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Abstract

Current meta-learning approaches focus on learning functional representations
of relationships between variables, i.e. estimating conditional expectations in re-
gression. In many applications, however, the conditional distributions cannot be
meaningfully summarized solely by expectation (due to e.g. multimodality). We in-
troduce a novel technique for meta-learning conditional densities, which combines
neural representation and noise contrastive estimation together with established
literature in conditional mean embeddings into reproducing kernel Hilbert spaces.
The method is validated on synthetic and real-world data, demonstrating the utility
of sharing learned representations across multiple conditional density estimation
tasks.

1 Introduction

The estimation of conditional densities p(y|x) based on paired samples {(xi, yi)}ni=1 is a ubiquitous
task in the modelling of relationships between x and y. While the problem of regression focuses on
estimating the conditional expectations E[y|x] of responses y given the features x, many scenarios
require a more expressive representation of the relationship between x and y. In particular, the
distribution of y given x may exhibit multimodality or heteroscedasticity, thus requiring a flexible
nonparametric model of the full conditional density. Estimating conditional densities becomes
challenging when x and y are multivariate and the sample size is small. Hence, we tackle this
problem from a meta-learning perspective, where we utilise the shared learned representation of both
response y and features x across different tasks, and estimate the conditional density of these tasks.

Contribution: We develop a new approach for modelling functional relationship, which parallels
to the (conditional) Neural Processes [1] [2], and is applicable to a broader set of relationships
between random objects, i.e. the response y that cannot be represented by a single function f(x)
with the features x, for instance multimodality in the y’s. We use the framework of conditional mean
embeddings (CME) of distributions into reproducing kernel Hilbert spaces (RKHSs) [3, 4], which
has a unique representation of a probability distribution.

In this work, we use neural networks to learn the feature maps �x and �y under the meta-learning
framework, i.e. consider a number of (similar) conditional density estimation tasks simultaneously.
While CME estimation for fixed feature maps is well understood [3, 4], we are concerned with
the transition from the CME estimates to the conditional density estimation (CDE) task, while
simultaneously learning the feature maps defining CME. We use a noise contrastive estimation
(NCE)[5] technique to address this problem, treating CMEs as features in the binary classifier and
discriminate between the true and artificially generated samples of (xi, yi) pairs.

The proposed method is validated on synthetic and real-world data, including Ramachandran plots
extracted from the database [6], and the NYC taxi data [7] to model drop-off locations.

Related work: NCE methods [8, 9, 10] have been used in representations learning, and the work
in [8, 9] focuses on learning discrete distributions in the context of Natural Language Processing
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(NLP). Several studies [11, 12] used RKHSs for density estimation. They considered training kernel
exponential family models, with a bottleneck in computing the normalizing constant. In addition,
different CME sampling methods have been developed, such as kernel herding [13][14]. Note that
the herding methods are used to produce representative samples using CME as reference, while we
use the CME as a feature to model the conditional density (more details see Appendix).

2 Background

Throughout this paper we denote the observed dataset by D = {(xj , yj)}nj=1, with xj 2 X and
yj 2 Y . We define the learned RKHS/feature maps of inputs X and responses Y as HX/�x and
HY /�y respectively.

Kernel mean embeddings of distributions provide a powerful framework for representing probability
distributions [3, 4]. Formally, given sets X and Y , with a distribution P over the random variables
(X,Y ) taking values in X⇥Y , the conditional mean embedding (CME) of the conditional distribution
of Y |X = x, assumed to have density p(y|x) defined as:

µY |X=x := EY |X=x[�y(Y )] =

Z

Y

�y(y)p(y|x)dy. (1)

Here �y(y) is a function in the RKHS and can be equivalently written as ky(y, .). Hence, we can
obtain an element µY |X=x of HY for each value of the conditioning variable x. Following [3],
the conditional mean embedding can be associated with the operator CY |X : HX ! HY , which
satisfies µY |X=x = CY |X�x(x), where CY |X := CY XC�1

XX s.t. CY X := EY,X [�y(Y )⌦ �x(X)] and
CXX := EX,X [�x(X)⌦ �x(X)]. As a result, the finite sample estimator of CY |X based on dataset
{(xi, yi)}ni=1 can be written as bCY |X = �y(K + �I)�1�T

x , where �y := (�y(y1), . . . ,�y(yn)) and
�x := (�x(x1), . . . ,�x(xn)) are the feature matrices, K := �x�T

x is the kernel matrix with entries
Ki,j = kx(xi, xj) := h�x(xi),�x(xj)i, and � > 0 is a regularization parameter.

