared loss, where 1 step was taken for
update. Only one task was considered during training and the same data was used to update the
task-specific parameter and the meta parameter as we did in Section 3. Using these settings, we
computed the training loss after 500 iterations with α in the range of [1e-5, 9e-2] and β in the range
of [5e-3, 9e+0]. The eigenvalues are those of the Hessian matrix of the training loss at the end of the
training, where α = 5e-2 and β = 7e-1. We chose this training loss because it was thought to be the
closest to minima.
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D Related Works

Sevral papers have investigated model-agnostic meta-learning and proposed various algorithms
[14, 9, 4, 1, 5, 10, 18, 7, 3, 13, 3, 8]. Nichol et al. [14] studied the first-order MAML family in
detail and showed that the MAML gradient could be decomposed into two terms: a term related to
joint training and a term responsible for increasing the inner product between gradients for different
tasks. Guiroy et al. [9] investigated the generalization ability of MAML. The researchers observed
that generalization was correlated with the average gradient inner product and that flatness of the
loss surface, often thought to be an indicator of strong generalizability in normal neural network
training, was not necessarily related to generalizability in the case of MAML. Eshratifar et al. [4]
also noted that the average gradient inner product was important. Hence, the authors proposed an
algorithm that considered the relative importance of each parameter based on the magnitude of the
inner product between the task-specific gradient and the average gradient. Although the above stud-
ies were cognizant of the importance of the inner product of the gradients, they did not explicitly
insert the negative gradient inner product, which is the negative squared gradient norm with simpli-
fications, as a regularization term. To consider MAML as optimization with a regularization term
is a contribution of our study. Antoniou et al. [1] enumerated five factors that could cause training
MAML to be difficult. Then, they authors proposed an algorithm to address all of these problems
and make training MAML easier and more stable. Behl et al. [2], like us, pointed out that tuning the
inner learning rate α and meta-learning rate β was troublesome. The authors approached this prob-
lem by proposing an algorithm that tuned learning rates automatically during training. Fallah et al.
[5] studied convergence theory of MAML . They proposed a method for selecting meta-learning rate
by approximating smoothness of the loss. Based on this result, they proved that MAML can find an
ε-first-order stationary point after sufficient number of iterations. On the other hand, we studied the
relationship between conditions that inner learning rate α and meta-learning rate β must satisfy and
showed that how large possible β is affected by the value of α.
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