Note that using the finite sample estimator, the CME operator is a solution to a vector-valued ridge
regression problem (regressing �y(y) to �x(x)), allowing computation to scale linearly in the number
n of observations using the Woodbury matrix identity.

Noise contrastive estimation (NCE): NCE [5] converts density estimation into binary classification
by learning to discriminate between the noisy artificial/fake data and the real data. Following [5], we
set up the experiments in such a way that we see  times more fake examples than real ones. In our
case, the true samples come from the conditional p(y|x), i.e. {yi}ni=1, and the fake/noisy ones from
the density pf (y), i.e. {yfi }ni=1. For a given x, assuming that the classifier observes samples from the
mixture 1

+1p(y|x) +


+1pf (y), the probability that y arises from the true conditional distribution
p(y|x) as opposed to the fake density pf (y) is given by:

P (True|y, x) = p(y|x)
p(y|x) + pf (y)

() p(y|x) = pf (y)P (True|y, x)
1� P (True|y, x) . (2)

Under the assumption that the learned probabilistic classifier attains Bayes optimality, we can deduce
the point-wise evaluations of the true conditional density p(y|x) directly from expression (2). We
would like to fit p✓(y|x) to p(y|x), hence we consider the following parametric density model:

p✓(y|x) =
exp(s✓(x, y))R
exp(s✓(x, y0))dy0

= exp(s✓(x, y) + b✓(x)) (3)

for some scoring function s✓ : X ⇥ Y ! R, following the terminology in [8]. Under this model, the
probability that y arises from the true conditional distribution p✓(y|x) is given by:

P✓(True|y, x) = exp(s✓(x, y) + b✓(x))

exp(s✓(x, y) + b✓(x)) + pf (y)
= � (s✓(x, y) + b✓(x)� log(pf (y))) . (4)

Eq.(4) gives us the probabilistic classifier we will adopt, where we will need to construct the scoring
function s✓(x, y) appropriately, in particular, how s✓(x, y) relates to the feature maps �x and �y .

3 Methodology
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Figure 1: The context data is first passed through
the feature maps to construct the CMEO (bCY |X ),
which is then used to project the new target x (blue)
to HY , where it is compared to the True(green) and
Fake y’s(red)

Frist, we map xi and yi using feature maps
�x : X ! HX and �y : Y ! HY . Then we
learned and parametrized the feature maps with
neural networks, and both sets of parameters col-
lated into ✓. Here, we use finite-dimensional fea-
ture maps, but other choices are possible. Next,
we compute the Conditional Mean Embedding
Operator (CMEO) bCY |X : HX ! HY (see the
above section). Given bCY |X , we estimate the
conditional mean embedding for any new x⇤

using

bµY |X=x⇤ = bCY |X�x(x
⇤). (5)

Note that bµY |X=x⇤ 2 HY . We then compute h�y(y⇤), bµY |X=x⇤iHY = bµY |X=x⇤(y⇤) for any new
y⇤ 2 Y , i.e. evaluation of the CME at any given new response. This can be interpreted as the
"similarity" between �y(y⇤) and the prediction bµY |X=x⇤ in HY . We expect high similarity when y⇤

is drawn from the true conditional distribution Y |X = x⇤, and low when y⇤ is drawn from the fake
distribution, where the true conditional density p(y|x⇤) is low. Hence we use the scoring function:

s✓(x
⇤, y⇤) = h�y(y

⇤), bµY |X=x⇤iHY . (6)

Given a set of true examples {(xj , yj)}nj=1 and the fake responses {yfi,j}i=1 associated to each input
xj , where yfi,j is the ith sample from the fake distribution for data point yj , we can now train the
classifier using model (4) by minimizing the logistic loss

min
✓

nX

j=1

⇢
log

✓
1 +

pf (yj)

exp(s✓(xj , yj) + b✓(xj))

◆
+

X

i=1

log

 
1 +

exp(s✓(xj , y
f
i,j) + b✓(xj))

pf (y
f
i,j)

!�
.

(7)

The conditional density estimates can be obtained from (3) with the learned classifier. The details of
the fake density and the learning objectives are discussed in the Appendix.

Next, we train our developed model in the meta-learning setting. We consider the case with limited
sample for each density estimation task. We adopt the meta-learning framework in order to make
use of similar tasks to infer the density. To this end, let T = {T1, . . . , Tl} be the set of l conditional
density estimation tasks, such that Tq corresponds to the dataset Dq = {(xq

i , y
q
i )

mq

i=1}, where xq
i 2 X

and yqi 2 Y share the same domains across the tasks. We use an approach similar to the Neural
Process (NP) [1], where we define a context set (used to embed the task) and a target set (used to
compute the loss and update the parameters of the model) during training. For example, in task q we
use mcq samples as context and the remaining mtq = mq �mcq as target. We use the context set to
estimate the CMEO, bCY |X , and evaluate the conditional mean embeddings on the target set using (5).

For each target example, we sample  fake samples from pf (y) and represent them in HY using the
feature map �y, so that (4) can be computed for each of these  + 1 samples (1 true and  fakes).
We then train the classifier with the labels, i.e. True(from data)/Fake(from noise distribution), and
learn the parameters ✓ of neural networks �x, �y and b✓ using the objective (7) jointly over all tasks.
The resulting feature maps, �x and �y , generalize across tasks and can be applied to new, previously
unseen datasets. This is done by computing the scoring function s✓(x, y) using the CMEO estimated
on this new dataset, and insertion into (3). Figure 1 outlines one meta-training step for a given task
and illustrates how the loss is computed. We repeat this step for every training task.

4 Experiments

For both synthetic and real-world examples, we compare our method with different conditional
density estimations methods, including ✏-KDE, DDE [11], KCEF [12], and LSCDE [15]. Throughout
our experiments we fix  = 10 as suggested in [5]. In addition, we include meta-learning algorithms
such as Neural Process[1] and a pure neural network version of our framework (MetaNN). in MetaNN,
we compute a feature representation of the concatenated (x,y) pairs using a NN, and trained it like our
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proposed model, in order to investigate the importance of the CMEO (see the Appendix for a more
detailed study). At testing time, we evaluate the method on 100 new tasks with nc context/training
points each. We pass the new context points to our model, and evaluate the density with a simple
forward pass in (3). The non meta-learning baselines are trained separately on each of the 100
datasets. We then report the mean log-likelihood of the 100 datasets. High variance in some methods
indicated the difficulty of tasks. Hence we use p-values of the one-sided signed Wilcoxon test to
confirm that the likelihood of our method, MetaCDE, is significantly higher than all other methods.

Synthetic data: In order to measure the ability of the method in learning the multimodality and
heteroscedasticity in the response variable, we construct the datasets as follows: we sample yi ⇠
Uniform(0, 1) and set xi = cos(ayi + b) + ✏i, where a and b vary between tasks, with noise
✏i ⇠ N (0,�2). Here, the x can be written as a simple function of y with noise, but not vice versa on
the whole range of x, leading to the multimodality of p(y|x). In meta-learning, we use 50 context
points and 80 target points for each task. We included experiments with 15 and 30 context points
to illustrate the robustness of the methods with varying context data sizes (see Appendix). We also
included details of the NN architectures and experimental setup (see the Appendix).

Real-World data: Finding all energetically favourable conformations for flexible molecule in both
bound and unbound state is one of the biggest challenge in computational chemistry [16] as the number
of possibilities increases exponentially with the dimension. Knowledge about the distributions of
dihedral angles in molecules (represented by Ramachandran plots [17]) is used in different sampling
schemes and it is currently limited by the library curated by chemists. Here, we apply MetaCDE to
learn richer relationships between dihedral angles, which can improve the molecule conformation
sampling scheme. In our experiement, we consider the cases with 80 data points per task during
training and 20 at testing time. In our meta-learning setup, we take 20 context and 60 target points.
We have also performed experiments on the NYC taxi dataset, which, due to space constraints, we
have added to the Appendix.

Figure 2: In order ((Top) synthetic- (Bottom) Real- dataset): MetaCDE(ours), MetaNN (ours), DDE,
LSCDE, KCEF, ✏-KDE. The red dots are context points and the green dots are evaluation points.

MetaCDE MetaNN NP DDE LSCDE KCEF ✏-KDE
Sythn. Data Mean over 100 log-likelihoods 197.84 ± 22.45 172.76±93.56 -81.11±18.53 162.98 ± 69.01 44.95 ± 74.36 -388.30 ± 703.17 116.31 ± 236.99
Sythn. Data P-value for Wilcoxon test NA 0.0439 < 2.2e-16 8.144e-07 <2.2e-16 < 2.2e-16 2.384e-07
Real. Data Mean over 100 log-likelihoods -305.49 ± 46.99 -317.91±51.36 -426.75±47.31 -399.68 ± 41.30 -407.32 ± 80.19 -724.40 ± 891.64 -485.10 ± 303.49
Real. Data P-value for Wilcoxon test NA 0.001 < 2.2e-16 1.658e-15 2.579e-14 9.72e-14 2.949e-14

Table 1: Average held out log-likelihood on 100 different synthetic cos tasks. We also compute the
p-value for the one sided signed Wilcoxon test with respect to MetaCDE

5 Conclusions and Future Work

In this paper we have introduced a novel method for conditional density estimation in a meta-learning
setting. We applied our method to a variety of synthetic and real-world data, with a strong performance
in computational chemistry task and an example with NYC taxi data. Owing to the meta-learning
framework, experiments indicate that the developed method is able to capture correct density structure
even when presented with small sample sizes at testing time. Similarly to the Neural Process [1], our
method is able to construct a task embedding. In our case, however, embedding of each task takes the
form of a conditional mean embedding operator, computed with feature maps learned using noise
contrastive estimation. Further study could involve other choices of fake distribution pf (y), including
those depending on the conditioning variable. An interesting avenue of applications would be in
modelling conditional distributions in the reinforcement learning setting. In particular, [18] and [19]
have shown the benefits of using distributional perspective on reinforcement learning as opposed to
only modelling expectations of returns received by the agents.
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Appendices

A On the choice of the fake distribution in NCE

The choice of the fake distribution plays a key role in the learning process here, especially due to
the fact that we are interested in conditional densities. In particular, if the fake density is different
from the marginal density p(y), then our model could learn to distinguish between the fake and true
samples of y simply by constructing a “good enough” model of the marginal density p(y) on a given
task while completely ignoring the dependence on x (this can be achieved by making the feature
maps of x constant). This becomes obvious if, say, the supports of the fake and the true marginal
distribution are disjoint, where clearly no information about x is needed to build a classifier – i.e.
the classification problem is “too easy”. Thus, ideally we wish to draw fake samples from the true
marginal p(y) in a given task. While we could achieve this by drawing a y paired to another x, i.e.
from the empirical distribution of pooled ys in a given task, recall that we also require existence of
a fake density which can be computed pointwise and inserted into (3). Hence, we propose to use a
kernel density estimate (KDE) of ys as our fake density in any given task. In particular, kernel density
estimator of p(y) is computed on all responses y (context and target). In order to sample from the
this fake distribution, we simply draw from the empirical distribution of pooled y’s and add Gaussian
noise with standard deviation being the bandwidth of the KDE (assuming we are using a Gaussian
KDE for simplicity here; other choices of kernel are of course possible with appropriate modification
of the type of noise). As our experiments demonstrate, this choice ensures that the fake samples are
sufficiently hard to distinguish from the true ones, requiring the model to learn meaningful feature
maps which capture the dependence between x and y and are informative for the CDE task.

Finally, we note that while in principle it is possible to consider families of fake distributions which
also depend on the conditioning variable x, we do not explore this direction here. This is due to
the fact that such approach would require a nontrivial construction of a model of fake conditional
densities that is easy to sample from, can be computed pointwise, and according to the same rationale
as above, shares the same marginal density with the true conditional model we are interested in.

B More details on related work

NCE for learning representations has been considered before and the closest work to our paper is
[8][9], which focuses on learning discrete distributions in the context of Natural Language Processing
(NLP). They achieve impressive speedups over other word embeddings as they avoid having to
compute the normalizing constant thanks to the NCE setup of the optimization. More recently,
[10] also introduce a NCE method for representation learning, however, they focus on learning
an expressive representation in the unsupervised setting, thereby optimizing a mutual information
objective instead.

Other methods that also use the idea of fake examples in order to learn an expressive feature map are
[20], who train a GAN in order to use the resulting discriminator for few-shot classification.

In terms of using RKHSs in density models, several works, for example [11], [12] have considered
training kernel exponential family models, where the main bottleneck is to compute the normalizing
constant. [11] exploit the flexibility of kernel exponential families to learn conditional densities and
avoid the problem of computing normalizing constants by solving so called nested Fenchel duals.
[12] train kernel exponential family models using score matching criteria, which allows them to
bypass normalizing constant computation. The method however requires computing and storing the
first- and second order derivatives of the kernel function for each dimension and each sample and
as such requires O(n2d2) memory and O(n3d3) time, where n is the number of data points and d
the dimension of the problem. In addition, there has also been work done using CME for sampling
methods, such as kernel herding, as presented in [13][14]. These methods are related in the sense
that they also make use of the CME, however we use the CME as a feature to model the conditional
density, whereas herding methods are interested in producing representative samples using the CME
as a reference.

[15] propose a method of learning the conditional density by learning a ratio of the joint and the
marginal. They model the conditional density as a linear combination of a set of basis functions. This

7



method works well on reasonably complicated tasks, although the optimal choice of basis functions
is still unclear.

C Synthetic dataset setup and further experiments

In order to measure the ability of the method in learning the multimodality and heteroscedasticity
in the response variable, we construct the datasets as follows: we sample yi ⇠ Uniform(0, 1) and
set xi = cos(ayi + b) + ✏i, where a and b vary between tasks, with noise ✏i ⇠ N (0,�2). Here we
sample a from U(8, 12) and phase vary from U(0,⇡). In this experiment we are given a variable
number of context points during testing time ranging from 15, 30 and 50. Each of the non meta
learning models DDE, KCEF, ✏-KDE, LSCDE are trained on the new datasets. Our MetaCDE/Neural
Process1/MetaNN is trained with 15, 30 and 50 context points on the tasks respectively and with 80
target points. At testing time, we simply pass the data through our model without having to retrain on
the new unseen dataset. Note that we report again the p-values of the Wilcoxon signed one-sided test
and we can see that as we decrease the context points, our methods is significantly outperforming the
other methods.

C.1 Model specifications

For our MetaCDE we used a 3-hidden layer Neural Network with tanh activation functions and
Adam optimizer for all of our feature maps �x,�y, b✓. We cross-validate on held out dataset, over
32 and 64 hidden nodes per layer and � = 1.0, 0.1, 0.01 for the regularization parameter. We fixed
the learning rate at 1e-3. We also set  = 10.

• KCEF: we used the CV function that was in built in their Github repository

• LSCDE: We CV for � in logspace(�3, 5, 20) and � in logspace(�5, 5, 20)

• ✏-KDE: We CV over ✏ in linspace(0.1, 1, 15) and bandwidth in linspace(0.01, 1, 15)

• DDE: We CV over the bandwidth of 0.5 and 1.0

D Neural Network version of our method (MetaNN)

In order to investigate the importance of the CMEO, in our setup we have tried to remove the operation
completely and replaced it with a simple MLP. we do this by first of all concatenating the context
pairs (xi, yi) into a vector, which we then pass through a MLP. At the end we take the mean of these
vectors and concatenate them with the new target xtarget. Hence we replaced the operation in Eq (5)
with a NN. The rest stays the same. This method is hence also using meta-learning and therefore we
can now compare against it in our experiments. In our experiments we simply used a 3 layer MLP
and cross-validate over either 32, 64 hidden nodes and learning rates of 1e-3 or 1e-4.

D.1 Comparison to MetaCDE

Next we will compare the MetaNN and MetaCDE algorithms in order to investigate the importance
of the conditional mean embedding operator. As mentioned above, we have now swapped out the
computation of the CMEO for a NN. This representation is then concatenated with the new xtarget to
give us an element in HY . We test out MetaNN on the synthetic dataset described in the experimental
section. We start by highlighting that if use the experimental setup as described in Appendix C.
MetaNN will perform worse on 50 context points as show in the main text but better on 30 and 15.
MetaNN achieves a log-likelihood of 227.44 ± 41.92 and 114.43 ± 26.44 for 30 and 15 context
points resepectively, where as MetaCDe achieved only 113.27± 17.27 and 51.73± 10.43. This can
be explained by 2 factors. Firstly, a lower number of context points might give us a worse estimate of
the conditional mean embedding operator. Secondly, we note that it takes significantly more task
examples for the MetaNN to achieve the performance and hence this might have been due to the
limited variety in the training task i.e. variation in the range of the period and phase parameter. Hence
we conjectured that MetaNN might have just memorized the tasks well.

1We useed the following implementation https://github.com/EmilienDupont/neural-processes
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Figure 3: Figure illustrating how MetaNN performs better in low context points settings but seems to
learn slower than MetaCDE.Top Row: 30 context points (left) MetaNN (right) MetaCDE; Bottom
row: 15 context points (left) MetaNN (right) MetaCDE ((x-axis represents 1 unit=10k tasks))

Therefore we have ran additional experiments to on a harder synthetic dataset where we now sample
a from U(4, 14) and phase vary from U(�⇡,⇡). In this case, MetaNN seems to completely fails and
not able to learn anything useful at all. as the tasks in this case are more variable. Hence, we have not
included MetaNN in the below figures when comparing with other conditional density methods.

Figure 4: Figure illustrating how MetaNN fails when task become more variable. Top Row: MetaNN;
Bottom row: MetaCDE ((x-axis represents 1 unit=10k tasks))

To further investigate this phenomenon, we have created a new task based on samples on Gaussian
Processes (GPs). Here we sample 2 GPs with an Gaussian kernel with lenthscale 1 as well as a
uniform random variable from q ⇠ U(1, 3). We then added u to one of the sampled GPs and hence
created a multimodal dataset in y(see figures below). This task has a lot more variability than the
previous synthetic dataset task. Below, we illustrate how MetaCDE is still able tp perform well
whereas MetaNN completely fails tp learn anything useful. This illustrates the useful and necessity
of the CMEO which allows us to include additional inductive biases in our model. by using a CMEO,
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we explicitly tell the model which entries are covariates and which are responses. Hence facilitating
the learning process for the model.

Figure 5: Density maps of the GP example (Left)MetaCDE (Right)(MetaNN)

Figure 6: Evolution of the log-likelihood (x-axis represents 1 unit=10k tasks) (Left)MetaCDE
(Right)(MetaNN)
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E Illustration of Synthetic dataset

E.1 Using 50 context points

MetaCDE NP DDE LSCDE KCEF ✏-KDE
Sythn. Data Mean over 100 log-likelihoods 197.84 ± 22.45 -81.11±18.53 162.98 ± 69.01 44.95 ± 74.36 -388.30 ± 703.17 116.31 ± 236.99
Sythn. Data P-value for Wilcoxon test NA < 2.2e-16 8.144e-07 <2.2e-16 < 2.2e-16 2.384e-07

Figure 7: In Order (synthetic dataset): MetaCDE (ours), NP, DDE, LSCDE, KCEF, ✏-KDE
The red dots are the context/training points and the green dots are points from the true density.
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E.2 Using 30 context points

MetaCDE NP DDE LSCDE KCEF ✏-KDE
Sythn. Data Mean over 100 log-likelihoods 113.27 ± 17.36 -48.98±12.26 64.61 ± 54.33 -23.02 ± 65.31 -233.38 ± 528.99 29.64 ± 195.49
Sythn. Data P-value for Wilcoxon test NA < 2.2e-16 4.577e-14 <2.2e-16 < 2.2e-16 4.917e-13

Figure 8: In Order (synthetic dataset): MetaCDE (ours), NP, DDE, LSCDE, KCEF, ✏-KDE
The red dots are the context/training points and the green dots are points from the true density.
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E.3 Using 15 context points

MetaCDE NP DDE LSCDE KCEF ✏-KDE
Sythn. Data Mean over 100 log-likelihoods 51.73 ± 10.48 -24.39±8.20 0.58 ± 40.70 -57.99 ± 59.13 -142.19 ± 259.59 -87.50 ± 224.13
Sythn. Data P-value for Wilcoxon test NA < 2.2e-16 4.577e-14 <2.2e-16 < 2.2e-16 < 2.2e-16

Figure 9: In Order (synthetic dataset): MetaCDE (ours), NP, DDE, LSCDE, KCEF, ✏-KDE
The red dots are the context/training points and the green dots are points from the true density.

F Further insight to the Ramachandran plots

F.1 Additional information on the experimental setup

In this experiment, we look into the Ramachandran plots for molecules. Each plot indicates the
energetically stable region of a pair of correlated dihedral angles in the molecule. Specifically, we
are interested in estimating the distributions of these correlated dihedral angles. We compute the
conditional density for each correlated dihedral angles, given 20 context points at testing time. For
our meta-learning training we use 20 context points and 60 targets points.

Note that the data was extracted from crystallography database [6]. It is possible that some specific
pairs of dihedral angles are rarely seen in the dataset, Hence, we may obtain a conditional density
with high probability on the region without any observations in some cases. This is reasonable as the
database covered only a small part of the chemical space and some potential area could be overlooked.
Given that we assume that the support of our conditioning variable x ranges from [�⇡,⇡), we will
inevitable also compute conditional distribution on areas where the configurations are not defined
and hence the densities in those areas can be safely ignored as a computational chemist would not
have queried these configurations in the first place.
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F.2 Model specifications

For our MetaCDE we used a 3 hidden layer NN with tanh activation functions for all of our feature
maps. We cross validate over 32 and 64 hidden nodes per layer and � = 1.0, 0.1 for the regularization
parameter. We fix the learning rate at 1e-3 and set  = 10.

• KCEF: we used the CV function that was in built in their Github repository
• LSCDE: We CV for � in logspace(�3, 5, 20) and � in logspace(�5, 5, 20)

• ✏-KDE: We CV over ✏ in linspace(0.5, 3, 15) and bandwidth in linspace(0.01, 3, 15)
• DDE: We CV over bandwidth of 0.5 and 1.0

Figure 10: Cases where MetaCDE does not seem to perform better than conventional methods

Furthermore it looks like our method is not able to always capture the true trend given the limited
amount of data. However, it seems to be able to capture some interesting patterns that would be useful
to scientist to include in their models. Recently, there has been work done on these Ramachandran
plots for Molecules but handcrafting the density maps. Our model would allow us to compute the
density maps without prior knowledge.

G Illustration of the NYC taxi dataset

G.1 Experimental Setup

We have extracted the publicly available dataset from the website 2. We have first of all restricted
ourselves to drop-off locations in from �74.1 to �73.7 in longitude and 40.6 to 40.9 in latitude. Next
we have given our meta learning model 200 datapoints for context during training and 300 for target.
At testing time we are presented with 200 context points and are required to compute the conditional
density given a tip. In this case each task is one specific pickup location. Again, we are using a
3-hidden layer NN with 128 nodes and CV over � = 0.1 and 1.0. We use the Adam optimizer and
fixed the learning rate to 1e � 3. We also set  = 10.

G.2 Note on the dataset

In the main text we have seen how the drop-off density changes as we increase the amount of tips.
This move of density illustrates well the data itself, as one is more likely to pay higher tips for longer
journeys. Below we have plotted the drop-off locations of one specific pickup location colored with
the respective tips paid.

2Data has been taken from: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Figure 11: drop-off locations given a pickup location

Figure 12: CDE of the drop-off locations as the tip amount increases. The trips starts at the red dot

Figure 13: CDE of the drop-off locations as the tip amount increases. The trips starts at the red dot

Figure 14: CDE of the drop-off locations as the tip amount increases. The trips starts at the red dot
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